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Abstract

Bootstrapping is commonly used as a tool for non-parametric statistical inference to assess the
quality of estimators in variable selection models. However, for a massive dataset, the compu-
tational requirement when using bootstrapping in variable selection models (BootVS) can be
crucial. In this study, we propose a novel framework using a bag of little bootstraps variable
selection (BLBVS) method with a ridge hybrid procedure to assess the quality of estimators
in generalized linear models with a regularized term, such as lasso and group lasso penalties.
The proposed method can be easily and naturally implemented with distributed computing,
and thus has significant computational advantages for massive datasets. The simulation results
show that our novel BLBVS method performs excellently in both accuracy and efficiency when
compared with BootVS. Real data analyses including regression on a bike sharing dataset and
classification of a lending club dataset are presented to illustrate the computational superiority
of BLBVS in large-scale datasets.

Keywords distributed computing; large-scale dataset; scalable bootstrap; variable selection

1 Introduction
In a scenario of multi- and high-dimensional regression analysis, adding a penalty term is a
popular method for identifying the attributes that actually affect the response. Commonly used
penalty methods include lasso (Tibshirani, 1996), group lasso (Meier et al., 2008), adaptive lasso
(Zou, 2006), and smoothly clipped absolute deviation (Fan and Li, 2001), among others. For
instance, a peer-to-peer lending company, which matches borrowers with investors through an
online platform, usually constructs a penalized logistic regression model to identify significant
predictors that are associated with borrowers’ default risk from a large number of attributes
(e.g., personal information and loan records). Because the data contains both continuous and
categorical predictors, the lasso penalty does not work well as it only selects individual dummy
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variables instead of whole factors. Moreover, the lasso solution depends on the dummy variable
encoding algorithm. Choosing a different reference for the categorical predictor may lead to
different solutions. Thus, the group lasso for logistic regression (Meier et al., 2008) is preferable
in this case.

An interesting topic in variable selection models is assessing the quality of the estimators.
The assessment method can be chosen according to one’s inferential goals: for instance, stan-
dard deviation or confidence regions. Bootstrap variable selection (BootVS), a non-parametric
method, is proposed in the literature (Shao, 1996; Chatterjee and Lahiri, 2011).The BootVS
method first randomly generates bootstrap resamples. A variable selection method is applied to
each bootstrap resample. Then the results from all bootstrap resamples are collated to assess
the quality of the estimators.

The big data era has brought exponential growth in the size of datasets, which challenges
statistical methods. When the size of dataset n is much larger than the number of covariates
p (n � p), a natural solution is to use modern distributed computing. Indeed, traditional
bootstrapping is ideally suited to distributed computing because it assigns different bootstrap
resamples to different processors or compute nodes, and each bootstrap resample is indepen-
dently computed in parallel. However, computing one bootstrap resample for massive datasets
is still problematic because each bootstrap resample has the same order size as the original
dataset. An example is building a robust prediction model for an online lending company, where
the training dataset normally has millions of observations. Thus, traditional bootstrapping may
overwhelm computational resources and be computationally inefficient when the original dataset
is large.

Various methods have been proposed to reduce the sample size of each bootstrap resample.
Subsampling, also known as delete-d jackknifing (Wu et al., 1986), is a “drawing without replace-
ment” method. Meinshausen and Bühlmann (2010) introduced a stability selection framework
for high-dimensional data, based on the subsampling algorithm. Liu et al. (2021) applied the
subsampling strategy to lasso penalized regression to analysis microbiome data. A closely re-
lated method is the m out of n bootstrap proposed by (Bickel et al., 2012), which randomly
samples m < n observations from the original dataset. De Bin et al. (2016) provided a detailed
comparison of subsampling and m out of n bootstrapping in the context of model selection
for multivariable regression. Another popular method is “divide and conquer” (DAC), which
randomly divides the original dataset into K disjoint and smaller subsets. For each subset, a
penalized regression method is conducted. Then, the subset-specific estimates are integrated
to obtain the final results. Chen and Xie (2014) applied the DAC strategy to generalized lin-
ear models with a penalty term, where a majority voting and averaging operator is used for
subset-specific estimates. Wang et al. (2021b) extended the DAC strategy to fit a penalized
Cox proportional hazard model. Hong et al. (2022) proposed a screening and one-step lineariza-
tion infused DAC algorithm to fit sparse logistic regression to large-scale datasets. However, as
discussed in Kleiner et al. (2014), although these methods are more generally consistent than
traditional bootstrapping, their behavior is sensitive to the choice of resample (or subsample)
size, and can be worse for finite samples. When the final objective is simultaneous inference for
DAC regression parameters, Tang et al. (2020) proposed a strategy to combine bias-corrected
lasso-type estimates by using confidence distributions.

Even for n � p, it’s also useful to select the important variables (Wang et al., 2021a; Fan
and Cheng, 2007). Because in real applications, we not only value the model’s prediction abil-
ity but also the explanation ability. Take the loan business for example, we want to find out
important characteristics of customs who are likely in default. In this case, we need inferen-
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tial measures, such as confidence interval to help us decide which variables are important. For
example, those variables whose confidence interval don’t contain zero are important variables.
Motivated by the need for a scalable and accurate method for assessing the quality of estimators
in variable selection models for massive data, we propose a novel framework called the bag of
little bootstraps for variable selection (BLBVS). The method is inspired by the idea of the bag
of little bootstraps (BLB) method (Kleiner et al., 2014), which incorporates features of both
subsampling and bootstrapping to yield a robust and computationally efficient assessment. In-
stead of directly resampling from the original dataset, the BLB method first generates subsets of
reduced size from the original dataset without replacement and then generates resamples from
the subsets with replacement. We combine BLB with variable selection by conducting a penal-
ized optimization for each bootstrap resample of each subset. Further, a ridge hybrid procedure
is followed after selecting variables to achieve a sparser and more accurate model. Finally, es-
timators on all resamples are integrated to give variable selection and assessment results. The
computational cost of BLBVS is reduced because the number of distinct points in each bootstrap
resample is the same as the reduced size of the subset. Moreover, because BLBVS estimates pa-
rameters and assesses the quality for each bootstrap resample independently, it can be easily
implemented using distributed computing. Thus, BLBVS has significant computational advan-
tages, especially for massive data. Simulations and applications show that BLBVS performs well
in variable selection and is consistently more robust and faster than BootVS.

The remainder of this paper is organized as follows. In Section 2, we first formalize our
statistical setting and notation, and propose the BLBVS method. Then we develop the BLBVS-
ridge hybrid framework to achieve sparser and more accurate estimations in variable selection
models. After that, we compare BLBVS with the existing BootVS algorithm in terms of com-
putational characteristics. In Section 3, we elucidate the performance of BLBVS via various
simulation studies and compare them with those of BootVS. The results show that BLBVS has
a faster convergence rate with a better ability to select variables than BootVS does. Section 4
implements a large-scale BLBVS on a distributed computing system and presents results illus-
trating the superior computational performance of BLBVS on massive datasets. In Section 5,
we apply BLBVS to two real datasets, one is an open dataset from UCI, and the other is the
aforementioned default-risk predicting dataset. We conclude in Section 6.

2 Methodology
In this section, we first propose our novel BLBVS framework, followed by the ridge hybrid
procedure. Then we compare our method with the existing BootVS algorithm in terms of their
computational characteristics.

2.1 Variable Selection via Bag of Little Bootstraps
Assume that we have independent and identically distributed observations {(xi , yi)}ni=1, where xi

is a p-dimensional vector and yi is a response variable. The BLB method proposed by Kleiner
et al. (2014) aims to assess the quality of estimators in generalized linear regression for massive
datasets. Now, we propose a novel BLBVS framework by combining the BLB and variable
selection models. Specifically, we first randomly select s subsets (also called bags or modules) of
smaller size b = nγ , where γ ∈ (0, 1) is an exponential factor controlling the bag size, without
replacement from {(xi , yi)}ni=1. For each subset, let I ⊂ {1, . . . , n} be the corresponding index set
such that |I| = b and F̂ (t) = b−1 ∑

i∈I I {(x�
i , yi)

� � t} be the empirical distribution weighting
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each data point with b−1, where t is an arbitrary vector with length p+1 and I {·} is the indicator
function. Then for each subset, generate r bootstraps with replacement resamples of size n (the
same size as the original dataset) from F̂ . One can see that although the size of each bootstrap
resample is n, it contains, at most, b distinct data points. Thus, fitting a variable selection model
based on this weighted data directly requires much less computational time and storage.

The generalized linear model is formulated as E(Y |X = x) = g−1(β�x), where β ∈ R
p is

a vector of parameters and g(·) is a link function. For example, in linear regression, the link
function is chosen as g(u) = u, and in a logistic regression model for binary responses, the link
function is g(u) = ln(u/(1 − u)).

For variable selection models, we consider the optimization problem

min
β

{L(Y, X;β) + λ · S(β)}, (1)

where L(Y, X;β) is a pre-defined loss function usually set as the negative log-likelihood, λ

is the tuning parameter controlling the sparsity of the model, and S(β) is the corresponding
regularization term, such as the lasso (Tibshirani, 1996) and group lasso (Yuan and Lin, 2006;
Meier et al., 2008) penalties. For example, in linear regression, we have L(Y, X;β) = ∑n

i=1(yi −
β�xi )

2, and for logistic regression models, it holds that L(Y, X;β) = ∑n
i=1{−yiβ

�xi + log[1 +
exp(β�xi )]}. Note that in (1), when λ increases, the penalization is intensified and fewer variables
are selected.

Popular variable selection models include the lasso and group lasso. Considering the l1 lasso
penalty (Tibshirani, 1996), (1) can be written as

min
β

{L(Y, X;β) + λ‖β‖1}.

However, the lasso model selects individual variables without any group structure.
To select or abandon a group of variables (e.g. dummy variables of a categorical predictor)

simultaneously, the group lasso is proposed (Meier et al., 2008). Assuming there are G groups
of predictors, the group lasso model is defined as

min
β

⎧⎨
⎩L(Y, X;β) + λ

G∑
g=1

‖βIg
‖2

⎫⎬
⎭ , (2)

where Ig denotes the index of the g-th group of variables for g = 1, . . . , G. Denote β̂ ij =
(β̂

(1)
ij , . . . , β̂

(p)

ij )�, which is the of the optimization problem (1), as the vector of estimators of the j -
th bootstrap resample in the i-th subset and ξ̂ i = (ξ̂

(1)
i , . . . , ξ̂

(p)

i )� as the assessment of the quality
of the estimators in the i-th subset, which consists of a summary of the distribution of β̂ ij , j =
1, . . . , r (i.e., standard deviation or confidence region) based on the bootstrap resamples. Then
the overall assessment ξ̂ = (ξ̂ (1), . . . , ξ̂ (p))� of parameter estimation is calculated by averaging
the results of s subsets, that is

ξ̂ = s−1
s∑

i=1

ξ̂ i . (3)

Regarding variable selection, denote Q(β̂ ij ) = (I (β̂
(1)
ij �= 0), . . . , I (β̂

(p)

ij �= 0))� as a binary vector
of length p where the l-th coordinate indicates whether β̂

(l)
ij is non-zero. Note that Q(β̂ ij ) is

calculated to represent the selection results of β̂ ij for the i-th bootstrap resample in the j -th
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Algorithm 1: Bag of Little Bootstraps Variable Selection (BLBVS).
Input: {(xi , yi)}ni=1: original observed dataset
b: size of each subset
s: number of subsets
r: number of bootstrap resamples for each subset
Output: the assessment of quality ξ̂ and the selection proportion result P
for i = 1 to s do

1. Randomly select a subset {(xl , yl), l ∈ I} with size b from the original dataset without
replacement where I ⊂ {1, 2, . . . , n}.

for j = 1 to r do
2. Let F̂ be the empirical distribution, assigning a weight of b−1 to each pair
(xl , yl), l ∈ I. Generate a bootstrap resample {(x∗

l , y
∗
l ), l = 1, 2, . . . , n} of size n from

F̂ with replacement.
3. Apply a variable selection model (e.g., lasso or group lasso) to
{(x∗

l , y
∗
l ), l = 1, 2, . . . , n}, which contains at most b distinct points, to calculate the

estimators of parameters β̂ij .
end
4. Calculate the assessment of quality ξ̂ i (e.g., standard deviation or confidence region)
based on β̂i1, . . . , β̂ir .

end
5. Compute the final assessment ξ̂ by (3).
6. Calculate the selection proportion P for all predictors based on (4). Select the predictors
with a selection proportion larger than the pre-defined cut-off c.

subset. To obtain the final variable selection result, a voted criterion is similarly applied. Suppose
the voting weight of each bootstrap resample in any subset is identical, then the final selection
proportion vector P of all predictors is defined as

P =
∑s

i=1

∑r
j=1 Q(β̂ ij )

s · r
. (4)

The l-th predictor would be selected if it satisfies P (l) > c, where P (l) is the l-th coordinate of
P for l = 1, . . . , p representing the corresponding selection proportion and the cut-off c can be
determined similarly by the definition of majority in the specific study. Algorithm 1 gives the
detailed BLBVS procedure and the workflow is shown in Figure 1.

2.2 BLBVS-Ridge Hybrid
As shown in the literature (Meinshausen, 2007; Meier et al., 2008), the models selected by lasso
or group lasso are probably larger than the true model with redundant variables. Moreover,
because of the shrinkage effect of the l1 penalty, the estimators of significant predictors tend
to be smaller than the true values. To solve these issues, Efron et al. (2004) proposed the lars-
ordinary least squares hybrid, which uses lasso to select variables first and then fits ordinary
linear regression to the selected predictors. To derive smaller and more robust models with
good prediction performance, Meinshausen (2007); Meier et al. (2008) proposed the relaxed
lasso (group lasso) model to include a l2 penalty. Inspired by this idea, we propose the BLBVS-
ridge hybrid model. We first use a variable selection model to select predictors and then fit
ridge regression to the selected predictors to achieve a more accurate and robust model for each
bootstrap resample of each subset.
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Figure 1: BLBVS workflow: the original dataset has n data points; (Step 1) s subsets of size
b (b < n) are randomly generated without replacement; (Step 2) r bootstrap resamples of size
n are generated from the subset with replacement, containing b distinct points at most; (Step
3) estimators and their corresponding indicators are calculated on each bootstrap resample in
each subset, then the assessment of the quality of parameter estimation is computed in each
subset; (Step 4) the overall assessment is derived by taking the average value across s subsets,
and variables are selected according to the selection proportion P and a pre-defined threshold
c.

Given λ, denote the set of active predictors by Iλ and let M̂λ = {β ∈ R
p|β(i) = 0 for i /∈ Iλ}

be the set of possible parameter vectors of the corresponding submodel. The BLBVS-ridge hybrid
estimator is defined as

β̂λ,κ = argmin
β∈M̂λ

{
L(Y, X, β) + κ‖β‖2

2

}
, (5)

where κ is the weight for the l2 penalty. When κ = 0, the procedure is similar to the lars-
ordinary least squares hybrid in (Efron et al., 2004). Optimization problem (5) can be solved
with numerical algorithms such as the Newton method and the coordinatewise approach (Genkin
et al., 2007) for massive data.

2.3 BLBVS Versus BootVS

As described in Section 1, Bootstrapping might be one of the most commonly used methods
to assess the quality of the estimators in variable selection models (Shao, 1996; Chatterjee and
Lahiri, 2011). Assume we randomly generate m bootstrap resamples with replacement from the
original dataset {(xi , yi)}ni=1. Denote β̂ i , i = 1, 2, . . . , m as the vector of estimators for the i-th
bootstrap resample. Then the assessment of the quality of the estimators, defined as ξ̂ (i.e.,
standard deviation or confidence regions), is calculated based on the empirical distribution of
β̂ i , i = 1, 2, . . . , m. As for variable selection, a voted criterion similar to the decision tree and
random forest theories (Breiman, 2001; Lin and Jeon, 2006) is applied. Denote Q(β̂ i) = (I (β̂

(1)
i �=

0), . . . , I (β̂
(p)

i �= 0))� as the binary vector indicating whether the l-th coefficient is non-zero in
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Algorithm 2: Bootstrap Variable Selection (BootVS).
Input: {(xi , yi)}ni=1: original observed dataset
m: number of bootstrap resamples
Output: the assessment of quality ξ̂ and the selection proportion result P
for i = 1 to m do

1. Let F̂ be the empirical distribution assigning a weight of n−1 to each pair
(x l , yl), l = 1, . . . , n. Generate a bootstrap resample with replacement {(x∗

l , y
∗
l )}nl=1

of size n from F̂ .
2. Apply the variable selection model (e.g., lasso or group lasso) (1) to {(x∗

l , y
∗
l )}nl=1

to calculate the estimators of parameters β̂ i .
end
3. Calculate the assessment of quality ξ̂ (e.g., standard deviation or confidence region)
based on the empirical distribution of β̂1, . . . , β̂m.

4. Calculate the selection proportion P for all predictors based on (6). Select the
predictors with a selection proportion larger than the pre-defined cut-off c.

the i-th bootstrap resample. Suppose the voting weight of each bootstrap resample is identical,
then the final selection proportion vector P of all predictors is defined as

P =
∑m

i=1 Q(β̂ i)

m
. (6)

The l-th predictor is selected if it satisfies P (l) > c, where P (l) is the l-th coordinate of P
for l = 1, . . . , p representing the corresponding selection proportion, and the cut-off c can be
determined by the definition of majority in specific studies. The detailed BootVS procedure is
given in Algorithm 2. The difference between BLBVS and BootVS could be ideally described
by computational complexity and storage occupation. For BootVS, as mentioned by (Tibshirani
and Efron, 1993), the number of distinct points in each bootstrap resample from the original
dataset is approximately 0.632n. Thus, the computational complexity is m ·O(f (0.632n, p)). For
BLBVS, as one can see, instead of n data points in the original dataset, the bootstrap resam-
ple from each subset contains, at most, b distinct points. And the computational complexity
is r · s · O(f (nγ , p)). Therefore, BLBVS involves much less computation by working directly
on the weighted data. It’s difficult to prove the computation superiority of BLBVS based on
the computational complexity because the form of function f , which depends on the variable
selection method and the optimization algorithm, is complicated. We will show computation
superiority of BLBVS in different simulation scenario. As for storage occupation, we consider
an original dataset of size n = 106. If we assume each data point occupies 1MB of storage space,
then the original dataset would occupy 1TB. Each bootstrap resample in BootVS would occupy
approximately 632GB. For BLBVS, the size of each subset is b = nγ = 3, 981 with γ = 0.6, and
each bootstrap resample from the subset has 3, 981 distinct points. Thus, in BLBVS, a boot-
strap resample from a subset only needs approximately 4GB of storage. It is obvious that our
proposed method runs much faster and requires much fewer computational resources, especially
when the original dataset is extremely large.
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3 Simulations

3.1 Variable Selection and Convergence Property

In this section, we compare the statistical performance of BLBVS with that of BootVS via
numerical simulations. Specifically, we present the variable selection ability and the convergence
rate of both BootVS and BLBVS for the lasso and group lasso models. We also discuss the
choice of the cut-off c in variable selection, the number of subsets s, and the number of bootstrap
resamples for each subset r, with insightful suggestions.

We consider two different settings: linear regression and logistic regression. For both settings,
the data {(xi , yi)}ni=1 are generated independently and identically, where xi is the p-dimensional
vector of predictors and yi is the response. Note that yi ∈ R is continuous in linear regression
and yi ∈ {0, 1} is binary in logistic regression. All predictors are assumed to be continuous for
the lasso model, whereas some categorical predictors are involved in the group lasso model.
To assess the quality of estimators, we consider two criteria, standard deviation and a 95%
confidence interval length.

To evaluate the convergence rate of the assessment ξ̂ , we first compute the ground truth ξ

of β̂ by generating 2000 realizations of datasets of size n from the true underlying distribution.
For each dataset, we apply a variable selection model (e.g., lasso or group lasso) to estimate β̂

and then the estimators on all datasets form a high fidelity approximation of the true underlying
distribution, which is used to approximate ξ . Based on the approximation value of ξ , we are
able to define the relative error (RE) of ξ̂ obtained by BootVS or BLBVS. Denote I as the set
of active predictors, of which the proportion being selected from the 2000 realizations is larger
than the pre-defined cut-off c, then the RE is defined as

RE = |I|−1
∑
i∈I

ξ̂ (i) − ξ (i)

ξ (i)
, (7)

where | · | represents the cardinality of the set and ·(i) is the i-th coordinate of the corresponding
vector.

All experiments are implemented and executed using R software (http://www.r-project.org/)
on a quad-core processor (MacOS High Sierra system; Intel Core i7 and 2.9GHz CPU; 16GB
RAM). As for the tuning parameter λ in the variable selection model (1), we use a grid search in
{λmax, 0.96λmax, . . . , 0.96100λmax}. For each candidate of λ, we first fit a variable selection model
(1) to select significant predictors and then fit the ridge regression (5) to approximate the true
underlying model better as stated in Section 2.3. In the ridge regression (5), the weight of the l2
penalty κ is set as 10−5 as suggested by (Kleiner et al., 2014). Then, the Bayesian information
criterion (BIC) for each fitted model is calculated and the model with the minimum BIC is
finally selected.

For BootVS, we set the number of bootstrap resamples as m = 500. For BLBVS, we consider
the size of each subset as b = nγ with γ ∈ {0.6, 0.7, 0.8, 0.9}. The choice of the number of subsets
s and the number of bootstrap resamples r is an interesting problem. A basic rule is to set a larger
s for a smaller γ as suggested by (Kleiner et al., 2014). From some preliminary experiments,
we set s = 30, 20, 10, 10 for γ = 0.6, 0.7, 0.8, 0.9, respectively, and r = 100 in all BLBVS runs.
More discussions about s and r are presented in Section 3.3.

We first consider the lasso model where the predictors are all continuous without any group
structure for both regression and classification scenarios.

http://www.r-project.org/
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Example 1 (Linear Regression with Lasso). The dataset {(xi , yi)}ni=1 is generated as follows.
For i = 1, 2, . . . , n, j = 1, 2, . . . , p, xij ∼ N(0, 1) and yi = x�

i β + εi with εi ∼ N(0, 1). Set
p = 35, n = 20000 and β = (112, 03, 16, 04, 18, 02)

�.

Example 2 (Logistic Regression with Lasso). The dataset {(xi , yi)}ni=1 is generated as follows.
For i = 1, 2, . . . , n, j = 1, 2, . . . , p, xij ∼ N(0, 1) and yi ∼ Bernoulli(1/{1 + exp(−x�

i β)}). Set
p = 15, n = 20000 and β = (17, 03, 13, 02)

�.
Then we consider the group lasso model by involving categorical predictors. Both regression

and classification scenarios are presented.

Example 3 (Linear Regression with Group Lasso). The dataset {(xi , yi)}ni=1 is generated as
follows. For i = 1, 2, . . . , n, xij ∼ N(0, 1), j = 1, . . . , p − 5 and xij , j = p − 4, . . . , p are
dummy variables from two categorical predictors following a discrete uniform distribution with
4 levels and 3 levels, respectively. Note that yi = x�

i β + εi with εi ∼ N(0, 1). Set p = 35,
n = 20000. Divide β into 8 groups with I1 = {1, . . . , 5}, I2 = {6, . . . , 12}, I3 = {13, . . . , 15},
I4 = {16, . . . , 21}, I5 = {22, . . . , 25}, I6 = {26, . . . , 30}, I7 = {31, . . . , 33}, I8 = {34, 35} and set
β = (15, 17, 03, 16, 04, 15, 13, 02)

�. Thus, the predictors in I1, I2, I4, I6, I7 are significant and
the remainder are inactive.

Example 4 (Logistic Regression with Group Lasso). The dataset {(xi , yi)}ni=1 is generated as
follows. For i = 1, 2, . . . , n, xij ∼ N(0, 1), j = 1, . . . , p − 5 and xij , j = p − 4, . . . , p are dummy
variables from two categorical predictors following a discrete uniform distribution with 4 levels
and 3 levels, respectively. Note that yi ∼ Bernoulli(1/{1 + exp(−x�

i β)}). Set p = 15, n = 20000.
Divide β into 5 groups with I1 = {1, . . . , 3}, I2 = {4, . . . , 7}, I3 = {8, . . . , 10}, I4 = {11, . . . , 13},
I5 = {14, 15} and set β = (13, 14, 03, 13, 02)

�. Thus, the predictors in I1, I2, I4 are significant
and the remainder are inactive.

Figures 2 show the selection results for BLBVS with different values of γ ∈ {0.6, 0.7, 0.8, 0.9}
and for BootVS for Examples 1. For BLBVS, our results show that the selection becomes more
and more accurate as γ increases. The BootVS selection performance is superior to that of
BLBVS, especially when γ is small. As the selection proportion is computed based on the
information of each bootstrap resample, it would be more accurate if the resample contains
more distinct data points, which is the case for BootVS and BLBVS with a larger γ . Setting
c = 0.5, the selection results are same for BootVS and BLBVS with γ = 0.8, 0.9 via the voted
criterion. In Section 3.2, more discussions about c are presented. One can see that by choosing
a proper cut-off c, BLBVS is a good method for selecting significant predictors.

The convergence properties of BootVS and BLBVS are shown in Figure 3. For BootVS
method, let ti , 1 � i � m be the computing time for the i-th bootstrapping resample. So we

have time vector Tboot = {t1,
2∑

i=1
ti , . . . ,

m∑
i=1

ti} as x-axis. For BLBVS method, let tij , 1 � i � s,

1 � j � r be the computing time for the i-th subset, j -th bootstraping resample. So we have

time vector TBLB = {
r∑

j=1
t1j ,

2∑
i=1

r∑
j=1

tij , . . . ,
s∑

i=1

r∑
j=1

tij } as x-axis. Because BootVS takes much more

time than BLBVS, we only show results for the first hundred seconds, when in fact BootVS
continues running after this time point. One can see that for both linear regression and logistic
regression, BLBVS converges to a lower RE significantly faster than BootVS in most situations.
For BLBVS, although the differences are small for different values of γ , we can still see that
BLBVS performs best with γ = 0.7, 0.8. For γ = 0.6, there are only b = nγ = 380 distinct points
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Figure 2: Results of variable selection in Example 1 for BLBVS with γ = 0.6, 0.7, 0.8, 0.9 and
BootVS. The variables in red are active and those in green are inactive. Horizontal line refers
to 50% selection proportion.

Figure 3: Relative error versus processing time for lasso: (a) standard deviations in Example 1;
(b) 95% confidence interval lengths in Example 1; (c) standard deviations in Example 2; (d)
95% confidence interval lengths in Example 2.
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Figure 4: Results of variable selection in Example 3 for BLBVS with γ = 0.6, 0.7, 0.8, 0.9 and
BootVS. Variables from the same group share the same color. Horizontal line refers to 50%
selection proportion.

in a bootstrap resample, leading to the poor performance of the convergence rate. Whereas for
γ = 0.9, b is large and thus the computation is consuming. BLBVS achieves a good balance
between the diversity of the resample and computational efficiency with γ = 0.7, 0.8.

Figures 4 show the selection results for BLBVS with different values of γ ∈ {0.6, 0.7, 0.8, 0.9}
and BootVS for Examples 3. One can see that BLBVS fails in variable selection with γ = 0.6.
As γ increases, the selection results become more accurate. The BootVS selection performance
is superior to that of BLBVS, especially when γ is small. Setting c = 0.5, the selection results
are same for BootVS and BLBVS with γ = 0.9. Selection results for Example 2 and Example
4 are in supplementary material. In Section 3.2, we further show that BLBVS selects variables
well by choosing a proper cut-off c.

The convergence properties of BootVS and BLBVS are shown in Figure 5. One can see that
for both linear regression and logistic regression with group lasso, BLBVS converges to a lower
RE significantly faster than BootVS does, in most situations. For logistic regression with group
lasso, BLBVS has an unsatisfying performance with γ = 0.6, whereas the performance is still
stable for a larger γ . Combined with Figure 3, one can see that the problem is more difficult
in classification than regression. Furthermore, involving categorical predictors, which is the case
with group lasso, also brings some challenges to variable selection models. In Examples 1–4,
we suggest setting γ = 0.7, 0.8 for our proposed BLBVS method, under which BLBVS selects
variables well and converges much faster than BootVS does.

3.2 Choice of the Cut-off c

In this subsection, we discuss the choice of the cut-off c and show that by choosing a proper c,
BLBVS selects significant variables very well.

After we have calculated the proportion vector P , we select those variables with P (l) > c,
where c can be determined by the definition of majority in specific problems. It is obvious that
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Figure 5: Relative error versus processing time for group lasso: (a) standard deviations in Ex-
ample 3; (b) 95% confidence interval lengths in Example 3; (c) standard deviations in Example
4; (d) 95% confidence interval lengths in Example 4.

the choice of cut-off c will affect our selection results, and thus the accuracy of the selection
procedure. The definition of majority can be different in different situations. Here, we propose
a procedure to determine the value of c.

When the proportion vector P ∈ R
p is finally decided, we sort them in descending order,

denoted as Pdesc. And we plot Pdesc against the sequence of number of variables {1, 2, . . . , p}.
At certain point there is a sharp drop in the curve, giving an angle in the graph. Then the
interval between the breakpoints is the proper range of cut-off c. Taking Example 1 where a
linear regression with lasso is conducted for illustration, for BLBVS with γ = 0.6, when the
number of variables increase from 26 to 27, the corresponding selection proportion decrease
from nearly 1 to 0.8. So the proper range of c is [0.8, 1.0) in this case. Similarly, the proper
range of c is [0.6, 1) for BLBVS with γ = 0.7 in Example 1. From Figure 6, one can see again
that the range of c is broader with γ increasing. The selection results are more accurate for a
larger γ as the bootstrap resample contains more distinct points. Moreover, BootVS is superior
to BLBVS in variable selection by achieving a broader range of c. Moreover, it is more difficult
to select variables in the classification scenario and the group lasso model, especially when γ

is small. However, choosing a proper c value, BLBVS with a large γ is able to select the true
model.
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Figure 6: Proportion results sorted by descending order: (a) Example 1; (b) Example 2; (c)
Example 3; (d) Example 4.

3.3 Choice of s and r

In the BLBVS framework, the number of subsets s and the number of bootstrap resamples r

are given by the users. As stated above, one basic rule is to set a larger s for a smaller γ . As
suggested by (Kleiner et al., 2014), one can also view s and r as tuning parameters, thus the
value with best results may be chosen. In our simulations, we suggest setting s = 30, 20, 10, 10
for γ = 0.6, 0.7, 0.8, 0.9, respectively, and r = 100 in all runs.

To provide further insights into the influence of s and r, we apply a grid search for the
linear regression with lasso described in Example 1 and the logistic regression with group lasso
described in Example 4 as illustrations. Figure 7 gives the relative errors of both the standard
deviations and 95% confidence region lengths achieved by BLBVS with b = n0.7 for various values
of s and r pairs. Note that, except for the smallest values of s and r, our proposed BLBVS
achieves low relative errors for all pairs of s and r. One can see again that the classification
problem with group lasso is much more difficult. In these two cases, selecting s � 10 and r � 50
is sufficient for the relative errors to converge.
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Figure 7: Relative errors for different s’s and r’s: (a) standard deviations in Example 1; (b)
95% confidence interval lengths in Example 1; (c) standard deviations in Example 4; (d) 95%
confidence interval lengths in Example 4.

4 Scalability and Computational Analysis
In Section 3, we focus on the statistical performance of BLBVS and BootVS including variable
selection and convergence properties, although the simulations also provide some insightful com-
putational scalability results. One can see that when there is only one compute node involved,
BLBVS converges much faster than BootVS does because there are only b distinct points in
each bootstrap resample, which is much smaller than the size of the original dataset.

The processing and storage capabilities of individual processors or compute nodes bring
great challenges to modern algorithms. One popular approach is the use of parallel and dis-
tributed computing. To use distributed computing in BootVS, the following procedure is usu-
ally followed: generating bootstrap resamples, assigning them to a cluster of compute nodes,
and estimating parameters on each resample across the cluster simultaneously. This approach
remains quite problematic. On one hand, the estimation of each resample requires the use of
the entire cluster of compute nodes, and bootstrapping repeatedly incurs the cost of repeatedly
communicating intermediate data among nodes. On the other hand, when the size of the boot-
strap resample exceeds the storage capability of the available memory, BootVS needs to read
the resampling set from disc, which is much slower than reading from memory.

By contrast, one notable advantage of BLBVS is the computational scalability for massive
datasets. For BLBVS, the estimation procedures for subsets and resamples are independent and
can be conducted by different individual compute nodes simultaneously. Specifically, one single
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Figure 8: Relative error versus processing time for the large dataset: (a) standard deviations;
(b) 95% confidence intervals length.

compute node can be used for one subset and then intra-node parallelism could be applied
across different resamples generated from that subset. Note that there are only b distinct points
in each subset, and BLBVS only needs a single read of the original dataset from disc. After that,
the generated subsets and resamples can be stored in memory. Therefore, BLBVS performs
better on reducing the total computational cost and allowing better applications of parallel and
distributed computing resources than BootVS does.

We now compare the performance of BootVS and BLBVS by simulating a much larger
dataset on a distributed computing platform. The setting of this experiment is the same as
Example 1 in Section 3 except for n = 2 × 105. We use a compute machine with a cluster of 4
work nodes, each has 16 GB of memory and 6 CPU (AMD 6344) cores where the total memory
of the cluster is 64 GB. The full dataset is partitioned between the four compute nodes. The
results of the experiment are shown in Figure 8. For this dataset, we compare the performance of
the proposed BLBVS method with different values of γ ∈ {0.6, 0.7, 0.8, 0.9} and that of BootVS.
From experiments in Section 3, we suggest setting s = 30, 20, 10, 10 for γ = 0.6, 0.7, 0.8, 0.9,
respectively, and r = 50 in all runs. One can see that, especially for γ = 0.6, 0.7, 0.8, BLBVS
converges much faster, and thus has a significant computational advantage over BootVS for this
large dataset.

5 Real Data Analysis
In this section, we apply our proposed BLBVS method to two real datasets. The first dataset,
named the Bike Sharing Dataset, is from the University of California at Irvine (https://archive.
ics.uci.edu/ml/datasets/bike+sharing+dataset) and contains the hourly count of rental bikes
between 2011 and 2012 in the Capital bikeshare system with the corresponding weather and
seasonal information. There are 17389 samples and 15 covariates containing both continuous
and categorical predictors. The response is the count of total rental bikes including both casual
and registered. We first utilize a log transformation to the response variable to suit the linear
regression. Moreover, we transform the categorical variable “weathersit” with four levels to a
binary variable, taking 1 if the weather is clear and 0, otherwise. The linear regression is con-
ducted for this dataset and the group lasso penalty is included to select important variables as
there are categorical predictors.

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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The second dataset is the Lending Club Dataset. This dataset is available at the Lend-
ing Club (LC) website (https://www.lendingclub.com/info/download-data.action). We retrieve
data for the period between January 2016 and the third quarter of 2019. The dataset contains
personal information (e.g., home ownership, LC assigned loan grade) and financial information
(e.g., number of tax liens, total collection amounts ever owed, number of mortgage accounts,
number of bankcard accounts, credit balance, number of derogatory public records). We only
include the observations whose loan status is “Fully Paid,” “Default,” or “Charged off.” We
merge “Charged off” and “Default,” meaning that people in this category defaulted loans. After
data preprocessing, there are 791332 samples and 40 covariates containing both continuous and
categorical predictors. To predict loan defaults, logistic regression is conducted for this dataset
and the group lasso penalty is included to select important variables as there are categorical
predictors.

For these two datasets, we compare the performance of the proposed BLBVS method with
different values of γ ∈ {0.6, 0.7, 0.8, 0.9} and that of BootVS. From experiments in Section 3, we
suggest setting s = 30, 20, 10, 10 for γ = 0.6, 0.7, 0.8, 0.9, respectively, and r = 50 in all runs.
The selection results show that X3, X4, X6, X9, X12, X13, X15 (season, year, hr, workingday,
atemp, hum, casual) are important variables for the first dataset. For the second dataset, we
select 14 important variables, including the LC assigned loan grade, installment (the monthly
payment owed by the borrower if the loan originates), home ownership, total credit revolving
balance, number of mortgage accounts, and so on.

Because of the absence of the true underlying distributions of the estimators, it is impossible
to calculate the relative error defined in (7). To compare the performance of the convergence
rates, we calculate the standard deviation of the assessment (or the 95% confidence interval
length) to evaluate the stability. Figure 9 shows the standard deviations of assessments ξ̂ versus
the processing time of BootVS and BLBVS (with different values of γ ) for these two datasets.
One can see that our BLBVS method is much more stable than BootVS because it is faster
at achieving a lower standard deviation of assessments regardless of the value of γ . Cut-off c

graphs for bike sharing dataset and lending club dataset are in supplementary material.

6 Conclusions
This study proposes a novel BLBVS framework to obtain a computationally efficient method
for assessing the quality of estimators and selecting significant predictors in generalized linear
models. The method is to first generate subsets with reduced size from the original dataset with-
out replacement and perform bootstrap resampling for each subset. Then, a variable selection
model, such as lasso and group lasso, is applied for each bootstrap resample. Furthermore, to
achieve a sparser and more accurate model, a ridge hybrid is followed. Various numerical studies
and real data analyses including both regression and classification are presented to show that
our proposed BLBVS has great accuracy and computational advantages over BootVS.

One of the remarkable characteristics of BLBVS is its computational scalability. On one
hand, each bootstrap resample in BLBVS has a reduced size of distinct points and the estimation
process can work on the weighted data directly. On the other hand, BLBVS is easily processed
with parallel and distributed computing. Considering the limitation of processing and storage
capabilities of individual processors or compute nodes, BLBVS is suitable for massive datasets
in the big data era.

There are several possible extensions that can be considered. First, this study only discusses

https://www.lendingclub.com/info/download-data.action
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Figure 9: Standard deviation of estimators versus processing time for real data analyses: (a) SD of
standard deviations for the Bike Sharing Dataset; (b) SD of the 95% confidence interval lengths
for the Bike Sharing Dataset; (c) SD of standard deviations for the Lending Club Dataset; (d)
SD of the 95% confidence interval lengths for the Lending Club Dataset.

two kinds of penalties in variable selection models. In fact, BLBVS can be naturally extended to
other variable selection models with different penalties, such as the mcp (Zhang, 2010), adaptive
lasso (Zou, 2006), and smoothly clipped absolute deviation (Fan and Li, 2001) models. Second,
to enhance the computational efficiency of BLBVS, its hyperparameter γ can be viewed as a
tuning parameter and an effective means of adaptively selecting γ is preferable. Third, when the
dataset is high-dimensional (i.e., vast numbers of predictors), it is necessary to extend BLBVS to
the feature screening scenario (Fan and Lv, 2008; Li et al., 2012; Xie et al., 2020). Fourth, when
there are outliers in the variable selection (Yao and Wang, 2013; Xie et al., 2020), a procedure
robust to outliers is required.

Supplementary Material
.zip contains the following files and/or directories:
• /code and data/: Directory that includes code and files necessary to reproduce the numerical

results presented in this paper.
• supplementary.pdf: Online supplementary material.
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