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Abstract

Estimates of county-level disease prevalence have a variety of applications. Such estimation is
often done via model-based small-area estimation using survey data. However, for conditions with
low prevalence (i.e., rare diseases or newly diagnosed diseases), counties with a high fraction of
zero counts in surveys are common. They are often more common than the model used would lead
one to expect; such zeros are called ‘excess zeros’. The excess zeros can be structural (there are no
cases to find) or sampling (there are cases, but none were selected for sampling). These issues are
often addressed by combining multiple years of data. However, this approach can obscure trends
in annual estimates and prevent estimates from being timely. Using single-year survey data, we
proposed a Bayesian weighted Binomial Zero-inflated (BBZ) model to estimate county-level rare
diseases prevalence. The BBZ model accounts for excess zero counts, the sampling weights and
uses a power prior. We evaluated BBZ with American Community Survey results and simulated
data. We showed that BBZ yielded less bias and smaller variance than estimates based on the
binomial distribution, a common approach to this problem. Since BBZ uses only a single year of
survey data, BBZ produces more timely county-level incidence estimates. These timely estimates
help pinpoint the special areas of county-level needs and help medical researchers and public
health practitioners promptly evaluate rare diseases trends and associations with other health
conditions.
Keywords excess zeros; incidence; PLOW; power prior; small area estimate

1 Introduction
Disease or condition prevalence data are often gathered at the state (e.g., Behavioral Risk
Factor Surveillance System (BRFSS)) or national (e.g., National Health Information Survey)
level. However, estimates at a finer geographical scale, such as county, are often needed. In these
cases, small area estimation (SAE) gives us a way forward. Model-based SAE can deliver more
precise estimates of the parameters of interest than direct methods (Sugasawa and Kubokawa,
2020; Ghosh and Rao, 1994). There are two main types of model-based approaches: frequentist
and Bayesian. Although both are used in SAE, the latter has several advantages (Trevisani
and Torelli, 2017; Best et al., 2019). These include increased flexibility in dealing with complex
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models and the ability to accommodate many sources of uncertainty, which can be integrated
into posterior distribution.

According to the Orphan Drug Act of 1983, a rare disease is defined as a condition affecting
fewer than 200,000 people. The demand for estimates of county-level rare disease prevalence has
increased dramatically over the last few years (Auvin et al., 2018; Liu et al., 2017; Bendewald
et al., 2010; Thompson et al., 2007). Such estimates allow researchers and policymakers to better
understand disease trends and to better target prevention efforts. There are two main challenges
to estimate county-level rare disease prevalence: (1) surveys conducted at a larger scale than
county often have very few respondents in each county (some counties may have no survey data
whatsoever) and (2) because the disease of interest is rare, few are likely to be observed in each
county. These issues are often addressed by combining multiple years of data. However, this
approach can obscure trends in annual estimates and prevent estimates from being timely. Even
with combined years, many counties may still have no observed cases.

Bayesian hierarchical regression (BHR), a type of model-based estimation, plays a vital role
in SAE. Erciulescu et al. (2019) proposed BHR to estimate county-level acreage and crop pro-
duction by incorporating remote sensing data, weather data and planted acreage administration
data as auxiliary variables. Similarly, Alexander et al. (2017) presented a Bayesian hierarchical
Poisson regression to estimate county-level mortality rates with three hierarchies by borrowing
variances across all counties. Extensions of BRH have been made by introducing spatio-temporal
variations (Khana et al., 2018; Ayubi et al., 2018) and sampling weights adjustment (Chen et al.,
2015; Vandendijck et al., 2016). However, BHR models implemented with a binomial or Poisson
distribution can only be rough approximations because data are often overdispersed (e.g., more
zeroes than the parametric model accounts for) (Millar, 2009). Not accounting for overdisper-
sion causes the estimated variances of parameter estimates to be negatively biased (Lee et al.,
2012). Several distributions, such as negative binomial, zero-inflated Poisson, and zero-inflated
beta-binomial, have been used in cases where there are more zeros than a binomial or Poisson
model would allow (Dai et al., 2018; Hu et al., 2018; Pourhoseingholi et al., 2018).

Recently, a new method (Xie et al., 2020) of SAE was proposed: Power prior LOg-Weights
estimates (PLOW). PLOW involves a BHR model with power prior distribution and introduces
adjusted sample weights on account of the design mechanism. However, PLOW does not ac-
count for there being more zero counts than one would see under a binomial model. Here, we
expand PLOW by incorporating a zero-inflated binomial distribution to estimate the county-level
prevalence of a rare condition. We call this approach Bayesian Weighted Binomial Zero-inflated
distribution (BBZ). In short, BBZ extends PLOW by implementing zero-inflated binomial dis-
tribution on account of excess zero counts (overdispersion).

As an example, we use BBZ to estimate the county-level prevalence of young adults (18
to 35 years old) who have self-care difficulty (DDRS) (having trouble with dressing, bathing
or getting around inside the home because of his/her physical, mental or emotional condition),
using BRFSS data. The results are validated with American Community Survey (ACS) 1-year
reports.

2 Motivating Study
The BRFSS is a state-level annual telephone survey study conducted by the Centers for Disease
Control and Prevention among noninstitutionalized adults aged 18 years or older in the United
States and some territories. BRFSS 2019 was the most recent data available to the public at
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the time of this study. In 2019, the median response rate of all states was 45.9%. The total
sample size was about 450,000. As there are 3142 county or county-equivalents in the United
States, many counties had very small sample sizes. As a state-level survey, the surveyed samples
assigned to each county is relatively small; two hundred and thirty-four counties (∼7%) have no
data. Indeed, since no BRFSS 2019 data were collected from New Jersey, all of the state’s 21
counties had no data. Thus, these left only 2908 counties with available data in 2019.

The ACS, conducted by the Census Department to track nationwide health, jobs and oc-
cupations, educational attainments, housings and other topics, uses four modes: internet, mail,
telephone, and personal visit (Gettens et al., 2015). In 2019, the response rate was 86.0%. The
sample size is around 3.5 million each year, which is 8 to 9 times larger than BRFSS. The ACS
releases two versions of county-level reports every year: ACS 1-year and ACS 5-year. ACS reports
5-year data annually for all counties by aggregating five years of survey data, while ACS 1-year
reports are based on single-year survey data only for the large-size counties (population size >

65,000) (∼27%). Therefore, we validate our estimates using ACS county-level 1-year results.
DDRS is rare in young adults (those aged between 18 and 35 years). According to the 2019

ACS 5-year report for 3121 counties, the DDRS prevalence rate in young adults was 0.86%,
13.49% in those aged 75+ years, and 2.71% in the entire population. We use DDRS in young
adults as our example rare disease because both ACS and BRFSS have been collecting DDRS
data since 2013, and both ACS and BRFSS ask the same question, “Do you have difficulty
dressing or bathing?”.

3 Statistical Models
3.1 Bayesian Hierarchical Regression (BHR) Model
To address the problem of small sample sizes, we apply BHR by borrowing “strength” across
whole counties and states and auxiliary variables. We cross-classify respondents into three age
groups (18 to 24, 25 to 29 and 30 to 35 years old), two sex groups (male and female) and two
race groups (white and non-white; sample sizes make narrower classification impractical), which
resulted in 12 clusters (e.g., cluster of white males aged 18 to 24 years old). Let yij be count
of young adult DDRS cases in county i and cluster j (i = 1, 2, . . . , 3142, j = 1, 2, . . . , 12). For
kth respondent, in particular, yijk = 1 denotes DDRS case and yijk = 0 otherwise. We assume
yij followed a binomial distribution. The models can be defined as a pair of equations (Barker
et al., 2013):

yij =
∑
k=1

yijk and yij |pij , nij ∼ Binomial(pij , nij ) (3.1)

log

(
pij

1 − pij

)
= Xβj + Zγj + μij + νs(i)j (3.2)

where pij and nij are probability of cases and sample sizes in county i and cluster j , respectively.
X is the vector of 12 clusters and Z is vector of auxiliary variables (i.e., education level, poverty
rate, etc.). The μij and νs(i)j are random effects of ith county and sth state in cluster j , respectively.
We assume μij and νs(i)j are independent. The posterior distribution of pij given yij :

f
(
pij

∣∣yij

) ∝ L
(
yij |pij

)
π(pij ) (3.3)

where f (.|.), L(.|.), and π(.|.) are denoted as the posterior distribution, the likelihood function,
and the prior distribution of pij given yij , respectively, and hereafter.
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3.2 PLOW: Power Prior Sampling Log-Weight Adjustment Method
Typically, BHR conditions on the samples and the parameters of interest. That is, the sampling
design mechanisms are not used (Pfeffermann, 2013). In Equation 3.1, yij is the sum of case
counts in county-level which is independent of the sampling design and weights. Studies (Kish
and Frankel, 1974; Hansen et al., 1983) show that not accounting for sampling weights can cause
both biased estimates and large variance of estimates. However, inappropriately incorporating
sampling weights to BHR can also result in poor model fit. For example, extremely large or
small sampling weights can result in estimates with a large variance. Second, the likelihood part
weakly influences the posterior distribution when there are few or no observed data. In other
words, the estimates of parameters of interest for those counties are primarily determined by the
prior distribution. If non-informative priors (a common choice) are used, the results are “diffuse”.

To solve these problems, we adapt PLOW in this study. Firstly, we calculate the “effective”
case counts by introducing sampling weights:

ye
ij =

∑
k=1(log(wijk))

T yijk∑
k=1(log(wijk))T

yij (3.4)

where, ye
ij is the “effective” case counts in ith county and jth cluster. The wijk is sampling weight

corresponding to kth respondent. Here, we use T as an index of transformation in the range 0
to 1, in other words, T ∈ [0.1], is a tuning parameter (Xie et al., 2020); in Tukey’s ladder of
transformations, a logarithmic transformation corresponds to an asymptotically zero exponent.
In particular, T = 0 corresponds to the unweighted adjustment while = 1 to the fully-weighted
adjustment. Using “effective” counts ye

ij , Equation 3.1 is modified as:

ye
ij |pij ∼ Binomial(pij , nij )

Secondly, assuming historical data are available, we construct a power prior (Chen et al., 2000).
This approach is a compromise between non-informative priors and historical data. To estimate
the prevalence of young adult DDRS in 2019, we use 2017 and 2018 BRFSS data as historical
data. Both BRFSS 2017 and BRFSS 2018 had the same questions on DDRS and survey designs
as BRFSS 2019.

Let Y0ij and p0ij be the counts and probability of historical cases in county i and cluster j ,
respectively. The posterior distribution of the power prior is defined as:

f
(
p0ij

∣∣Y0ij , α0
) ∝ L

(
Y0ij

∣∣p0ij

)α0
π(p0ij )

where, L(.|.) is likelihood function; α0 ∈ (0, 1) is an empirically determined power parameter
which controls the “strength” borrowing from the historical data.

By introducing of the sampling weight and power prior, the posterior distribution of pij

(3.3) is:

f
(
pij

∣∣ye
ij , Y0ij , α0

) ∝ L
(
ye

ij |pij

)
π

(
p0ij

∣∣Y0ij , α0
)

= L
(
ye

ij |pij

)
L

(
Y0ij

∣∣p0ij

)α0
π(p0ij ) (3.5)

We call L(ye
ij |pij )L(Y0ij |p0ij )

α0 the “power” likelihood function. With the proper conjugate beta
distribution of power prior π(.|.) ∼ beta(α, β), the posterior distribution of pij follows a beta-
binomial distribution:

f
(
pij

∣∣ye
ij , Y0ij , α0

) ∝ p
ye

ij +Y0ij ×α0+αi−1

ij (1 − p0ij )
ye

ij +Y0ij ×α0+βi−1 (3.6)
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3.3 Bayesian Hierarchical Weighted Binomial Zero-Inflated Regression (BBZ)

Observed data often have excess zeros, compared to models implemented with standard distri-
butions, such as binomial or Poisson. The excess zeros can be structural (there are no cases
to find) or sampling (there are cases, but none were selected for the sample). Here, we apply
the zero-inflated binomial distribution to process structure zeros, sampling zeros and positive
counts, simultaneously. Letting ωi be the probability that an observation is zero in ith county,
the probability density function of the zero-inflated binomial is:

f
(
ye

ij ;ωi, pij , nij

) =
⎧⎨
⎩

ωi + (1 − ωi)f
(
ye

ij ;pij , nij

)
, ye

ij = 0

(1 − ωi)f
(
ye

ij ;pij , nij

)
, ye

ij > 0

where the binomial function f (ye
ij ;pij , nij ) is defined as:

f
(
ye

ij ;pij , nij

) =
(

nij

ye
ij

)
p

ye
ij

ij (1 − pij )
(nij −ye

ij ) (3.7)

Finally, combined with three features of sampling weight, power prior and zero-inflated
distribution, the posterior distribution of pij (3.5) is updated as:

f
(
pij |ye

ij , Y0ij , α0, ωi

) ∝ L
(
ye

ij>0|pij , ωij

) × L
(
ye

ij=0|pij , ωi

)
× L

(
Y0ij>0|p0ij , α0, ωi

)
L

(
Y0ij=0|p0ij , α0, ωi

)
π(p0ij ) (3.8)

where π(p0ij ) is non-informative initial prior for power prior π(.|.), which is assigned as π(p0ij ) ∝
Normal (0, var = 106). And ωi has same non-informative prior as π(p0ij ).

Once pij is established, it is straightforward to calculate the estimated prevalence of DDRS
in count i, pi,, as:

pi =
∑12

j=1 pijNij∑12
j=1 Nij

where Nij is county-level young adult population projections in county i and cluster j derived
from US Census Bureau county-level population projections.

3.4 Model Validations

Four BHR models are evaluated. These models assume: binomial distribution (BHBI); zero-
inflated binomial distribution (BZBI); PLOW (BPLW); and our new approach, BBZ. BHBI is a
default model that fits binary counts without considering any specific datafeature; BZBI takes
care of excess zeros; BPLW includes sampling weight and power prior; BBZ takes into account
these elements: survey design, prior distribution and zero-inflated. Each model is applied to
estimate the county-level DDRS prevalence in young adults using BRFSS 2019. Meanwhile, we
check the impact of different levels of “zero” counts on the model performance using simulation
data at the county-level.

ACS reports are often treated as “gold” standard because ACS is a survey large enough to
provide direct estimates for many counties. The ACS releases single-year disability data for the
835 large-size counties. For model validation purposes, we selected 228 large-size counties with
a population of young adults (aged from 18 to 35 years old) at least 65,000.
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The Root Mean Square Error (RMSE) is a common method of assessing model performance:

RMSE =
√∑m

i=1 (pi − pACSi)2

m

where, m is the number of selected counties, pi is model-based county-level estimate and pACSi
is the ACS county-level 1-year report. The other criterion is Mean Bias Error (MBE). MBE
measures the deviation of estimates (pi) from the best approximation to the actual values
(pACSi):

MBE =
∑m

i=1 (pi − pACSi)

m

The Deviance Information Criterion (DIC) is particularly useful to check the goodness-of-fit
of Bayesian models. DIC is calculated as (Spiegelhalter et al., 2002; Shriner and Yi, 2009):

DIC = 2D(y, pi) − D(y, pi)

where, D(y, pi) is posterior mean deviation and D(y, pi) is the deviation at posterior mean pi ,
respectively. For each of these three indices, smaller values indicate better model performance.

All analyses were performed using SAS (version 9.4). PROC MCMC implemented with
Monte Carlo Markov chain (MCMC) was applied to draw the samples corresponding the poste-
rior distributions.

4 Results

4.1 Using BRFSS data

Two hundred and twenty-eight counties with young adults population size greater than 60000
were selected as “motive” samples for validation. The four models described above were applied
to estimate the county-level prevalence of young adults with DDRS in 2019 using BRFSS 2019.
Figure 1 shows the 2019 agreement between BRFSS model-based estimates and ACS 1-year
reports of county-level DDRS. The reference line denoted what would happen if model-based
estimates and standard references were identical. Among the four models, the BBZ estimates
consistently produced the smallest RMSE. More simulated studies results to test the performance
of these four models, based on 2015 and 2016 BRFSS data, are presented in Supplementary
Materials (Figures 4 & 5).

Table 1 showed BBZ had a 31.4% and 46.8% smaller RMSE and MBE than BPLW due
to the binomial zero-inflated distribution. BBZ was about 25.4% and 62.2% smaller RMSE and
MBE than BZBI due to its use of the PLOW method. BBZ had the smallest DIC which indicated
the best model fit. BHBI had the highest RMSE and DIC amongst the four models.

The Bland-Altman plot is a visualization method to assess bias patterns (Bland and Alt-
man, 1999). It plots the difference of two measures (bias) on the Y-axis against the average
of the two measures (mean) at the X-axis and overlays reference lines, such as 95% upper
(mean + 1.96∗SDmean) and 95% lower (mean − 1.96∗SDmean) limits in the same plot. Figure 2
presents the Bland-Altman plots of our four models using BRFSS 2019. The points were ap-
proximately equally distributed below and above the “zero bias” line, suggesting no systematic
errors. However, plots of BHBI and BZBI presented “cone” shapes, in which points lie closer
to the ‘zero bias’ line on the left and spread out as one moved to the right. This suggests that
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Figure 1: Scatter plots of agreements between model-based estimates with ACS 1-year reports
of self-care difficulty (DDRS) in 2019 (BHBI: Bayesian hierarchical binomial regression; BZBI:
Bayesian hierarchical zero-inflated binomial regression; BPLW: Bayesian hierarchical binomial
regression with PLOW (Power prior sampling LOg-Weight Adjustment); BBZ: Bayesian hierar-
chical weighted zero-inflated binomial regression). Each spot represents one county.

biases were proportional to the magnitude of measures. Furthermore, some points were far from
the upper 95% limits lines, suggesting a right-tail skew. In the BPLW plot, a cluster of points
suggested a “trend”, in which points tended to be overestimated for smaller values of the pa-
rameters of interest and underestimated for larger. We found no such patterns in the BBZ plot.
Besides, BBZ had the narrowest 95% confidence interval (−5.7 × 10−3, 5.9 × 10−3).

We also test the bias at different levels of having “zero” counts. Based on BRFSS 2019
DDRS survey data, we classify all counties into one of four “zero” levels: 0 to <70%, 70% to
<90%, 90% to <100%, and 100% (these categories are arbitrary but are considered ’reasonable’).
Figure 3 shows box and whisker plots for bias in the four “zero” levels. This figure suggests that
bias varies by level of zeros less with BBZ than the other models. BHBI and BZBI are more
likely to create positively biased results at levels “0 to <70%” and “70% to <90%”. BPLW varies
widely, with positive bias in the “0 to <70%” level. 48.4% counties have no DDRS cases (100%
zeroes). At this level, the plots show the four models perform roughly similarly.

4.2 Using “Pseudo-Counties” Data
We investigate the impact of the “zero” count levels more generally through simulation. First,
we create 228 “pseudo-counties” by resampling from those “super-large” counties at 50%, 60%,
70%, 80%, 90% and 95% levels of “zero” counts of DDRS, respectively, using 2019 BRFSS
county-level DDRS data. Then, we apply each of four models (BHBI, BZBI, BPLW and BBZ)



152 Xie, Hui et al.

Table 1: The values of Deviance Information Criterion (DIC) and root mean square error (RMSE)
of Four Models (BHBI, BZBI, BPLW and BBZ) using Behavioral Risk Factor Surveillance Sys-
tem (BRFSS) 2019 data, respectively (BHBI: Bayesian hierarchical binomial regression; BZBI:
Bayesian hierarchical zero-inflated binomial regression; BPLW: Bayesian hierarchical binomial
regression with PLOW (Power prior sampling LOg-Weight Adjustment); BBZ: Bayesian hier-
archical weighted zero-inflated binomial regression). Smaller values of DIC, RMSE and MBE
indicate better fit.
Model BHBI BZBI BPLW BBZ

RMSE (×10−3) 6.73 6.02 6.55 4.49
MBE (×10−3) 2.60 2.70 1.92 1.02
DIC 3436.29 3480.38 3341.3 2775.16

Figure 2: Bland-Altman plots and analysis of four models using BRFSS 2019 (BHBI: Bayesian
hierarchical binomial regression; BZBI: Bayesian hierarchical zero-inflated binomial regression;
BPLW: Bayesian hierarchical binomial regression with PLOW (Power prior sampling LOg-
Weight Adjustment); BBZ: Bayesian hierarchical weighted zero-inflated binomial regression).

to the “pseudo-counties”. The results are compared to the ACS 1-year reports (Table 2).
In every case, BBZ outperforms to the other models, with lower RMSE and DIC values

from 90% down to 50% “zero” levels. In terms of RMSE, the BZBI has similar performance
with BHBI at levels of 80% and above. At the 95% level, RMSE values for the four models are
similar. This is consistent with Figure 3.
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Figure 3: Distribution of bias at different “zero” counts levels; BHBI: Bayesian hierarchical bino-
mial regression; BZBI: Bayesian hierarchical zero-inflated binomial regression; BPLW: Bayesian
hierarchical binomial regression with PLOW (Power prior sampling LOg-Weight Adjustment);
BBZ: Bayesian hierarchical weighted zero-inflated binomial regression.

5 Discussion
We developed a new approach, BBZ, to estimate county-level rare disease prevalence. BBZ
features: a Bayesian hierarchical model, the PLOW method, and a zero-inflated distribution.
These features allow us to address two challenges that are common in SAE of the prevalence
of rare diseases: (1)very small sample sizes or no data in some counties; (2)high volumes of
“zero” counts. Traditionally, the zero-inflated or hurdle or truncated models (Weaver et al.,
2015; Rose et al., 2006) have been employed to deal with excess “zero” counts. Our results show
that the BHBI can decrease variance but result in positive bias. Other zero-inflated models were
considered but yielded similar results. Positive bias probably arises from a failure to consider the
sample design and sampling weights associated with the data. A previous study (Xie et al., 2020)
showed that the use of PLOW could dramatically reduce bias and variance in SAE. However,
the BPLW method is not designed to handle “over-dispersion” and zero-inflated. Furthermore,
if a case is counted as zero, the corresponding sampling weight is not useful, because PLOW is
only applied to the non-zero cases.

BBZ, which simultaneously integrates the PLOW method and zero-inflated distribution,
performs well and has the lowest bias. Findings derived from both empirical and simulation
data demonstrate that BBZ provides the best performance at any “zero” level. In addition, BBZ
uses “historical” data through the use of a power prior distribution; this tends to improve the
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Table 2: The impact of different “zero” counts levels on the model performance using “pseudo-
counties”.

95% “zero” 90% “zero” 80% “zero” 70% “zero” 60% “zero” 50% “zero”

RMSE
(×10−3)

DIC RMSE
(×10−3)

DIC RMSE
(×10−3)

DIC RMSE
(×10−3)

DIC RMSE
(×10−3)

DIC RMSE
(×10−3)

DIC

BHBI 4.9 1861 7.1 3498 15.8 6296 23.3 8862 28.8 11204 36.9 13124
BZBI 4.6 1881 6.6 3546 15.7 6389 19.4 9059 25.8 11431 32.2 13375
BPLW 4.2 1906 4.7 3354 10.9 5720 14.1 8019 20.1 10069 26.1 11823
BBZ 4.0 1311 3.3 1945 8.8 2855 12.9 3562 16.0 4337 21.5 4972

accuracy, especially for counties with very small/zero sample sizes. Some studies (Khan et al.,
2018; Gibbs et al., 2020; Oleson et al., 2008; Vahedi et al., 2021) suggested incorporating the
spatial random effect by borrowing strength from space can improve model fit and estimate
accuracy. The topic is slightly out of the scope of this study, we may explore the spatial random
effect in the BBZ and other BHR models in the future study.

In the study of rare diseases, it is common for the sample to have no cases in some counties.
Even among the 228 large-sized counties used as motivating samples in this study, 82 had no
DDRS young adult cases in the 2019 BRFSS. If the counts are 100% “zero”, the data are not
binary. We showed that all models performed similarly – very low mean (close to “0”) but high
variance for the competing models considered. This could be explained by the facts that all
“zero” counts are fit by the degenerate distribution (Bhattacharya et al., 2008; Tang et al.,
2015) and the variances come from models borrowing “strength” directly from other counties
and states (Porter et al., 2015; Rao and Molina, 2015).

Although BBZ is used to estimate county-level young adult DDRS prevalence in this study,
no unique properties of DDRS were used. Thus, BBZ can be used for county-level studies of any
rare condition, such as new cases of diabetes. Diabetes incidence is defined as newly-diagnosed
disease cases; the annual rate is fairly low. For example, a CDC national survey () estimated
this rate as 0.67% among U.S. adults aged 18 years or older in 2018. Since relatively few survey
respondents with diabetes are new cases, the resulting county-level case counts are very small
with many excess zero counts. BBZ is ideal for estimating county-level diabetes incidence with
small sample sizes as it uses both zero-inflated distribution and PLOW.

Many methods historically used to estimate county level incidence or prevalence of dis-
eases combine multiple years of data (Rossen et al., 2018; Cadwell et al., 2010), which hampers
timeliness and obscures secular trends. Since BBZ uses only a single year of survey data, BBZ
produces more timely county-level incidence estimates. These timely estimates make it possible
for the researchers to promptly investigate disease trends and for policymakers to better target
control and prevention efforts.

Supplementary Material
Figure 4: Agreement between BRFSS model-based estimates and ACS 1-year reports of county-
level DDRS based on 225 selected counties in 2015. The reference line denotes if model-based
estimates and standard references (e.g., ACS 1-year report) were identical. Among the four mod-
els (BHBI, BZBI, BPLW and BBZ), estimates of BHBI and BZBI present both large variances
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and bias; Most counties have a positive estimated bias. Estimates of BBZ tend to stay closer to
the reference line with least bias and variance. These results are matched with those in 2019.

Figure 5: Agreement between BRFSS model-based estimates and ACS 1-year reports of
county-level DDRS based on 225 selected counties in 2016. The reference line denotes if model-
based estimates and standard references (e.g., ACS 1-year report) were identical. Among the
four models (BHBI, BZBI, BPLW and BBZ), estimates of BHBI and BZBI present both large
variances and bias; Most counties have a positive estimated bias. Estimates of BBZ tend to stay
closer to the reference line with least bias and variance. These results are matched with those
in 2019.
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