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Abstract 

PM2.5 is a major air pollutant which has a high probability to cause many 

serious cardiopulmonary diseases, such as asthma, lung cancer, trachea cancer, 

bronchus cancer, etc. Up to 2014, a World Health Organization (WHO) air 

quality model confirmed that 92% of the population in the world lived in areas 

where air quality levels exceeded WHO limits (i.e., 10 µg/m3). This indicates 

that PM2.5 is still one of the most serious world-wide problems, and monitoring 

PM2.5 concentrations is extremely necessary. In this paper, we proposed a easy 

and flexible spatial-temporal Gaussian mixture model to analyze annual 

average PM2.5 concentrations. Because of the bimodal distribution of PM2.5 

concentrations, we decided for a two- component Gaussian mixture model with 

county-year-level spatial-temporal random effects. A Markov Chain Monte 

Carlo (MCMC) algorithm is used to estimating model parameters. 

Keywords: Conditional autoregressive prior, Normal mixture model, PM2.5 

concentration, Spatial-Temporal random effect. 
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1. Introduction 

Fine particles with a diameter of 2.5 𝜇𝑚 or less (PM2.5) is a major air pollutant which 

has a high probability to cause many serious cardiopulmonary diseases, such as asthma, lung 

cancer, trachea cancer, bronchus cancer, etc. (Monn & Becker, 1999; Cohen et al., 2005). 

And around 3% mortality from cardiopulmonary diseases is strongly associated with PM2.5 

(Cohen et al., 2005). Although much effort has been put into lowering PM2.5 concentration, 

up to 2014, a World Health Organization (WHO) air quality model confirmed that 92% of 

the population in the world still lived in areas where air quality levels exceeded WHO limits 

(i.e., 10 𝜇𝑔/𝑚3). This indicates that PM2.5 is still one of the most serious world-wide 

problems, and monitoring PM2.5 concentration is extremely necessary. 

Statistical analysis is playing a very important role in monitoring PM2.5 concentration. So 

far, most statistical techniques to analyze PM2.5 are performed revolving around two parts: 1.) 

Specifying the distribution of PM2.5 data. 2.) Analyzing the spatial or temporal effects of 

PM2.5. For the first part, since the distributions of PM2.5 concentrations may differ for 

different regions or times, many different methods are used. Antonovsky et al. (1991) found 

that their data of air pollution in Borovo has multi-modal distribution, so a normal mixture 

model was fitted. A similar model is also used by Chu et al. (2012). Fuentes (2003) used a 

Bayesian model to interpolate ground measurements of pollution levels from 513 sites 

throughout the eastern USA. Karaca et al. (2005) used Log-logistic functions to monitor 

PM10 and PM2.5 concentrations at a suburban site of Istanbul, Turkey. Vidale et al. (2017) 

used a generalized additive model to analyze the association between air pollution exposure 

and cardiovascular events in Como, Italy. Tian & Chen (2010) developed a semi-empirical 

model for predicting hourly ground-level PM2.5 concentration in southern Ontario. Brown et 

al. (1994) developed and applied a multivariate approach to the spatial interpolation for 

analyzing air pollutant in southern Ontario, Canada. Karppinen et al. (2004) utilized a linear 

interpolated value in their linear regression for PM2.5 in the City of Helsinki, Finland. Pérez 

et al. (2000) compared the predictions produced by multilayer neural networks, linear 

regression and persistence based on the data of PM2.5 in Santiago, Chile. They found that the 

neural network gives the best results. 

For the second part, Delamater et al. (2012) developed a Bayesian model with a temporal 

random effects to analyze the impact of PM2.5 no asthma hospitalization rates in Los Angeles 

County. Tai et al. (2012) applied a multiple geography - based chemical transport model to 

understand the relationships between PM2.5 and climate change in the United States. Zhan et 

al. (2017) developed a geographically-weighted gradient boosting machine by building 

spatial smoothing kernels to weigh the loss function for predicting PM2.5 concentrations in 

China. Liu et al. (2012) developed a linear model with smooth regressions for temporal 

variables to evaluate the effectiveness of PM2.5 emissions control in Beijing, China. Similar 
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methods can be found in Li et al. (2017) and Peng et al. (2006). Wang & Fang (2016) 

analyzed PM2.5 in Bohai rime, Chine, with a spatial-temporal model. They set the parameters 

of covariates as functions of spatial coordinates. Ma et al. (2016) developed a spatial 

econometric model based on spatial autoregressive model to analyze the relationship 

between PM2.5 and GDP in China. Russell et al. (2017) analyzed PM2.5 in eastern United 

States using a local linear penalized quantile regression. 

From all above, we can see that a lot of statistical researches have been done for 

monitoring and analyzing PM2.5 in many regions. Inspired by these researches, two 

questions occurred in our mind: 1). Can we find a random effect which can detect both of 

spatial random effect and temporal correlation? 2). Population and income per capita are two 

important social factors in air pollution studies (Ma et al., 2016; Wang & Fang, 2016), how 

do they influence PM2.5 in Michigan? Motivated by these two questions, we proposed a 

spatial-temporal Gaussian mixture model.  We analyzed a Michigan annual average PM2.5 

concentrations (2007 ∼ 2011) data set, and found that the PM2.5 concentrations in each year 

has a bimodal distribution. So we decided for a two-component Gaussian mixture model for 

our data. For spatial-temporal random effect, either a conditional autoregressive (CAR) prior 

or a multivariate CAR (MCAR) prior is imposed on. We adopted a deviation information 

criteria and developed a specific posterior predictive check for model selection and 

goodness-of-fit. A Markov Chain Monte Carlo (MCMC) algorithm for model parameter 

estimation was implemented in Winbugs 1.4.3 

(http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs- project-winbugs/). 

2. Data Description 

Our data set contains annual average PM2.5 concentrations, population, income per capita, 

and county area from 2007 to 2011 for each county in Michigan, United States. Annual 

average PM2.5 concentrations, population, and income per capita vary in county and year, 

that is, each of annual average PM2.5 concentrations, population, and income per capita 

forms a  

83 ×  5 matrix with rows for counties in Michigan, and columns years from 2007 to 2011. 

County areas do not vary in year. Our PM2.5 concentrations are derived from 

https://www.data.gov/. Population and income per capita are derived from http://milmi.org/. 

Histograms for annual average PM2.5 concentrations in each year are shown in Figure 1. 

These five years have close minimum PM2.5 concentrations, but the maximum PM2.5 

concentrations decrease to 11.48 µg/m3 from 14.66 µg/m3. All PM2.5 concentrations are 

bimodal shaped, which implies that it is reasonable to fit a mixture model on this data 

(Antonovsky et al., 1991). 

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-%20project-winbugs/
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Figure 1: Histograms for Annual Average PM2.5 Concentration (2007 2011) 

For a further analysis, we mapped annual average PM2.5 concentrations for each county 

in Michigan over 2007 2011 (Figure 2). We can see a geographic difference between north 

Michigan and south Michigan. Basically, for each year, south Michigan has higher PM2.5 

concentrations than north Michigan. Schoolcraft county has higher PM2.5 concentrations 

than any other counties in upper peninsular. And we also noticed that, on the whole, PM2.5 

concentrations were decreasing from 2007 to 2011. The spatial and temporal differences 

indicate that a spatial-temporal analysis is deserved for our data. 
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Figure 2: Annual Average PM2.5 Concentration Maps for the counties in Michigan (2007 ∼ 2011) 

3. Model Method 

3.1. Spatial-Temporal Gaussian Mixture Model and Its Bayesian Analysis 

As mentioned in Section 2, since all histograms for PM2.5 concentrations have bimodal 

shapes, and the maps of PM2.5 concentrations for each year show spatial and temporal 

differences, a spatial-temporal Gaussian mixture model with two components may be a good 

fit for our data. 

  

Let i denote County i, j denote Year j, and k denote Component k. The density function 

of our spatial-temporal Gaussian mixture model can be written as: 

𝑓(𝑦𝑖,𝑗|𝜃) = ∑ 𝜋𝑗𝑘𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘, 𝜎𝑗𝑘
2 )

2

𝑘=1

, 𝑖 = 1,2, ⋯ , 𝑁；𝑗 = 1,2, ⋯ , 𝐽；𝑘 = 1,2, ⋯ , 𝐾 (1) 

Where, θ is a set of all parameters, φ is a probability dense function of normal 

distribution, πjk is the proportions for Component k, and ∑ 𝜋𝑗𝑘
𝐾
𝑘=1 = 1, 𝜇𝑖𝑗𝑘 is mean, 𝜎𝑗𝑘

2  

is variance. However, we found that when we used 𝜎𝑗𝑘
2  , we got some extraordinarily large 

variances, which may be caused by overfitting (Burnham & Anderson, 2003). Since bimodal 

shapes in Figure 1 were close to each other, which means the variances in different years 

may be very close, we took 𝜎𝑘
2 instead of 𝜎𝑗𝑘

2 . 

We can model 𝜇𝑖𝑗𝑘 as: 
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𝜇𝑖𝑗𝑘  =  𝛽0𝑗𝑘  +  𝑥𝑖𝑗
(𝑝)

𝛽𝑗𝑘
(𝑝)

+  𝑥𝑖𝑗
(𝑠)

𝛽𝑗𝑘
(𝑠)

 +  𝑓 (𝑎𝑟𝑒𝑎)  +  𝜉𝑖𝑗. (2) 

Where, 𝑥𝑖𝑗
(𝑝)

 and 𝑥𝑖𝑗
(𝑠)

 represent population and income per capita in County i and Year 

j respectively. If the values are large, we can do log transformation on both of them. f (area) 

is a smoothing function of county area. In this paper, we use a B-spline function with degree 

of freedoms = 5 (i.e., 𝑓 (𝑎𝑟𝑒𝑎)  =  ∑ 𝑎ℎ𝐵ℎ
5
ℎ=1 , 𝐵ℎ is B-spline basis obtained from R 

function bs(), and 𝑎ℎ are coefficients). 𝜉𝑖𝑗 represent spatial-temporal random effects.  

For a Gaussian mixture model with random effects, Markov Chain Monte Carlo (MCMC) 

algorithm is a very effective and efficient way to estimate the parameters in the model.  We 

give normal priors to 𝛽0𝑗𝑘, 𝛽𝑗𝑘
(𝑝)

, and 𝛽𝑗𝑘
(𝑠)

, Dirichlet priors to 𝜋𝑗𝑘 , and inverse-gamma 

priors to 𝜎𝑘
2, since they are conjugate. For our spatial-temporal random effect 𝜉𝑖𝑗, either a 

CAR prior or MCAR prior can be given. 

Without considering the correlations of years, a CAR prior can be imposed on 𝜉𝑖𝑗: 

 𝜉𝑖𝑗|𝜉(−𝑖,𝑗), 𝜏𝑗
2~𝑁 (

1

𝑚𝑖
∑ 𝜉𝑖𝑗

𝑟∈𝜃𝑖

,
𝜏𝑗

2

𝑚𝑖
). (3) 

Where, 𝜉(−𝑖,𝑗) =  {𝜉(𝑙,𝑗);  𝑙 ≠ 𝑖}, ∂i denotes the set of neighbors for County i, mi denotes 

the number of neighbors sharing the same geographic border with County i, 𝜏𝑗
2 is variance 

varying in years (Mariella & Tarantino, 2016; Khana et al., 2018). So our CAR prior can 

also be denoted by CAR(𝜏𝑗
2). 

If we consider the correlations of years, then a MCAR prior can be adopted for 𝜉𝑖𝑗. Let 

 𝜉𝑇 = [

𝜉11 ⋯ 𝜉𝑛1

⋮ ⋱ ⋮
𝜉1𝐽 ⋯ 𝜉𝑛𝐽

] = [𝜉1, 𝜉2, ⋯ , 𝜉𝑛]. (4) 

Under this matrix, we have 

𝜉𝑖|𝜉(−𝑖), Σ~𝑁𝐽 (
1

𝑚𝑖
∑ 𝜉𝑟

𝑟∈𝜕𝑖

, Σ 𝑚𝑖⁄ ). (5) 

Where, Σ is 𝐽 × 𝐽 covariance matrix of the column vectors of ξ. So we can denote 

MCAR prior by MCAR(Σ). According to Brook’s Lemma, (3) and (5) have: 

𝜉𝑖
(1)

|𝜏𝑗
2 ∝ exp (−

1

2𝜏𝑗
2 𝜉1

(1)′
(𝑀 − 𝐴)𝜉𝑗

(1)
) , 

𝜉(2)|Σ ∝ exp (−
1

2
𝜉(2)′

[(𝑀 − 𝐴) ⊗ Σ−1]𝜉(2)), 

(6) 

Where, 𝜉𝑖
(1)

=  (𝜉1𝑗, 𝜉2𝑗 , ⋯ , 𝜉𝑛𝑗)
′

 and 𝜉(2) =  (𝜉11, … , 𝜉𝑛1; … ; 𝜉1𝐽, … , 𝜉𝑛𝐽)
′

. 𝑀 =

 𝑑𝑖𝑎𝑔(𝑚1, 𝑚2, . . . , 𝑚𝑛), and A is an adjacency matrix with 𝑎𝑢  =  0 and 𝑎𝑙𝑞  =  1 if 
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County l and County q share the same geographic bounder, otherwise, 𝑎𝑙𝑞 = 0 (Neelon et 

al., 2014; Gelfand & Vounatsou, 2003). An introduction to Brook’s lemma and a proof for (6) 

are provided in Appendix A. 

With giving all parameters priors, a complete posterior distribution for our model is: 

𝑝(𝜃|𝑦) ∝ ∏ [∏ ∏ 𝜋𝑗𝑘𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘, 𝜎𝑗𝑘
2 )

𝐽

𝑗=1

𝑁

𝑖=1

]

𝐾

𝑘=1

𝐼(𝐿𝑖𝑗=𝑘)

𝑝(𝜋)𝑝(𝛽)𝑝(𝑎)𝑝(𝜎2)𝑝(𝜉). (7) 

Where, p(π), p(β), p(a), and 𝑝(𝜎2) represents prior distributions, and we have: 

𝑝(𝜋) = ∏ ∏ 𝐷𝑖𝑟(1, 1)

𝐽

𝑗=1

𝐾

𝑘=1

, 

𝑝(𝛽) =  𝑝(𝛽0)𝑝(𝛽(𝑝))𝑝(𝛽(𝑠)) = ∏ ∏ ∏ 𝑁 (0, 10000),

𝐽

𝑗=1

𝐾

𝑘=1

3

𝑟=1

 

p(a) = ∏ N(0, 10000)

5

ℎ=1

, 

p(σ2) = ∏ IG(0.1, 0.01)

𝐾

𝑘=1

. 

(8) 

p(ξ) denotes the exponential functions in (6) for either CAR(𝜏𝑗
2) or MCAR(Σ): 

𝑝(𝜉) = ∏ exp (−
1

2𝜏𝑗
2 𝜉𝑗

(1)′
(𝑀 − 𝐴)𝜉𝑗

(1)
)

𝐽

𝑗=1

, 

or 

𝑝(𝜉) = exp (−
1

2
𝜉(2)′

[(𝑀 − 𝐴) ⊗ Σ]𝜉(2)). 

(9) 

Lij is a latent variable sampled from a categorical distribution: 

𝐿𝑖𝑗  ∼  𝐶𝑎𝑡 (
𝜋𝑗𝑘𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘, 𝜎𝑘

2)

∑ 𝜋𝑗𝑘𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘, 𝜎𝑘
2))𝐾

𝑘=1

). (10) 

By giving different priors to ξij, we can have three models: 

Model 1: 𝜇𝐿𝑖,𝑗 =  𝛽0𝑗𝑘  +  𝑥𝑖𝑗
(𝑝)

𝛽𝑗𝑘
(𝑝)

 +  𝑥𝑖𝑗
(𝑠)

𝛽𝑗𝑘
(𝑠)

 +  𝑓 (𝑎𝑟𝑒𝑎), no 𝜉𝑖𝑗  

Model 2: 𝜇𝐿𝑖,𝑗 =  𝛽0𝑗𝑘  + 𝑥𝑖𝑗
(𝑝)

𝛽𝑗𝑘
(𝑝)

 +  𝑥𝑖𝑗
(𝑠)

𝛽𝑗𝑘
(𝑠)

 +  𝑓 (𝑎𝑟𝑒𝑎)  +  𝜉𝑖𝑗, 𝜉𝑖𝑗  

∼  CAR(τj
2) 

Model 3:  𝜇𝐿𝑖,𝑗 =  𝛽0𝑗𝑘  + 𝑥𝑖𝑗
(𝑝)

𝛽𝑗𝑘
(𝑝)

 +  𝑥𝑖𝑗
(𝑠)

𝛽𝑗𝑘
(𝑠)

 +  𝑓 (𝑎𝑟𝑒𝑎)  +  𝜉𝑖𝑗, 𝜉𝑖𝑗  

∼  MCAR(Σ). 
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The above models will be implemented in Winbugs 1.4.3 which is a free statistical 

software. Goodness-of-fit check and model selection are done based on posterior predictive 

check and deviation information criteria. 

3.2. Posterior Predictive Check 

Posterior predictive check (PPC) is a very reliable way to check goodness- of-fit for 

Bayesian models. A general procedure of PPC is presented as follows: 

Step 1: Estimate parameters, θ, given observed y, θ ← P (θ|y)  

Step 2: Simulate replicated �̃� given θ, �̃� ← P (�̃�|θ) 

Step 3: Compare y and �̃� 

For our model, the PPC can be conducted as follows: 

Step 1: Estimate 𝜃(𝑐) (i. e. , 𝜋𝑗𝑘
(𝑐)

, 𝛽𝑗𝑘
(𝑐)

, 𝑎ℎ
(𝑐)

 𝜎𝑘
(𝑐)

, 𝜉𝑖𝑗
(𝑐)

) from 𝑝(𝜃|𝑦𝑖𝑗) 

Step 2: Simulate replicated �̃�𝑖𝑗= （�̃�𝑖𝑗
(1)

, �̃�𝑖𝑗
(2)

, . . . , �̃�𝑖𝑗
(𝐶)

)' from 𝜙(�̃�|𝜃(𝑐)) 

Step 3: Construct a credible interval (CrI) for each observed yij with 2.5%th quantile and 

97.5%th quantile of �̃�𝑖𝑗  (i.e., CrI= (�̃�2.5%th, �̃�97.5%th)). A capture rate (CR) can be calculated 

as: CR = (number of yij captured by CrIij)/(N × J ). 

Where, c denotes the cth MCMC iteration, 𝑐 =  1, 2, . . . , 𝐶. Capture rates for Model 1, 

Model 2, and Model 3 are presented in Table 1. We can see that all capture rates are greater 

than 95%, which indicates that all three models are fitted well. Especially, Model 2 and 

Model 3 reach 100%. 

Table 1: Capture Rate for Model 1, Model 2, and Model 3 

Model Capture Rate 

Model 1 99.52% 

Model 2 100.00% 

Model 3 100.00% 

3.3. Deviation Information Criteria 

Deviation information criteria (DIC) is another way to check goodness- of-fit and do 

model selection. Let us define a deviation statistic D(θ) as: 

𝐷(𝜃)  =  −2 log 𝐿(𝑦|𝜃) 

Where, θ denotes a set of all parameters in model, L(y|θ) denotes the likelihood of the 

model. Further, let 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅  =  𝐸𝜃|𝑦(𝐷(𝜃)), 𝐷(�̅�)  =  𝐷(𝐸𝜃|𝑦(𝜃)), and 𝑝𝐷 =  𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅  −

 𝐷(𝜃). Then, a general formula of DIC is: 

𝐷𝐼𝐶 =  𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅  +  𝑝𝐷 

D(θ) measures fitness, and pD, called effective number of parameters, measures 

complexity, so in a sense, DIC = ’goodness-of-fit’ + ’complexity’. Models with smaller DIC 

are preferable. 

Usually, DIC can be computed by Winbugs, but if model contains discrete parameters 
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(e.g., Lij), then Winbugs is not able to compute the DIC for this model. We adopt DIC3 in 

Celeux et al. (2006) as the DIC for our model. The first term in DIC3 can be calculated as: 

𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ ≈ −
2

𝐶
∑ log 𝑓(𝑦|𝜃(𝑐))

𝐶

𝑐=1

 

= −
2

C
∑ ∑ ∑ ∑ 𝐼(𝐿𝑖𝑗 = 𝑘) log 𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘

(𝑐)
 , 𝜎𝑗𝑘

2(𝑐)
)

𝐽

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

𝐶

𝑐=1

 

The second term in DIC3 can be calculated as: 

𝑝𝐷 =  2 log 𝑓(𝑦)  

𝑓(𝑦) =
1

C
∑ ∑ ∑ ∑ 𝐼(𝐿𝑖𝑗 = 𝑘) log 𝜙(𝑦𝑖𝑗|𝜇𝑖𝑗𝑘

(𝑐)
 , 𝜎𝑗𝑘

2(𝑐)
)

𝐽

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

𝐶

𝑐=1

 

Where, DIC3 for Model 1, Model 2, and Model 3 in Section 2 are presented in Table 2. 

Compared with Model 1, DIC3 for Model 2 and Model 3 are much improved. 

Table 2: DIC3 for Model 1, Model 2, and Model 3 

Model 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ pD DIC3 

Model 1 880.9 10.3 891.2 

Model 2 -1100.0 15.1 -1084.9 

Model 3 -1369.5 15.7 -1353.8 

 

4. Application to Michigan PM2.5 Concentration Data 

We applied our model methods in Section 2 to our Michigan PM2.5 concentration data. 

Since population and income per capita contain very large values, we did log transformation 

on them. In Section 3, both Model 2 and 3 have very small DIC’s and high capture rates, but 

considering that it is not reasonable to ignore the correlations of years, so we decided to use 

Model 3 as our final model for the analysis. Additionally, Q-Q plots of the residuals of 

Model 3 by year are shown in Figure 3. Basically, residuals in each year have very good 

normality. Estimators from Model 3 are shown in Table 3. All posterior means and CrI’s are 

derived from Winbugs 1.4.3 with 20,000 iterations and 15,000 burn-ins. Winbugs code for 

Model 3 is shown in Appendix B. 

Table 3 shows the estimators from Model 3. We can see that Component 2 takes up a big 

proportion of our model. In both components, basically, population shows a positive 

association with PM2.5. Salary per capita has a positive association with PM2.5 in Component 

1, but tends to be a negative association in Component 2. Σij evidences that correlations 

between any two years exist. Coefficients ah in smoothing function are usually 

uninterpretable. Predicted PM2.5 concentrations are mapped in Figure 4. Compared with true 
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PM2.5 concentrations in Figure 2, we can see that our predicted PM2.5 concentrations are very 

accurate. North Michigan has lower PM2.5 concentrations than south Michigan, and from 

2007 to 2011, PM2.5 concentrations were getting lower yearly. 

 

Figure 3: Q-Q Plots of Residuals in Model 2 Table 3: Posterior Estimates in Model 3 

Table 3: Posterior Estimates in Model 3 

 Parameter Posterior Mean 95%CrI 

Component 1 π11 0.024 (0.003 , 0.067) 

 π21 0.054 (0.005, 0.161) 

 π31 0.973 (0.926 , 0.997) 

 π41 0.024 (0.003 , 0.066) 

 π51 0.027 (0.003 , 0.08) 

 𝛽011 -1.421 (-1.974 , 1.969) 

 𝛽021 -7.7 (-17.18 , 16.674) 

 𝛽031 6.455 (1.916 , 11.1) 

 𝛽041 -0.941 (-1.961 , 1.898) 

 𝛽051 -2.847 (-18.871 , 19.193) 

 𝛽11
(𝑝)

 0.482 (-1.438 , 1.422) 

 𝛽21
(𝑝)

 0.169 (-1.118 , 1.081) 

 𝛽31
(𝑝)

 0.298 (0.223 , 0.375) 

Continued on next page 
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Table 3 - continued from previous page 

 Parameter Posterior Mean 95%CrI 

 𝛽41
(𝑝)

 -0.018 (-1.459 , 1.43) 

 𝛽51
(𝑝)

 1.032 (0.223 , 1.418) 

 𝛽11
(𝑠)

 0.677 (-1.276 , 1.332) 

 𝛽21
(𝑠)

 1.551 (-9.594 , 10.12) 

 𝛽31
(𝑠)

 -0.015 (-0.514 , 0.462) 

 𝛽41
(𝑠)

 0.946 (-1.301 , 1.344) 

 𝛽51
(𝑠)

 0.199 (-1.29 , 1.235) 

 τ1 0.022 (0.001 , 0.004) 

Component 2 π12 0.976 (0.933 , 0.997) 

 π22 0.946 (0.84 , 0.995) 

 π32 0.027 (0.003 , 0.074) 

 π42 0.976 (0.934 , 0.997) 

 π52 0.973 (0.92 , 0.997) 

 𝛽012 6.336 (0.433 , 12.21) 

 𝛽022 6.865 (0.483 , 13.1) 

 𝛽032 -1.226 (-1.997 , 1.968) 

 𝛽042 7.563 (3 , 11.54) 

 𝛽052 7.434 (3.033 , 11.49) 

 𝛽12
(𝑝)

 0.364 (0.239 , 0.464) 

 𝛽22
(𝑝)

 0.366 (0.269 , 0.453) 

 𝛽32
(𝑝)

 -1.309 (-12.861 , 12.412) 

 𝛽42
(𝑝)

 0.362 (0.278 , 0.438) 

 𝛽52
(𝑝)

 0.37 (0.29 , 0.443) 

 𝛽12
(𝑠)

 0.039 (-0.572 , 0.68) 

 𝛽22
(𝑠)

 -0.058 (-0.681 , 0545) 

 𝛽32
(𝑠)

 2.39 (-12.64 , 13.61) 

 𝛽42
(𝑠)

 -0.239 (-0.673 , 0.259) 

 𝛽52
(𝑠)

 -0.213 (-0.656 , 0.286) 

 τ2 0.002 (0.001 , 0004) 

ah 𝑖𝑛 𝑓(𝑎𝑟𝑒𝑎) a1 -0.163 (-1.188, 0.732) 

 a2 -0.458 (-1.015, -0.037) 

 a3 -0.591 (-1.271, 0.164) 

 a4 0.361 (-0.712, 1.643) 

 a5 -0.961 (-1.708, -0.407) 

Continued on next page 
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Table 3 - continued from previous page 

 Parameter Posterior Mean 95%CrI 

Σij 𝑖𝑛 𝑀𝐶𝐴𝑅(Σ) Σ11 0.778 (0.559, 1.086) 

 Σ12 0.532 (0.357, 0.771) 

 Σ13 0.481 (0.338, 0.687) 

 Σ14 0.475 (0.33, 0.68) 

 Σ15 0.427 (0.294, 0.616) 

 Σ22 0.613 (0.442, 0.845) 

 Σ23 0.375 (0.252, 0.541) 

 Σ24 0.376 (0.249, 0.553) 

 Σ25 0.303 (0.191, 0.458) 

 Σ33 0.368 (0.261, 0.513) 

 Σ34 0.338 (0.236, 0.484) 

 Σ35 0.302 (0.21, 0.43) 

 Σ44 0.385 (0.276, 0.545) 

 Σ45 0.305 (0.209, 0.442) 

 Σ55 0.328 (0.234, 0.459) 

 

 

Figure 4: Spatial-Temporal Random Effects in Model 2 

5. Conclusion 
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In this paper, we extended the work of Antonovsky et al. (1991) into a spatial-temporal 

Gaussian mixture model. Our method is directly inspired by Neelon et al. (2014) and 

Mariella & Tarantino (2016), By turning off and on the spatial-temporal random effect and 

giving it CAR(τ𝑗) prior and MCAR(Σ) prior, we end up with having three models for our 

annual average PM2.5 concentrations data. We used a posterior predictive check and DIC3 in 

Celeux et al. (2006) for checking goodness-of-fit and model selection. Both of Model 2 and 

3 have better performance than Model 1, but Model 3 considered the correlations between 

any two years, so eventually, we chose Model 3 as our final model for PM2.5 data analysis. 

We applied our model to Michigan annual average PM2.5 concentrations (2007 ∼ 2011) 

data. To our knowledge, this is the first time to use a spatial-temporal Gaussian mixture 

model to analyze PM2.5 concentration in entire Michigan. We found that population has a 

clearly positive association with PM2.5 concentrations, but income per capita shows opposite 

signals in Component 1 and 2, which needs some further analysis. 

In this paper, we assume that our Gaussian mixture model has only two components, 

since the histograms of our data show bimodal shapes. However, bimodal shapes can also be 

generated from a mixture distribution with three or more components, which will be 

explored in the future. 

Appendix A. Brook’s Lemma 

If probability measure P(x) > 0 for all x, then, for any 𝑥 =  (𝑥1 , 𝑥2, . . . , 𝑥𝑛) and 

𝑦 =  (𝑦1, 𝑦2, . . . , 𝑦𝑛): 

𝑃(𝑥)

𝑃(𝑦)
=  ∏

𝑃(𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑛)

𝑃(𝑦𝑖|𝑥1, ⋯ , 𝑥𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑛)

𝑛

𝑖=1

 

Proof: 

𝑃(𝑥)

𝑃(𝑦)
=

𝑃(𝑥1, 𝑦2, . . . , 𝑦𝑛)

𝑃(𝑦1, 𝑦2, . . . , 𝑦𝑛)
 ×

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑃(𝑥1, 𝑦2, . . . , 𝑦𝑛)
 

=
𝑃(𝑥1, 𝑦2, . . . , 𝑦𝑛)/𝑃(𝑦2, . . . , 𝑦𝑛)

𝑃(𝑦1, 𝑦2, . . . , 𝑦𝑛)/𝑃(𝑦2, . . . , 𝑦𝑛)
×

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛)/𝑃(𝑥1)

𝑃(𝑥1, 𝑦2, . . . , 𝑦𝑛)/𝑃(𝑥1)
 

=
𝑃(𝑥1| 𝑦2, . . . , 𝑦𝑛)

𝑃(𝑦1| 𝑦2, . . . , 𝑦𝑛)
×

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛|𝑥1)

𝑃(𝑥1, 𝑦2, . . . , 𝑦𝑛|𝑥1)
 

=
𝑃(𝑥1| 𝑦2, . . . , 𝑦𝑛)

𝑃(𝑦1| 𝑦2, . . . , 𝑦𝑛)
×

𝑃(𝑥2|𝑥1, 𝑦3, . . . , 𝑦𝑛)

𝑃(𝑦2|𝑥1, 𝑦3, . . . , 𝑦𝑛)
×

𝑃(𝑥3, . . . , 𝑥𝑛|𝑥1, 𝑥2)

𝑃(𝑦3, . . . , 𝑦𝑛|𝑥1, 𝑥2)
 

= ⋯ 

Keep decomposing the last term, eventually, we will get: 

𝑃(𝑥)

𝑃(𝑦)
=  ∏

𝑃(𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑛)

𝑃(𝑦𝑖|𝑥1, ⋯ , 𝑥𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑛)

𝑛

𝑖=1

 

Use Brook’s Lemma, we can prove (6). 
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For CAR(τ𝑗
2) prior: 

𝑃(𝜉𝑗)

𝑃(0)
= ∏

exp [−
𝑚𝑖

2𝜏𝑗
2 (𝜉𝑖𝑗 −

1
𝑚𝑖

∑ 𝜉𝜏𝑗𝑟<𝑖 −
1

𝑚𝑖
∑ 0𝑟<𝑖 )

2

]

exp [
𝑚𝑖

2𝜏𝑗
2 (0 −

1
𝑚𝑖

∑ 𝜉𝜏𝑗𝑟<𝑖 −
1

𝑚𝑖
∑ 0𝑟<𝑖 )

2

]

𝑛

𝑖=1

 

= ∏ exp [−
1

2𝜏2
𝑚𝑖 (𝜉𝑖𝑗

2 −
2

𝑚𝑖
∑ 𝜉𝑟𝑗𝜉𝑖𝑗

𝑟<𝑖

)]

𝑛

𝑖=1

 

= exp [−
1

2𝜏2
(∑ 𝑚𝑖𝜉𝑖𝑗

2

𝑛

𝑖=1

− ∑ ∑ 𝜉𝑟𝑗𝜉𝑖𝑗

𝑟∈𝜕𝑖

𝑛

𝑖=1

)] 

= exp [−
1

2𝜏𝑗
2 𝜉𝑗

′(𝑀 − 𝐴)𝜉𝑗] 

We have to notice that ∑ ∑ 𝜉𝑟𝑗𝜉𝑖𝑗𝑟<𝑖
𝑛
𝑖=1 = ∑ ∑ 𝜉𝑟𝑗𝜉𝑖𝑗𝑟>𝑖

𝑛
𝑖=1 , so 2 ∑ ∑ 𝜉𝑟𝑗𝜉𝑖𝑗𝑟<𝑖

𝑛
𝑖=1 =

∑ ∑ 𝜉𝑟𝑗𝜉𝑖𝑗𝑟∈𝜕𝑖

𝑛
𝑖=1 . 

In the same way, we can prove for MCAR(Σ), since MCAR(Σ) is just an extension of 

CAR(𝜏𝑗
2). 

Appendix B. Winbugs Code for Model 3 

model{ 

for(i  in 1:N){ 

for(j in 1:T){ 

pm[i, j] ~ dnorm(mu[i, j], sigma[L[i,j]]) 

mu[i, j] <- step(1.5-L[i, j])*(beta0[1, j] + beta1[1, j]*population[i, j] 

+ beta2[1, j]*income[i, j]) + step(L[i, j]-1.5)*(beta0[2, j] 

+ beta1[2, j]*population[i, j]+ beta2[2, j]*income[i, j]) 

+ a[1]*z[i,1]+ a[2]*z[i,2] + a[3]*z[i,3] + a[4]*z[i,4] 

+ a[5]*z[i,5] + phi[j, i] 

} 

} 
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## priors ##  

for(i  in 1:N){ 

for(j in 1:T){ 

  

L[i, j] ~ dcat(P[j,]) 

} 

} 

for(j in 1:T){ 

P[j, 1:2] ~ ddirch(lambda[]) 

} 

sigma[1] ~ dgamma(0.1, 0.01) sigma[2] ~ dgamma(0.1, 0.01) tau[1] <- 1/sigma[1] 

tau[2]  <- 1/sigma[2] 

for(j in 1:T){  

beta0[1, j] ~ dnorm(0, 0.0001) 

beta0[2, j] ~ dnorm(0, 0.0001) 

beta1[1, j] ~ dnorm(0, 0.0001) 

beta1[2, j] ~ dnorm(0, 0.0001) 

beta2[1, j] ~ dnorm(0, 0.0001) 

beta2[2, j] ~ dnorm(0, 0.0001) 

}   

for(i in 1:5){ 

a[i] ~ dnorm(0, 0.0001) 

} 

# MCAR prior 

phi[1:T,1:N] ~ mv.car(adj[],weightst[],num[],Rs[,]) for(i in 1:M){weightst[i] <- 1} 

Rs[1:T, 1:T] ~ dwish(I[ , ], T) 

Sigma.p[1:T, 1:T] <-inverse(Rs[, ]) 

} 
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