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Abstract

As data acquisition technologies advance, longitudinal analysis is facing challenges of exploring
complex feature patterns from high-dimensional data and modeling potential temporally lagged
effects of features on a response. We propose a tensor-based model to analyze multidimensional
data. It simultaneously discovers patterns in features and reveals whether features observed at
past time points have impact on current outcomes. The model coefficient, a k-mode tensor, is
decomposed into a summation of k tensors of the same dimension. We introduce a so-called
latent F-1 norm that can be applied to the coefficient tensor to performed structured selection
of features. Specifically, features will be selected along each mode of the tensor. The proposed
model takes into account within-subject correlations by employing a tensor-based quadratic
inference function. An asymptotic analysis shows that our model can identify true support when
the sample size approaches to infinity. To solve the corresponding optimization problem, we
develop a linearized block coordinate descent algorithm and prove its convergence for a fixed
sample size. Computational results on synthetic datasets and real-life fMRI and EEG datasets
demonstrate the superior performance of the proposed approach over existing techniques.
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1 Introduction
Nowadays, the advances in data acquisition technologies have collected ultra high dimensional
data with complex structure in many disciplines and industrial societies (Donoho, 2000; Liu
et al., 2016). Such datasets contain tensor data entries where each observed example is a high
dimensional tensor. In a neuroscience study (Cong et al., 2015), researchers examine different
electroencephalogram (EEG) recordings to distinguish patient trials (recordings) with successful
working memory from those without. Particularly, EEG data is high-dimensional and complex,
based on a time series of events sampled with high temporal resolution (i.e, millisecond level)
and distributed spatially across multiple scalp locations (e.g., montages of 32 to 256 channels)
(Figure 1(top-left and top-right)). A single EEG feature, such as the EEG signal amplitude in
the α frequency band, can be extracted at different brain information processing stages and
from various scalp locations (or EEG electrodes) (see Figure 1(bottom)). This single feature
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Figure 1: Illustration of EEG Brain Computer Interface (BCI) apparatus and working memory
test: (top-left) EEG recording montage; (top-right) a BCI program called P300 speller; (bottom)
a sample trial of Sternberg experiment depicting stages of information processing and time
courses as extracted for EEG analysis based on memory span of four letter.

already forms a matrix with one dimension along the temporal line and the other along the
spatial line. Then, when multiple EEG features are extracted from an EEG recording, these
features altogether form a tensor. In other words, a single recording is represented by a tensor,
or in other words a 3D array. Repeated measurement of functional magnetic resonance imaging
(fMRI) can create tensors in even higher dimensions because an fMRI image itself is a high
dimensional volume (Pereira et al., 2009). Classic statistical tools can hardly handle this kind of
data efficiently. Standard machine learning methods also need to flatten an example represented
by a tensor into a long vector before building a regression or classification model, thus losing
the complex proximity structure.

Conventional tensor techniques comprise a set of tensor decomposition methods where a
data tensor is decomposed into low-rank tensors (Hitchcock, 1927; Tucker, 1966). These tech-
niques have proven to be useful in data mining (Acar and Yener, 2009), signal processing (De
Lathauwer and Vandewalle, 2004) and computer vision (Vasilescu and Terzopoulos, 2002). Re-
cently, a set of methods has focused on the convex optimization formulations for tensor decompo-
sition. These methods added penalization of Schatten 1-norm on a sequence of unfolded matrices
from the tensor to the objective function. Or they decomposed a tensor into a summation of
several low rank tensors, leading to the so called latent approach (Tomioka et al., 2010).

In this paper we introduce a tensor-based quadratic inference function (TensorQIF) machine
learning model that can be used to analyze longitudinal data and select features efficiently. Lon-
gitudinal data consists of repeated sample observations during a given time period. They appear
in a variety of areas, from finance (Arnold et al., 2007; Sela and Simonoff, 2012) to scientific
research such as health-care and medicine (Bi et al., 2013; Stappenbeck and Fromme, 2010).

A notable feature of longitudinal data is repeated-measurement within each subject. Thus
observed responses are generally dependent and longitudinal correlation among different out-
comes must be considered to obtain efficient predictions. There are several extended generalized
linear models that can be applied to time-dependent data under different assumptions. P. Dig-
gle et al. have provided a comprehensive overview of various models (Diggle et al., 2002). For
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fitting marginal model, generalized estimating equation — GEE (Liang and Zeger, 1986a) and
quadratic inference function — QIF (Qu and Li, 2006) are common statistical approaches. They
are generally more efficient than those of classic regression analysis that assumes working inde-
pendently (ind).

In a GEE model, the correlation structure of outcomes is presumed and the so-called ‘work-
ing’ correlation matrix, R, is specified. However, in practice, the true correlation is often un-
known. The GEE model with misspecified working correlation matrix will no longer result op-
timal estimation of the coefficients (Crowder, 1995). In addition, the inverse of the matrix R is
essential that may cause poor estimation when R has high dimensions (Qu and Lindsay, 2003).
To overcome these disadvantages, Qu et al. (2000) suggested the QIF method for which R−1 is
approximated by a linear combination of several basis matrices. This method ensures that the
estimator always exists and does not require any estimation for nuisance parameters associated
with correlations. On the feature selection criteria, penalized GEE (Fu, 2003) and penalized QIF
(Bai et al., 2009) are proposed.

In this work, we study the lagged effect of covariates on outcomes. It is necessary and
insightful to model simultaneously the correlation among the outcomes and the lagged effects
of covariates, as studied in Granger causality (Granger, 1980). For example, Shen et al. (2014)
pointed out evidences of brain diseases may appear in the fMRI of an early diagnosis before
clear symptoms are identified. Recent graphical Granger models (Arnold et al., 2007; Lozano
et al., 2009) ignore the temporal correlations. The work in Xu et al. (2015) has modeled such
correlation through the GEE method. But their model only applies to datasets with one spatial
dimension. Our goal is to develop a new penalized QIF method in the tensor setting to make
temporal prediction. Nowadays, tensor regressions have shown to be powerful in learning complex
feature structures from multidimensional data. Many tensor techniques have been developed and
applied to a broad range of applications (Hoff, 2015; Zhou et al., 2013). However when focusing
on feature selections (e.g., sparse tensor decomposition), most of existing methods either assume
i.i.d. samples, or assume correlated samples but do not model temporal additive effects.

We propose a new learning formulation that constructs a tensor-based predictive model as
a function of covariates, not only from the current observation but also from multiple previous
consecutive observations. Simultaneously the model determines the temporal contingency and
the most influential features along each dimension of the tensor data. Given a data sample
characterized by a tensor, the coefficients in our additive model also form a K-way tensor. To
select features, we decompose the K-way coefficient tensor into a summation of K sparse K-
way tensors as shown in Figure 2. These tensors each present sparsity along one direction and
impose different block-wise least absolute shrinkage and selection operators (LASSO) to the
components. We use linearized block coordinate descent algorithm via a proximal map (Xu and
Yin, 2017) to efficiently solve the optimization problem. This approach then leads to K sub-
problems that share the same structure. We validate the effectiveness of the proposed method
in simulations and in the analysis of real-life fMRI and EEG datasets.

2 Method
This section is dedicated to deriving the formulation of the proposed QIF where we first review
the different generalized linear models.
Notations. We represent a K-way tensor as A ∈ R

d1×d2×...dK which contains N = ∏K
k=1 dk

elements. The inner product of two tensors A and B is defined by 〈A,B〉 = vect(A)�vect(B),
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Figure 2: A 3-way tensor is decomposed into a summation of three 3-way tensors so that each
part is sparse along a particular direction.

where vect(·) denotes the column-major vectorization of a tensor. The Frobenius norm of a
tensor A is defined by ~A~F = √〈A,A〉. The j -th sub-tensor of a tensor A along the mode-k
can be obtained by fixing the k-th index as j , i.e. A(j)

(k) = A(i1, i2, . . . , ik ≡ j, ik+1, . . . iK). Note
that A(j)

(k) is a (K − 1)-way tensor. The mode-k fiber of A is a dk dimensional vector which is
obtained by fixing all index of A except the k-th one. The mode-k unfolding of A is a matrix
A(k) ∈ R

dk×N/dk formed by concatenating all the N/dk mode-k fibers along its columns. The
operator [A1,A2, . . . ,Am] creates a (K + 1)-way tensor by concatenating m numbers of K-way
tensors A1, A2, ..., Am of the same dimension.

2.1 Generalized Linear Models with a Tensor
We first introduce a basic tensor formulation in which the objective function is written down
into two parts: a loss function l and a regularizer. Let (Xi , yi)1�i�m be a data set, where Xi ∈
R

d1×d2×···×dK is a covariate tensor and yi ∈ R (resp. {±1}) for regression (resp. classification) is
the corresponding outcome. We consider a linear model below:

min
W

m∑
i=1

l(yi, 〈Xi ,W〉) + λ~W~(·), (1)

where λ � 0 is the regularization parameter, and ~ ·~(·) is a certain tensor norm. Elements in the
tensor W are the model coefficients to be fitted. In the study of low-rank tensor decompositions,
overlapped/latent tensor trace norm (Wimalawarne et al., 2016) or Schatten norm (Tomioka
and Suzuki, 2013) are widely applied in (1). Although these latent tensor norms facilitate the
search for a low-rank tensor solution, they cannot enforce sparsity and thus unable to select the
most relevant ones among features.

In this paper, we focus on sparsity and feature selection by imposing a regularization con-
dition that forces to zero out an entire slice of the coefficient tensor. In other words, our model
selects nonzero slices in each direction of the tensor W . We hence introduce the latent LF,1 norm
defined by

~W~LF,1 := inf∑K
k=1 Wk=W

K∑
k=1

⎛⎝λk

dk∑
j=1

~(Wk)
(j)

(k)~F

⎞⎠ (2)

where λks’ are nonnegative constants. One can easily verify that Eq. (2) satisfies all required
norm properties.

There are various of settings for the loss function l depending on the specific learning tasks.
When the dataset is assumed to be i.i.d, the squared loss l(yi, 〈Xi ,W〉) = (yi − 〈Xi ,W〉)2; for
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regression or the logistic loss l(yi, 〈Xi ,W〉) = log(1+exp(−yi〈Xi ,W〉)). For classification are two
simple models usually applied. A more general family - generalized linear model (GLM) - has
been used according to an exponential distribution assumption on the dependent variable. This
family includes both the squared loss and logistic loss. To deal with correlated samples, GLM
has been further extended from point estimation to variance estimation, which leads to more
complicated formula, such as GEE or QIF. Between these two, QIF is more effective as discussed
early on. In this paper, we will use the QIF setting to analyze additive effects in longitudinal
datasets. The complete formula of l in our model will be given in the next section.

2.2 The Proposed QIF Formulation

Let X (i)
t ∈ R

d1×d2×···×dK−1 be a (K −1)-way tensor which represents the covariate tensor measured
for the subject i at time t . We denote y

(i)
t the outcome of the subject i at time t . We assume that

y
(i)
t depends not only on the current record X (i)

t but also on the previous τ records: X (i)
t−1, X

(i)
t−2,

..., X (i)
t−τ . Hence we may view a sample at a particular time t as a pair (X(i;t), y(i)

t ), where X(i;t) is a
K-way tensor concatenating all considered records: X(i;t) := [X (i)

t ,X (i)
t−1,X

(i)
t−2, . . . ,X

(i)
t−τ ]. Suppose

there are T total times of measurement for each subject i. In order to have enough previous
observations, the index t of X(i;t) should start from τ + 1 and there are n := T − τ training
examples for each subject. In the graphical Granger model, the relation between X(i;t) and y

(i)
t

is given by
y

(i)
t = 〈X(i;t),W〉 (3)

for some tensor coefficient W ∈ R
d1×d2×···×dK−1×dK , where dK = τ . We denote N := ∏K

k=1 dk

the number of elements in W . However, training examples in Eq. (3) are assumed to be i.i.d.,
which does not fit the intrinsic property of our dataset. In our case, the consecutive examples
share overlapping records (e.g. X(i;t) and X(i;t+1) share τ − 1 records: X (i)

t , X (i)
t−1, ..., X (i)

t−τ+1) and
outcomes y

(i)
t , y

(i−1)
t are correlated. Hence in this paper, we adapt QIF method which together

with GEE are members of GLM.
There are two essential ingredients in GLM: a link function and a variance function. The

link function describes the relation between a linear predictor η and the mean (expectation)
of an outcome y. The variance function tells how the variance of an outcome y depends on its
mean. In our formulation, these can be expressed by

μ
(i)
t := E[y(i)

t ] = h−1(η
(i)
t ), var(y(i)

t ) = V (μ
(i)
t ), (4)

where h is a link function determined according to a presumed distribution on yt from the
exponential family, V is a variance function, and

η
(i)
t = 〈X(i;t),W〉 (5)

is the linear predictor. Let y(i) := (y
(i)
τ+1, . . . , y

(i)
τ+n)

T be an n-dimensional column vector. In GEE
models, the covariance matrix �(i) for y(i) is modeled by

�(i) := (A(i)
)1/2 R(α)

(
A(i)
)1/2

, (6)

where R(α) is the ‘working’ correlation matrix, and A(i) is an n × n diagonal matrix with
V (μ

(i)
τ+j ) as the j -th diagonal element. The matrix �(i) will be equal to cov(y(i)) if R(α) is the

true correlation structure for y(i) (Liang and Zeger, 1986a). The model coefficients are then
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obtained by solving the score equation from the quasi-likelihood analysis. In our setting, it turns
out to be

m∑
i=1

(
D(i)

)T (A(i)
)−1/2 R−1(α)

(
A(i)
)−1/2 s(i) = 0. (7)

Here s(i) = y(i) − μ(i)), and μ(i) = (μ
(i)
τ+1, . . . , μ

(i)
τ+n)

� which depends on W (see Eq. (4) and (5)).
The n × N matrix D(i) is given by D(i) = ∂μ(i)/∂w where w = vect(W) and

(
D(i)

)
ab

=
∂(μ(i))a/∂(w)b.

In an alternative QIF method, the working correlation no longer needs to be pre-specified
as in GEE, which can be very inaccurate. Rather, it directly models R−1(α) as

R−1(α) =
d∑

j=1

ajMj (8)

where Mj ’s are known n × n matrices characterizing various basic correlation structures and
aj ’s are unknown parameters. For example, an AR-1 correlation can be expressed as R−1(α) =
a1M1 + a2M2 + a3M3, where M1 is an identity matrix, M2 satisfies (M2)i,j = 1 if |i − j | = 1,
(M2)i,j = 0 if |i − j | 	= 1, and M3 has 1 at (i, j) = (1, 1), (n, n) and zeros at other positions.
Instead of solving aj ’s associated with Eq. (7), we formulate our optimization problem via the
so-called ‘extended score’ by substituting Eq. (8) for R−1(α) in Eq. (7):

gm(W) := 1

m

m∑
i=1

g(i)(W) (9)

:= 1

m

m∑
i=1

⎛⎜⎝
(
D(i)

)� (A(i)
)−1/2 M1

(
A(i)
)−1/2 s(i)

...(
D(i)

)� (A(i)
)−1/2 Md

(
A(i)
)−1/2 s(i)

⎞⎟⎠
We may view each g(i)(W) as a random vector g(X , s,W) evaluated at the data {s(i),X(i) =
(X(i;τ+1), . . . ,X(i;τ+n))}.

The vector gm(W) is an (N · d)-dimensional column vector. In fact, substituting Eq. (8)
into Eq. (7) yields a linear combination of the row blocks of gm(W). Since gm(W) has a larger
dimension than W , we cannot estimate W by simply solving gm(W) = 0. Adapting the idea
of Qu and Li (2006) and Qu et al. (2000), we obtain W by minimizing the weighted length of
gm(W):

min
W

Qm(W) := mgm(W)�C−1
m (W)gm(W), (10)

where

Cm(W) = 1

m

m∑
i=1

g(i)(W)g(i)(W)� (11)

which estimates the covariance matrix of gm. The use of Cm leads to an efficient method (Hansen,
1982) because the calculation of Cm, a direct estimate of the covariance, allows us to omit the
step of estimating aj ’s.

In our tensorQIF model, the loss function l(W) = Qm(W) and the regularization term is
given by Eq. (2). More precisely, we solve the following optimization problem:

min
W1,W2,...,WK

Qm(W) +
K∑

k=1

⎛⎝λk

dk∑
j=1

~(Wk)
(j)

(k)~F

⎞⎠ (12)
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where each Wk ∈ R
d1×d2×···×dK and the final coefficient tensor W =∑K

k=1 Wk.

3 Asymptotic Analysis
In this section we establish the asymptotic normality for our TensorQIF model as m approaches
to infinity. We first rescale the objective function in Eq. (12):

Q̃m(W) +
K∑

k=1

⎛⎝λk

m

dk∑
j=1

~(Wk)
(j)

(k)~F

⎞⎠ . (13)

where Q̃m = g�
mC−1

m gm. We require the following regularity conditions on the random vector g
given after Eq. (9):
1. There exists a unique W∗ that satisfies the mean zero model assumption, i.e. E[g(W∗)] = 0.
2. The data {X(i), s(i)}′s are i.i.d. and the parameter space � := �1 × �2 × · · · × �K is compact.
3. W∗ has a unique decomposition W∗ =∑K

k=1 W∗
k such that for each k, W∗

k is an interior point
of �k.

4. Let w = vect(W). For all W ∈ �, ‖g(W)g(W)�‖F � d1(X , s), ~∇wg(W)~F � d2(X , s) for
some d1, d2 such that E[d1(X , s)] and E[d2(X , s)] are finite.
The proof the theorem is based on a uniform convergence result for stochastic functions.

Using Lemma 2.4 in Newey and McFadden (1994), conditions 2, and 4, we obtain

Lemma 1. Let C∗(W) = E[g(W)g(W)�] and J∗(W) = E[∇Wg(W)]. Then we have

Cm(W) → C∗(W) in probability (14)

and
∇wgm(W) → J∗(W) in probability, (15)

uniformly for W ∈ �. Moreover, C∗(W) and J∗(W) are uniformly continuous.

Remark 1. By condition 1 and the weak law of large numbers, we have gm(W∗)
p→ 0 as m → ∞.

The uniform convergence of the gradient in Eq. (15) then yields

gm(W) → E[g(W)] in probability (16)

uniformly for W ∈ � and E[g(W)] is continuous.
Under these regularity conditions, we have

Theorem 1. Let λk’s be fixed constants and let
∑K

k=1 Ŵk;m := Ŵm be the estimator obtained by
minimizing Eq. (13) subject to W =∑K

k=1 Wk. Then as m → ∞, we have

Ŵm → W∗ in probability, (17)
√

m · vect
(
Ŵm − W∗

)
→ N (0, (J�

0 C−1
0 J0)

−1) in distribution. (18)

where C0 = C∗(W∗) and J0 = J∗(W∗).

The proof can be found in Appendix.
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4 Algorithm
In this section, we provide an algorithm to solve the optimization problem Eq. (12) followed
by a convergence result. Since the sample size m is fixed throughout this section, we drop the
subscript m in Eq. (12) and write Qm as Q. We first give notations that will be used in our
algorithm.
• � = (W1, . . . ,WK); W(�) =∑K

k=1 Wk.
• F(�) = Q(W(�)) + R(�).
• �(r) = (W (r)

1 , . . . ,W (r)
K ); W (r) = W(�(r)).

4.1 Optimization Algorithm
We develop a linearized block coordinate descent algorithm in the following iterative procedure
to find optimal �̂ in Eq. (12). Denote the iterates at the r-th iteration by �(r). At point � =
(W1, . . . ,WK), let

R(�) :=
K∑

k=1

⎛⎝λk

dk∑
j=1

~(Wk)
(j)

(k)~F

⎞⎠ . (19)

Assume ∇WQ(W) is Lipschitz continuous with Lipschitz modulus LQ. The following PL(�, �̃)

is a linearized proximal map for the non-smooth regularizer R:

PL(�, �̃) := Q(W̃) + R(�) + KL

2

K∑
k=1

~Wk − W̃k~
2
F +

〈 K∑
k=1

(
Wk − W̃k

)
, ∇WQ(W̃)

〉
(20)

where L � LQ is a fixed constant. Note that

L

2
~W − W̃~

2
F � KL

2

K∑
k=1

~Wk − W̃k~
2
F . (21)

The inequality (21) and the Lipschitz continuity of Q(W) indicate that for all L � LQ,

F(�) � PL(�, �̃) for all � and �̃. (22)

At the r-th iteration, we update �(r+1) by solving the following optimization problem

min
�

K∑
k=1

[〈
∇WQ(r),Wk − W (r)

k

〉
+ KL

2
~Wk − W (r)

k ~
2
F

]
+ R(�) (23)

where ∇WQ(r) = ∇WQ(W (r)). Since R(�) given in (19) is separable among Wk’s, we can decom-
pose the problem (23) into the following K separate subproblems:

min
Wk

〈
∇WQ(r),Wk − W (r)

k

〉
+ KL

2
~Wk − W (r)

k ~
2
F + λk

dk∑
j=1

~(Wk)
(j)

(k)~F (24)

for k ∈ {1, . . . , K}. Since the subproblems share the same structure, we may fix k and solve (24)
to find the best Wk, which is equivalent to

min
Wk

1

2

�

�

�

�

Wk −
(
W (r)

k − 1

KL
∇WQ(r)

)�

�

�

�

2

F

+ λk

KL

dk∑
j=1

~(Wk)
(j)

(k)~F . (25)
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The problem (25) has a closed-form solution W (r+1)
k where each of its sub-tensor is

(W (r+1)
k )

(j)

(k) = max

(
0, 1 − λk

KL~(P (r))
(j)

(k)~F

)
(P (r))

(j)

(k), (26)

and P (r) := W (r)
k − 1

KL
∇WQ(r). In fact, from optimality conditions, W (r+1)

k satisfies

∇WQ(r) + KL
(
W (r+1)

k − W (r)
k

)
+ λkAk(W (r)

k ) = 0 (27)

for all r � 1 and 1 � k � K. Here Ak(W) is a subgradient of
dk∑

j=1
~(W)

(j)

(k)~F . The calculation

of the Lipschitz modulus LQ can be computationally expensive. We therefore follow a similar
argument in Xu et al. (2015) to find a proper approximation L̃ � LQ and use L̃ as L in all of
our computations. Algorithm 1 summarizes the steps for finding the optimal Ŵk.

Algorithm 1 Search for optimal �̂.
Input: X , y, L, λk

Output: �̂ = (Ŵ1, . . . , ŴK)

1. r = 0: compute L̃ and initialize W (0)
k for 1 � k � K.

2. Obtain �(r+1) = (W (r+1)
1 , . . . ,W (r+1)

K ) by solving (25) for each fixed 1 � k � K.
3. r = r + 1.
Repeat 2 and 3 until convergence.

4.2 Convergence Analysis
In this section, we prove that the sequence {�(r)}r�0 generated by Algorithm 1 will converge to
a global optimal solution �̂ with a convergence rate of O(1/r) if the initial point �(0) is located
in a convex neighborhood of �̂. In Loader and Pilla (2007), it has been shown that the function
Q(W) is not globally convex in general. Hence the standard convergence arguments such as in
Beck and Teboulle (2009) cannot be applied directly. Furthermore, with the latent approach
W = ∑K

k=1 Wk, we have to carefully split or combine inequalities at certain points. All of these
make the proof of the convergence nontrivial.

Let �̂ = (Ŵ1, . . . , ŴK) be a global minimizer of F(�) and � = �1×. . . �K is a neighborhood
of �̂ such that 	(�) := {W(�) : � ∈ �} is convex and Q(W) is convex in 	(�). Assume �(0)

satisfies

D(�(0)) :=
K∑

k=1

~W (0)
k − Ŵk~

2
F <

1

K

[
dist(∂	(�), Ŵ)

]2
. (28)

We first present a lemma which provides a key inequality in our proof of convergence.

Lemma 2. Assume �(r) = (W (r)
1 , . . . ,W (r)

K ) such that W(�(r)) ∈ 	(�). Let �(r+1) = (W (r+1)
1 ,

. . . ,W (r+1)
K ) be a minimizer of Eq. (25). Then for any L � LQ and for any � = (W1, . . .WK)

such that W(�) ∈ 	(�), we have

F(�) − F(�(r+1)) � KL

2

K∑
k=1

~W (r+1)
k − W (r)

k ~
2
F + KL

K∑
k=1

〈
W (r)

k − Wk,W (r+1)
k − W (r)

k

〉
. (29)
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Lemma 3. Let Ŵ = W(�̂). Suppose �(r) satisfy

D(�) :=
K∑

k=1

~Wk − Ŵk~
2
F <

1

K

[
dist(∂	(�), Ŵ)

]2
. (30)

Then W(�(r+1)) generated by (25) also satisfies (30).

Remark 2. Lemma 3 implies that all points in the sequence {�(r)}r�0 generated by Algorithm 1
satisfy (30) if the initial point �(0) does. In particular, we have {W(�(r))}r�0 ⊂ 	(�). Thus we
can apply Lemma 2 for all r � 0.

Then we have the following convergence result.

Theorem 2. Let �(n) be the tuple of tensors generated by Algorithm 1 at the n-th iteration.
Then for any n � 1,

F(�(n)) − F(�̂) � KL
∑K

k=1 ~W (0)
k − Ŵk~2

F

2n
. (31)

The proof can be found in Appendix.
Remark 3. Lemma 2 still holds if �(r) is replaced by any �̃(r) such that W(�̃(r)) ∈ 	(�).
Furthermore, from the proof of Lemma 3, we deduce that the minimizer of (25) generated by
�̃(r) will satisfy (30) if �̃(r) does.

4.3 Group Support: Values of λk’s and L

In this section we focus on the linear model in which each component of η(i) is given by η
(i)
t =〈

X(i;t),
∑K

k=1 Wk

〉
and the components of outcome y(i) are of the form y

(i)
t =

〈
X (i)

t ,W∗
〉

+ s
(i)
t

for some true tensor coefficient W∗ = ∑K
k=1 W∗

k , where τ � t � T , and W∗
k s follow certain

true patterns. Let D := ∇WQ(W∗). Motivated by the algorithm, we consider the following
optimization problem for a fixed k:

min
Wk

1

2
~Wk − W∗

k + D~
2
F

+ λk

KL

dk∑
j=1

~(Wk)
(j)

(k)~F . (32)

Our goal is to estimate the group support for W∗
k , i.e. obtain the subset S∗

k ⊂ {1, 2, . . . , dk} such
that (W∗

k )
(j)

(k) 	= 0 if and only if j ∈ S∗
k . The Karush–Kuhn–Tucker (KKT) conditions for solutions

of (32) immediately imply the following lemma.

Lemma 4 (KKT). Assume Ŵk is a solution of (32). Then either

(Ŵk)
(j)

(k) 	= 0 and (Ŵk)
(j)

(k) − (W∗
k )

(j)

(k) + D(j)

(k) = − λk

KL

(Ŵk)
(j)

(k)

~(Ŵk)
(j)

(k)~F

,

or
(Ŵk)

(j)

(k) = 0 and ~(W∗
k )

(j)

(k) + D(j)

(k)~F � λk

KL
.

Lemma 4 then yield
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Theorem 3. Assume
λk

2
� max

1�j�dk

~D(j)

(k)~F . (33)

Then (32) has a solution Ŵk such that

{j : (Ŵk)
(j)

(k) 	= 0} := Ŝk ⊂ Sk. (34)

Furthermore, Ŝk = S∗
k if λk < KL

2 minj∈S ~(W∗
k )

(j)

(k)~F .

The proof can be found in Appendix.

5 Empirical Evaluation
In this section we present the results of both synthetic and real-life fMRI and EEG examples. We
test the efficiency and effectiveness of the proposed method TensorQIF comparing to the state-
of-the-art methods. The datasets containing continuous responses have a format as described in
Section 2.2: {y(i)

t ,X (i)
t : 1 � i � m, 0 � t � T }. Here i denotes the subject id and t is a time

point. For both synthetic and fMRI cases, each X (i)
t is a matrix (i.e. a 2-way tensor).

5.1 Simulations
We examine the following methods: TensorQIF , Least Absolute Shrinkage and Selection Op-
erator (LASSO), Graphical Granger Modeling (Lozano et al., 2009), GEE (Liang and Zeger,
1986a), and Kruskal (Zhou et al., 2013). The LASSO uses only the current record, the matrix
X (i)

t , as the covariate to make a prediction on y
(i)
t , whereas the Granger and our TensorQIF have

a tensor covariate. That is, they use X(i;t) described in Section 2.2 as the input, which is a 3-way
tensor formed by concatenating the current and several previous X(i;t)’s. In fact, the Granger
model is equivalent to the LASSO with a tensor input. To show the importance of considering
lagged effect and conduct a fair comparison between methods, we will demonstrate the results
on both matrix and tensor inputs for GEE and Kruskal methods.

We consider the settings (d1, d2, τ + 1) = (2, 2, 3), (3, 3, 3), and (5, 5, 5) i.e. X (i)
t ∈ R

2×2,
R

3×3, and R
5×5. The tensor input X(i;t) ∈ R

2×2×3, R3×3×3, and R
5×5×5. Entries of X (i)

t are gener-
ated by drawing from the normal distribution N(0, 1) first and adding the uniform distribution
U(0, sin(t)). The number of time points is 10 and after concatenating the current and previous
τ = 2 records, we obtain X(i;t) for τ + 1 � t � 10. We assign the true latent tensor coeffi-
cients W1, W2, and W3 a non-zero pattern in the first feature along the directions 1, 2, and 3
respectively. The non-zero entries in Wks follow the distribution ckN(0, 1). Here we assign Wks
different scales: c1 = 0.1, c2 = 1.0 and c3 = 0.01. Finally, we set W = W1 + W2 + W3. For each
subject i, the outcome (observed) y

(i)
t is calculated by y

(i)
t = 〈X(i;t),W〉+ s

(i)
t , where the residual

s(i) ∈ R
8 is generated from the multivariate normal distribution of mean 0 and AR(1) correlation

structure with σ 2 = 4.0 and α = 0.8.
We generate 100 synthetic datasets each containing 1000 subjects and a test set containing

10000 subjects. Only the true coefficients W1, W2, and W3 are fixed across all datasets. In each
fitting procedure, 80% of subjects form a training set and the remaining 20% are used for the
validation that helps selecting hyper parameters in models. We examine the model performances
in two error metrics on the test set: 1. the mean squared error (MSE) between the observed y

and the predictive ŷ = 〈X , Ŵ〉; and 2. the true root mean square error (RMSE) between true
ȳ = 〈X ,W〉 and ŷ.
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Table 1: Simulation results from 100 replicates for dimensions d1×d2×(τ+1). The true correlation
structure is AR(1). Reported are the average of MSE/RMSE.

Average MSE between observed y and the predictive ŷ
LASSO Granger Kruskal (rk2) Kruskal (rk3)

matrix tensor matrix tensor matrix tensor

2 × 2 × 3 8.120 3.886 8.119 3.892 8.119 3.885

3 × 3 × 3 9.994 3.974 10.03 5.332 9.993 4.367

5 × 5 × 5 27.56 4.048 27.65 5.144 27.60 4.370

GEE (AR1) GEE (ind) TensorQIF (AR1) TensorQIF (ind)

matrix tensor matrix tensor tensor tensor

2 × 2 × 3 8.166 3.880 8.119 3.885 3.871 3.884
3 × 3 × 3 10.11 3.973 9.993 3.983 3.970 3.979
5 × 5 × 5 27.58 4.033 27.58 4.078 4.012 4.035

Average RMSE between true ȳ and the predictive ŷ with tensor inputs
Granger Kruskal (rk2) Kruskal (rk3)

2 × 2 × 3 0.090 0.116 0.089
3 × 3 × 3 0.125 1.231 0.611
5 × 5 × 5 0.253 1.076 0.613

GEE (AR1) GEE (ind) TensorQIF (AR1) TensorQIF (ind)

2 × 2 × 3 0.058 0.088 0.054 0.085
3 × 3 × 3 0.081 0.128 0.077 0.119
5 × 5 × 5 0.214 0.301 0.196 0.238

Since the Kruskal model focuses on the low rank decomposition for W , we conduct the
simulation by setting rank= 2 (rk2) and rank= 3 (rk3). Furthermore, to compare the results
under miss specified correlation structures, we consider both AR(1) and independent (Id) cor-
relation settings in GEE and TensorQIF. The average of predictive MSE or RMSE with the
true synthetic model on the test set over 100 replications with different models. The settings are
summarized in Table 1.

In Table 1, the proposed TensorQIF outperforms the other regression methods in terms
of the average predicting accuracy (MSE) and the coefficient estimation (RMSE). Since the
synthetic datasets are generated by using τ � 2, i.e. the outcome depends on the current and
previous τ records, we see that the models using matrix inputs (only current record) suffer larger
errors. Granger and Kruskal models does not handle the within sample correlation, so they
result higher mean MSE/RMSE even with tensor inputs. To further examine the importance of
modeling correlation, we conduct the paired t-test on the 100 predictive MSE generated by each
model fitting. We consider TensorQIF (AR1) v.s. Granger and TensorQIF (AR1) v.s. TensorQIF
(Id). The p values are given in Table 2.
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Table 2: p values of paired t-test with TenaorQIF (AR1): considering correlation or not.

Granger GEE (ind) TensorQIF (ind)

2 × 2 × 3 4.08E-14 8.47E-13 8.04E-13
3 × 3 × 3 4.15E-14 5.16E-23 2.83E-18
5 × 5 × 5 1.71E-30 1.39E-48 1.67E-14

Table 3: p values of paired t-test between TensorQIF and GEE when both use correct correlation
structure (AR1) and both use incorrect one (Id).

TenaorQIF (AR1) v.s. GEE (AR1) TensorQIF (ind) v.s. GEE (ind)

2 × 2 × 3 3.31E-08 1.07E-02
3 × 3 × 3 2.72E-09 1.04E-09
5 × 5 × 5 6.27E-23 2.00E-40

Figure 3: On synthetic data: the true coefficients and a TensorQIF fitting result.

The simulation also confirms that with the correct correlation structure (AR1), the fitting
results of GEE (with an tensor input) and TensorQIF are more accurate. When both models
are under mis-specified correlation structure (such as using the i.i.d. assumption), Table 1 shows
that the proposed TensorQIF gives a lower average predictive MSE and more accurate coefficient
estimations. We also conduct the paired t-test on the predictive MSE for model pairs in GEE
(AR1), GEE (ind), TensorQIF (AR1), and TensorQIF (ind). The p values are given in Table 3.
With larger models (more coefficients), these algorithms produce larger differences in MSE.

Figure 3 shows an example of TensorQIF (AR1) fitting result on a simulated dataset of
(d1, d2, τ + 1) = (3, 3, 3), and λ1 = λ2 = λ3 = 350. The white spaces represent zero coefficients;
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red and blue colors represent positive and negative values respectively. We see that the proposed
model captures the preassigned patterns in each of the three directions and recovers the true
coefficient W .

5.2 fMRI Data in Tensor

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging procedure using
MRI technology that measures brain activity by detecting associated changes in blood flow.
The fMRI data used in the experiment were collected by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI).1 We cleaned up the fMRI data by filtering out the incomplete or low quality
observations. After data cleaning, the data included 147 subjects diagnosed with mild cognitive
impairment (MCI) from the year of 2009 to 2016. We used the participants’ first fMRI scans
as baseline and the other fMRI scans in 6th, 12th, 18th, and 24th months of the study. There
were 67 brain areas and 4 properties (CV,SA,TA,TS) of the brain cortex2 in our model. These
properties were CV: Cortical Volume; SA: Surface Area; TA: Thickness Average; TS: Thickness
Standard Deviation. Each example record naturally formed a 3-way tensor with one dimension
for brain areas, one for signal property, and one along the temporal line. Our TensorQIF used
the tensor directly without squashing dataset into a vector which may cause losing the proximity
information. We aimed to predict the mini-mental state examination (MMSE) score quantified
by a 30-point questionnaire, which is used extensively in clinical and research settings to measure
cognitive impairment. At each time point, the MMSE score would be evaluated from participants’
responses to the questionnaire.

We used 20% of subjects for testing, and set τ = 2. The λ1, λ2, and λ3 were tuned in a
two-fold cross validation. In other words, the training records were further split into half: one
used to build a model with a chosen parameter value from a range of 1 to 20 with a step size
of 0.1; and the other used to test the resultant model. We chose the parameter values that gave
the best two-fold cross validation performance.

The TensorQIF was able to select patterns along the three dimensions: among the features,
among the brain areas, and among the different time points of month. The λ’s were chosen as
λ1 = 6, λ2 = 20, and λ3 = 24. From Figure 4, we see that the structural damage of AD starting
6 months ago plays a major role in the current AD progression. Larger means and standard
derivations of the thickness imply a higher risk of the AD. The proposed model selected 14 out
of 68 brain areas that affect the MMSE score. According to the selected brain areas, signals in the
Cuneus area, Transverse Temporal area in both sides, and the data at right Inferior Parietal area
might be important in predicting the cognitive impairment together with a few other features.

5.3 EEG Data in Matrix

Human memory function can be assayed in real-time by EEG recording. In this section, we
discuss the preliminary results we obtained on our (single trial) EEG data that were collected
during Sternberg working memory tasks. In our study data, schizophrenia (SZ) patients went
through three sessions of the Sternberg trials, and healthy normal (HN) members were only
included in the first session. There were 90 trials in each session for each individual. However,
very few patients participated all sessions and many trial records had missing values or significant

1http://adni.loni.usc.edu/
2http://adni.bitbucket.io/reference/ucsffresfr.html

http://adni.loni.usc.edu/
http://adni.bitbucket.io/reference/ucsffresfr.html
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Figure 4: The columns, rows, and slices of the fMRI tensor selected by the TensorQIF for
predicting MMSE score of participants.

Table 4: Comparison of AUC values (in percentage) between our approach and the GEE method
on both healthy normal and schizophrenia data and for all different assumptions of correlation
structures. (ind - independent sample-correlation structure.)

GEE Our Approach

Population AR(1) Exchangeable Tri-diagonal ind AR(1) exchangeable Tri-diagonal ind

Healthy Normal (HN) 54.1 52.2 55.5 57.3 55.1 54.9 55.0 68.0
Schizophrenia (SZ) 60.3 55.5 43.6 65.0 62.6 60.0 48.2 66.3

level of noise or outliers, for which we had to clean the data carefully. After data cleaning, there
were 1,131 trials for 14 SZ in session 1, 761 trials for 9 SZ in session 2, and 1,191 trials for 14 SZ
in session 3. Each patient had 74 to 94 trials, and 83 on average. The rate of incorrect responses
for the SZ patients was 27.2%. There were 519 trials for 6 HN participants. Each participant
had 82 to 90 trials, and 87 on average. The rate of incorrect responses for HN participants was
14.7%. Our study data contained a limited sample of subjects from the original parent study.

We validated the proposed approach by comparing it to the most relevant method, which
was the GEE (Liang and Zeger, 1986b). We experimented with the different correlation struc-
tures including exchangeable, tri-diagonal, AR-1 and independent formula. The receiver operat-
ing characteristic (ROC) curves were used to evaluate the performance of each resultant classifier
and the area under the ROC curve (AUC) was reported in Table 4 (Fawcett, 2006). We separated
our analysis for SZ and HN with the hypothesis that SZ patients may use different mechanisms
or brain functions to perform memory tasks from those of HN participants. We hence built clas-
sifiers to separate trials with correct responses from those with incorrect responses, respectively,
for SZ and HN. We then compared the features selected for use in the SZ classifiers and HN
classifiers.
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Figure 5: Columns and rows selected by the TensorQIF classifier for separating correct versus
incorrect Sternberg trials of SZ patients (a) and HN participants (b). Red (blue) color indicates
that the corresponding features were positive (negative) predictors of the incorrect response.
Features with white color were not used in the classifier.

For each of the SZ and HN datasets, one third of the records were randomly chosen from
every subject to form the test data and the rest of the records were used in training. The hyper-
parameters λ1 and λ2 in our approach and GEE (one parameter) were tuned in a two-fold cross
validation within the training data. In other words, the training records were further split in
half: one used to build a classifier with a chosen parameter value from a range of 1 to 10 with a
step size 0.1; and the other used to test the resultant classifier. We chose the parameter values
that gave the best two-fold cross validation performance, which were λ1 = 5.9 and λ2 = 10 for
SZ and λ1 = 2 and λ2 = 3.1 for HN.

Table 4 provides the AUC comparison results (shown in percentages) between the two
methods and for different datasets and sample correlation assumptions. The results in Table 4
show that our approach outperformed the traditional GEE in almost all comparison scenarios
in terms of classification accuracy. Most importantly, our approach was able to select along
two dimensions: among the features and among the memory information processing stages.
Traditional GEE did not have any shrinkage effect to select features. The advanced version of
GEE used in our experiments implemented a �1 regularizer, so it could select among all 60
features. Because it did not use the spatio-temporal structure of the 60 features, it was unable
to model along the different dimensions (locations versus temporal stages).

We noticed that both GEE and our approach performed the best when using independent
sample-correlation assumption, which was naturally against our intuition because there were
multiple trials from a single individual and these trials were expected to correlate. The equi-
correlated (exchangeable) assumption assumed that the correlation among all trials was equal
and indicated by a constant. Together with AR-1 and Tri-diagonal correlation structures, these
assumptions were slightly worse than the independent correlation assumption. However, we also
noticed that the trials were not labeled in sequence in our data so the algorithms would not be
able to model and distinguish the correlations between consecutive trials from those of far-apart
trials. (The trials that an individual performed in a short continuous timeframe may correlate
more strongly than trials far apart.)

We include two figures to demonstrate the selected features and stages in the classifiers
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constructed by our approach. The selected features for SZ patients are shown in Figure 5(a).
The selected features for HN participants are shown in Figure 5(b). An obvious observation is
that the two populations selected quite different features but the most important information
processing stages were the same. Some of the selected EEG features replicate those early reports,
including upward modulation of γ in SZ patients and engagement of α during encoding and
retention periods (Chen et al., 2014; Herrmann et al., 2004).

Based on our models, the two groups showed remarkably different patterns, with EEG
activity in higher frequency bands during the encoding stage associated with incorrect trial
responses in SZ (Figure 5(a)). However, these features were positive predictors of trial accuracy in
healthy participants (Figure 5(b)), for whom engagement of low frequency activity was associated
with incorrect responses. It appears that the SZ patients used more brain areas in the memory
tasks than the HN participants. Frontal γ was previously identified as important for both SZ
and HN subjects, but was not selected for HN participants in our new model, which may warrant
further investigation. On the other hand, among the selected three stages of both groups, the
features during the retention stage tended to receive the largest weights in magnitude on average.
All these results will require careful examination in new studies to confirm the validity and
replicate on independent samples.

5.4 EEG Data in Tensor

The clinical utility of the EEG method depends on the reliable determination of functionally and
diagnostically relevant features. The proposed TensorQIF capable of modeling non-stationary
signal has been explored as a way to synthesize large arrays of EEG data because the EEG
record could be more precisely characterized by a 3-way tensor representing processing stages,
spatial locations, and frequency bands as individual dimensions.

Participants of n = 40 SZ patients and n = 20 HN participants completed an EEG Sternberg
task. EEG was analyzed to extract 5 frequency components (delta, theta, alpha, beta, gamma)
at 4 processing stages (baseline, encoding, retention, retrieval) and 12 scalp sites representing
central midline, and bi-lateral frontal and temporal regions. The proposed and comparing meth-
ods were applied to the resulting 240 features (forming a 5 × 4 × 12 tensor) to classify correct
(-1) vs. incorrect (+1) responses on a trial-by-trial basis. In this approach, the proposed method
guided the respective selection of spectral frequency, temporal (processing stages), and spatial
(electrode sites) dimensions most related to trial performance. The correlations among pro-
cessing stages were also estimated by the proposed method. Separate models were constructed
for SZ and HN samples for comparison of common and disparate feature patterns across the
dimensions.

For each of the SZ and HN datasets, one fifth of the records were randomly chosen from
every subject to form the test data and the rest of the records were used in training. The
hyperparameters λ1, λ2, and λ3 were tuned in a two-fold cross validation within the training
data. We chose the parameter values that gave the best two-fold cross validation performance,
which were λ1 = 7.5, λ2 = 5.5, λ3 = 7.4 for SZ and λ1 = 3.3, λ2 = 2.1, λ3 = 3.1 for HN.

As shown in Figure 6, in both groups, task performance is most dependent on encoding
and retrieval stage activity, with higher encoding uniformly and lower retrieval activity gener-
ally associated with better task performance across electrode sites. This pattern appears most
prominently in central alpha activity (Figure 6; blue border). This indicates the same findings
as in Xu et al. (2015). Groups differed in two main ways: (1) centroparietal theta, beta, and
gamma during encoding and retention have lower values in HN (Figure 6; red border), and (2)
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Figure 6: The columns, rows, and slices of the EEG tensor selected by the TensorQIF to predict
the success of the memory tasks for SZ (top) and HN (bottom), respectively.

the delta activity across stages and electrodes (Figure 6; green border) was selected in SZ but no
in HN. Here the experimental results give much clearer details of the working electrode sites and
spectral frequencies comparing to the results in Johannesen et al. (2016). The proposed method
outperform GEE and SVM solutions according to AUC values (HN: 55.5%; SZ: 58.8% versus
the best AUC 53% from the other methods). This is because the proposed method enabled
interpretation and summary across all dimensions, which is not possible for classifiers based on
single vectors.

6 Conclusion
We have proposed a new learning formulation — TensorQIF — to analyze longitudinal data. It
takes data matrices or tensors as inputs and make predictions. The proposed method can simul-
taneously determine the temporal contingency and the influential features from the observations
of different modes without breaking into multiple models. The method creates a generalized lin-
ear model which has parameters forming a coefficient tensor. This coefficient tensor is computed
by the summation of K component tensors so that each reflects the selection among a particular
mode. Asymptotic analysis shows that the proposed formulation finds true coefficients when the
sample size approaches to infinity. Moreover, the related optimization problem can be efficiently
solved by a linearized block coordinate descent algorithm which has a sublinear convergence
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rate. The simulation results demonstrate the superior performance of the proposed method, and
applications on real-life datasets show insightful discoveries. There can be a few future directions.
For instance, we will try to formulate our TensorQIF into a more scalable learning model so
large datasets can benefit from this approach. Model architectures such as deep neural networks
might also be used in conjunction with our proposed regularization decomposition for broader
utility. Other applications such as in single-cell sequencing data analysis might further show the
power of our approach in understanding biological predictors.

Supplementary Material
The code and data can be found: https://doi.org/10.6084/m9.figshare.19166474.v1.

For data generation, we provide DataGenerator.py to generate synthetic data including
training and test sets; For model fitting, we provide tensorQIF_model_Tensorflow_v2.py to
run models and ReportGenerator.py to report on performance. For experiments comparisons,
we have Granger_model.py, GEE_model.m, Kruskal_model.m.

Appendix
Proof of Theorem 1. Since Ŵm is a minimizer, we have

Q̃m(Ŵm) +
K∑

k=1

⎛⎝λk

m

dk∑
j=1

~(Ŵk;m)
(j)

(k)~F

⎞⎠ � Q̃m(W∗) +
K∑

k=1

⎛⎝λk

m

dk∑
j=1

~(W∗
k )

(j)

(k)~F

⎞⎠ . (35)

Note that

|Q̃m(W∗)| = ∣∣g�
m(W∗)C−1

m (W∗)gm(W∗)
∣∣ (36)

�
∣∣g�

m(W∗)[C−1
m (W∗) − C−1

∗ (W∗)]gm(W∗)
∣∣+ ∣∣g�

m(W∗)C−1
∗ (W∗)gm(W∗)

∣∣ .
By Eq. (14), condition 1, and the weak law of large numbers, we deduce∣∣Q̃m(W∗)

∣∣→ 0 in probability. (37)

Therefore from Eq. (35), we obtain∣∣∣Q̃m(Ŵm)

∣∣∣→ 0 in probability (38)

for fixed λk’s. Using Eq. (14) and Eq. (16) we also have

|Q̃m(Ŵm) − E[g(Ŵm)]�C∗(Ŵm)E[g(Ŵm)]| → 0 in probability. (39)

Thus E[g(Ŵm)] → 0 and Eq. (17) is followed by the uniqueness in condition 1 and the continuity
of E[g(W)] in Remark 1.

For m is large enough, we may assume the minimizer Ŵm is an interior point which satisfies
the Euler-Lagrange equation:

∇wQ̃m(Ŵm) + o(1) = 0. (40)

Using the mean value theorem we obtain

∇wQ̃m(W∗) + ∇2
wQ̃m(W̃m)vect(Ŵm − W∗) = o(1) (41)

https://doi.org/10.6084/m9.figshare.19166474.v1


An Effective Tensor Regression with Latent Sparse Regularization 247

for some W̃m between Ŵm and W∗. Then we have
√

m · vect(Ŵm − W∗) = −√
m[∇2

wQ̃m(W̃m)]−1[∇wQ̃m(W∗) + o(1)]. (42)

A direct calculation shows

∇wQ̃m = 2[∇wgm]�C−1
m gm + g�

m[∇wC−1
m ]gm, (43)

and
∇2

wQ̃m = 2[∇wgm]�C−1
m ∇wgm + Rm, (44)

where ∇wC−1
m = [∂C−1

m /∂(w)1, . . . , ∂C−1
m /∂(w)N ] is a three dimensional array. And the sec-

ond term of Eq. (43) is an N -dimensional column vector whose j -th component is given by
g�

m[∂C−1
m /∂(w)j ]gm. The formula of the N × N matrix Rm is

Rm = 2∇w[∇wgm]�C−1
m gm + 4[∇wgm]�[∇wC−1

m ]gm + g�
m[∇2

wC−1
m ]gm. (45)

By the Central Limit Theorem,
√

mgm(W∗) d→ N (0, C0) in distribution. (46)

In particular, we have gm(W∗) = Op(m−1/2). Hence g�
m[∇wC−1

m ]gm|W=W∗ → op(1) and Rm(W̃m) →
op(1). Applying Lemma 1 and Eq. (17) we deduce

[∇2
wQ̃m(Wr )]−1 → 1

2
(J�

0 C−1
0 J0)

−1 in probability, (47)

and
∇wQ̃m(W∗) → 2J�

0 C−1
0 gm(W∗) in probability. (48)

Combining Eq. (42) and Eq. (46)-(48) yields Eq. (18).

Proof of Lemma 2. Since �(r+1) is a minimizer, by (21), we have

F(�) − F(�(r+1)) � F(�) − PL(�(r+1), �(r)). (49)

Using the convex property of Q(W) in 	(�) and the assumption W(�(r)) ∈ 	(�) we deduce
that for all � satisfying W(�) ∈ 	(�),

Q(W(�)) � Q(W (r)) + 〈
K∑

k=1

(
Wk − W (r)

k

)
, ∇WQ(r)〉. (50)

Furthermore, since each part of R is globally convex, we have in general,
dk∑

j=1

~(Wk)
(j)

(k)~F �
dk∑

j=1

~(W (r+1)
k )

(j)

(k)~F + 〈Wk − W (r+1)
k ,Ak(W (r)

k )〉. (51)

for all 1 � k � K. Combining (50) and (51) we obtain

F(�) �Q(W (r)) + 〈
K∑

k=1

(
Wk − W (r)

k

)
, ∇WQ(r)〉 + R(�(r+1))

+
K∑

k=1

〈Wk − W (r+1)
k , λkAk(W (r)

k )〉. (52)
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From (52) and the definition of PL(�(r+1), �(r)) we have

F(�) − PL(�(r+1), �(r)) � − KL

2

K∑
k=1

~W (r+1)
k − W (r)

k ~F

+
K∑

k=1

〈Wk − W (r+1)
k , ∇WQ(r) + λkAk(W (r)

k )〉 (53)

By (27), the second term of (53) on the right hand side can be rewritten as

KL

K∑
k=1

〈W (r+1)
k − Wk,W (r+1)

k − W (r)
k 〉 (54)

Note that for each 1 � k � K,

−1

2
~W (r+1)

k − W (r)
k ~F + 〈W (r+1)

k − Wk,W (r+1)
k − W (r)

k 〉

= 1

2
~W (r+1)

k − W (r)
k ~F + 〈W (r)

k − Wk,W (r+1)
k − W (r)

k 〉. (55)

The lemma then follows by (49), (53), and (55).

Proof of Lemma 3. The condition (30) implies ~W(�(r))−Ŵ~F < dist(∂	(�), Ŵ), i.e. W(�(r))∈
	(�). Since �̂ ∈ � is a global minimizer, applying Lemm 2 with � = �̂ we deduce

0 �
K∑

k=1

~W (r+1)
k − W (r)

k ~
2
F + 2

K∑
k=1

〈W (r)
k − Ŵk,W (r+1)

k − W (r)
k 〉. (56)

Using Pythagoras relation for each 1 � k � K we obtain

K∑
k=1

~W (r+1)
k − Ŵk~

2
F =

K∑
k=1

~W (r)
k − Ŵk~

2
F +

K∑
k=1

~W (r)
k − W (r+1)

k ~
2
F

+ 2
K∑

k=1

〈W (r)
k − Ŵk,W (r+1)

k − W (r)
k 〉

�
K∑

k=1

~W (r)
k − Ŵk~

2
F . (57)

Here the last inequality comes from (56). Thus W(�(r+1)) satisfies (30).

Proof of Theorem 2. The condition (30) implies ~W(�(r)) − Ŵ~F < dist(∂	(�), Ŵ), i.e.
W(�(r)) ∈ 	(�). Since �̂ ∈ � is a global minimizer, applying Lemm 2 with � = �̂ we de-
duce

0 �
K∑

k=1

~W (r+1)
k − W (r)

k ~
2
F + 2

K∑
k=1

〈W (r)
k − Ŵk,W (r+1)

k − W (r)
k 〉. (58)
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Using Pythagoras relation for each 1 � k � K we obtain

K∑
k=1

~W (r+1)
k − Ŵk~

2
F =

K∑
k=1

~W (r)
k − Ŵk~

2
F +

K∑
k=1

~W (r)
k − W (r+1)

k ~
2
F

+ 2
K∑

k=1

〈W (r)
k − Ŵk,W (r+1)

k − W (r)
k 〉

�
K∑

k=1

~W (r)
k − Ŵk~

2
F . (59)

Here the last inequality comes from (58). Thus W(�(r+1)) satisfies (30).

Proof of Theorem 3. For any tensor W and a set of indies S, we define (W)S
(k) by

((W)S
(k))

(j)

(k) =
{

(W)
(j)

(k) if j ∈ S

0 otherwise.

Let Ŵk be a solution of the restricted version of (32):

Ŵk = arg min

⎧⎨⎩1

2

�

�

�
(Wk)

S∗
k

(k) − (W∗
k )

S∗
k

(k) + DS∗
k

(k)

�

�

�

2

F
+ λk

KL

∑
j∈S

~(Wk)
(j)

(k)~F

⎫⎬⎭ .

Then (Ŵk)
(j)

(k) = 0 for j ∈ S∗c
k . From Lemma 4 and (33), Ŵk is a solution of (32) and (Ŵk)

(j)

(k)

satisfies
(Ŵk)

(j)

(k) − (W∗
k )

(j)

(k) + D(j)

(k) = − λk

KL
(A)

(j)

(k)

for j ∈ S∗
k . Here ~(A)

(j)

(k)~F � 1 and

(A)
(j)

(k) = (Wk)
(j)

(k)

~(Wk)
(j)

(k)~F

if (Wk)
(j)

(k) 	= 0.

By the triangle inequality we have

~(Ŵk)
(j)

(k)~F � min
j∈S∗

k

~(W∗
k )

(j)

(k)~F − max
j∈S∗

k

~(U)
(j)

(k)~F

where
(U)

(j)

(k) = −D(j)

(k) − λk

KL
(A)

(j)

(k).

Using (33) we deduce

max
j∈S∗

k

~(U)
(j)

(k)~F � max
j∈S∗

k

~D(j)

(k)~F + λk

KL
� 2λk

KL
.

Thus ~(Ŵk)
(j)

(k)~F > 0 if 2λk

KL
< minj∈S∗

K
~(W∗

k )
(j)

(k)~F .
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