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Abstract

When releasing data to the public, a vital concern is the risk of exposing personal information
of the individuals who have contributed to the data set. Many mechanisms have been proposed
to protect individual privacy, though less attention has been dedicated to practically conducting
valid inferences on the altered privacy-protected data sets. For frequency tables, the privacy-
protection-oriented perturbations often lead to negative cell counts. Releasing such tables can
undermine users’ confidence in the usefulness of such data sets. This paper focuses on releas-
ing one-way frequency tables. We recommend an optimal mechanism that satisfies ε-differential
privacy (DP) without suffering from having negative cell counts. The procedure is optimal in
the sense that the expected utility is maximized under a given privacy constraint. Valid in-
ference procedures for testing goodness-of-fit are also developed for the DP privacy-protected
data. In particular, we propose a de-biased test statistic for the optimal procedure and derive
its asymptotic distribution. In addition, we also introduce testing procedures for the commonly
used Laplace and Gaussian mechanisms, which provide a good finite sample approximation for
the null distributions. Moreover, the decaying rate requirements for the privacy regime are pro-
vided for the inference procedures to be valid. We further consider common users’ practices such
as merging related or neighboring cells or integrating statistical information obtained across
different data sources and derive valid testing procedures when these operations occur. Simu-
lation studies show that our inference results hold well even when the sample size is relatively
small. Comparisons with the current field standards, including the Laplace, the Gaussian (both
with/without post-processing of replacing negative cell counts with zeros), and the Binomial-
Beta McClure-Reiter mechanisms, are carried out. In the end, we apply our method to the
National Center for Early Development and Learning’s (NCEDL) multi-state studies data to
demonstrate its practical applicability.
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1 Introduction
When releasing data to the public, a critical concern is the risk of exposing individual information
in the data set. Law enforcement, such as the European General Data Protection Regulation, has
made de-identification compulsory before releasing data, i.e. removing personal identity from the
record. However, even with such measures, data adversaries may still be able to infer about an
individual’s identity. Some examples on privacy breach include the Netflix prize (Narayanan and
Shmatikov, 2008), the Washington State health record identification (Sweeney, 2013), recovery
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of the anonymous location data (Golle and Partridge, 2009) and privacy loss in genomic data
(Wang et al., 2009).

In the past two decades, a concept known as data differential privacy (DP) has been devel-
oped for the purpose of protecting against the risk of privacy loss. Dwork et al. (2006b) define
the first formal definition of DP, which relates the risk for privacy loss to how much the answer
to a query would change given the presence or absence of the most extreme person who is prone
to privacy breach. Machine-learning types of development quickly adopt the DP-concept. A non-
exhaustive list includes streaming (Dwork et al., 2010), data mining (Mohammed et al., 2011),
dimension reduction (Chaudhuri et al., 2012), genome-wide association tests (Yu et al., 2014),
Bayesian learning (Wang et al., 2015b) and recommender systems (Friedman et al., 2016). In
a separate front, efforts have been made to incorporate the DP framework into the traditional
disclosure-risk control data-synthesis approaches in which synthetic datasets are generated to
represent the original observed data (Rubin, 1993; Little, 1993; Raghunathan et al., 2003; Reiter,
2005; Drechsler, 2011; Raab et al., 2016). In this direction, applications include creating private
versions of discrete and categorical data (Charest, 2011; McClure and Reiter, 2012; Abowd and
Vilhuber, 2008; Hay et al., 2016; Quick, 2019), continuous data (Wasserman and Zhou, 2010;
Snoke et al., 2016), and network data (Karwa et al., 2015; Karwa and Slavković, 2016). Bowen
and Liu (2020) provide a comprehensive review of the private data synthesis methods.

The research on performing statistical inference within the framework of DP has gained
momentum lately and consists of diverse directions. For the traditional tests applying to normal
data, Sheffet (2017) considers the DP hypothesis testing and confidence interval construction
for ordinary least squares and ridge estimators in linear regression. Barrientos et al. (2019)
propose a differentially private mechanism to release the test statistic and p-value from testing a
regression coefficient against 0 from a linear regression model. In anomaly detection, Degue and
Le Ny (2018) design a DP generalized likelihood ratio method to decide if data modeled as a
sequence of independent and identically distributed (i.i.d.) Gaussian random variables has a given
mean value. Ding et al. (2018) study how to conduct hypothesis tests on two population means
while preserving privacy under the more restrictive requirement of local differential privacy.
Campbell et al. (2018) provide a private analogue of the ANOVA test. Task and Clifton (2016)
and Couch et al. (2019) study non-parametric DP rank-based tests. Generalizing a concept
given by Wasserman and Zhou (2010), Liu et al. (2019) investigate the relationship between
differential privacy framework and hypothesis testing with the goal of using testing analogue to
further refine optimal DP regime. Ferrando et al. (2020) consider using parametric bootstrap
to construct private confidence intervals and establish a consistency result for the proposed
intervals.

Most of the existing DP mechanisms are developed on releasing summary statistics of the
data set or responding to queries. On the inference front, the development also mostly focuses on
‘perturbing’ summary statistics, e.g., test statistics or sufficient statistics in parametric settings.
Rogers et al. (2016) investigate the use of adaptive hypothesis testing for p-value corrections and
derive valid testing procedures under the challenging (ε, δ)-DP scenarios. Avella-Medina (2021)
extends this direction by working on the influence-function structure directly for M-estimators’
robust DP inferences. When it comes to releasing the data itself, which is essential in the current
data-sharing climate, data synthesis methods constructed under the Bayesian framework remain
to be the dominating trend.

As for releasing tabular data, the summary cell counts are also observations. For hypothesis
testing using the DP-private tabular data, there are many research issues. For example, suppose
the cell counts are provided according to different genders and races but the users are only
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interested at the variable race when the distributions of cell counts do not differ for different
genders. For the original data, users can simply combine the categories from different genders
and conduct testing on the merged data directly. For the private data on the other hand, to
the best of our knowledge, an investigation of testing procedures has not been presented in the
literature for this simple and commonly used operation. The same statement applies when one
combines the observations collected from different locations or from different years in an analysis.

There have been some works dedicated to developing hypothesis-testing procedures on pri-
vate tabular data sets. When adding noise to each cell of a contingency table, Johnson and
Shmatikov (2013) justify the practice of using classical statistical tests on the private tabular
data theoretically by showing that the test statistic computed from a noisy table still asymp-
totically has the same chi-squared distribution as using the classical method. In an earlier and
pioneer work, Vu and Slavkovic (2009) investigate the sample-size determination so that Chi-
squared tests using either the private tabular data or the original data can achieve the same
power. That is, the additional variation that is considered negligible asymptotically is not always
truly negligible – a statement supported by our numerical investigation. Wang et al. (2015a) add
Laplace errors to cell counts to create private tabular data and consider the additional variation
in the testing procedures. They resort to Monte Carlo methods to ensure the validity of the
testing methods. Besides creating their own version of Monte-Carlo based methods, Gaboardi
et al. (2016) add Laplace or Gaussian errors to create private tabular data and use the structure
to derive the corresponding asymptotic distributions for the test statistics. Focusing on a simple
Binomial setting and using the positive count of the original data, Awan and Slavković (2018)
extend the use of the Neyman-Pearson lemma to construct the most powerful test under the DP
framework. For frequency tables, these existing methods cannot avoid the scenarios of producing
negative cell counts.

As the cell counts in a frequency table can be presented as a one-way frequency, we concen-
trate on this setting and recommend an optimal mechanism that satisfies the standard ε-DP.
Differing from most of the existing literature, the optimal procedure does not add errors with
an explicit form of distribution to the test statistics or cell counts, and only allows realization
from the non-negative discrete values as entries of private cell counts. The proposed procedures
naturally avoids having negative cell counts without further truncating the private versions of
the observations at zero, thus are not subject to the loss of utilities discussed in Rinott et al.
(2018). Valid procedures for carrying out goodness-of-fit tests on the private tabular data are
developed for the associated procedures. In particular, a de-biased test statistic for the optimal
procedure is proposed and its asymptotic distributions are derived. Finite sample approximating
distributions for the Chi-square goodness-of-fit test statistics on the commonly used Laplace and
Gaussian mechanisms (with/without post-processing of converting negative cells to zero) are also
provided to adjust for the additional privacy-related noises injected so that valid inference can
be made in settings with relatively small sample sizes. As far as we know, our work is among the
first to deal with statistical inference for DP mechanisms with such post-processing. Further-
more, we identify an explicit rate requirement for privacy regimes ε under which the inference
procedures are valid. Moreover, we derive valid procedures for goodness-of-fit tests on private
data after performing some common operations in practice, including inter-table merging, i.e.,
combine multiple tables, and intra-table merging, i.e. combine interior categories within a table.

We organize the remaining of the article as follows. Section 2 reviews the foundations of DP
and some field standard DP mechanisms. Section 3 presents the optimal mechanism. Inference
procedures for the goodness-of-fit tests are included in Section 4, where both the inter-table
and intra-table merging operations are considered. Section 5 consists of simulation studies to
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compare the performance of the optimal mechanism with the field standards. In Section 6, we
apply our proposed methods to NCEDL’s multi-state study data set to demonstrate the utility
of our proposed method. Section 7 concludes with some future directions. The proofs for the
developed theoretical results and the simulation results for validating the inter- and intra-table
inference procedures can be found in the supplementary materials.

2 Review of DP Fundamentals
In this section, we review the basics of DP and some of the most commonly used mechanisms
in the literature. Differential privacy (DP) quantifies the degree of privacy protection in terms
of privacy budget ε. Importantly, DP is a property of the algorithms that produces the privacy-
protected data and such algorithms are often created according to a given utility function.
Algorithms that satisfy the DP criteria are referred to as differentially private algorithms. Before
giving the formal definition of DP, we first introduce some notations. We denote the original
observed count data cell and its private version as X and X∗ respectively. We use X′ to denote
the neighbor of X. Here neighboring data means X and X′ only differ by one individual. We
state the formal definition of ε-DP.

Definition 2.1 (ε-Differential Privacy). An algorithm M, is ε-DP if for all subsets S ⊂
Range(M) and for all X, X′ such that d(X, X′) = 1, P(M(X) ∈ S)/P (M(X′) ∈ S) � exp(ε).

In the definition above, ε > 0 is the privacy budget and d(X, X′) = 1 means that X and X′
differ by one record, making them being the so-called neighbors. One concern about algorithms
that satisfy ε-DP is that they tend to inject large amount of noise to statistical query results
for the reason of attaining a strong privacy guarantee. The practice could result in poor data
utility. Several relaxations have been developed. Examples include the (ε, δ)-DP (Dwork et al.,
2006a) and probabilistic DP (Machanavajjhala et al., 2008). These are considered as relaxations
because, while still being ‘formal’, they offer slightly weaker privacy guarantees. Below we give
the formal definition of (ε, δ)-DP, which is commonly used in the literature.

Definition 2.2 ((ε, δ)-Differential Privacy). An algorithm M, is (ε, δ)-DP if for all subsets S ⊂
Range(M) and for all X, X′ such that d(X, X′) = 1, P(M(X) ∈ S) � exp(ε)P (M(X′) ∈ S) + δ,
where δ ∈ [0, 1].

Note ε-DP is a special case of (ε, δ)-DP when δ = 0. The parameter δ adds a small probabil-
ity when the bound given in Definition 2.1 does not hold. Next we review some DP mechanisms
that are considered as field standards, for the purpose of comparison. Since we focus on studying
frequency tables, we formalize these algorithms using one-way frequency tables as observed data
set D = (X1, . . . , XK). We assume D ∼ Multinomial(n, P1, P2, . . . , PK) here.

Laplace Mechanism (Lap). The Laplace mechanism can be applied to each of the K cells
independently via X∗

k ∼ Lap(xk, 1/ε) independently for k = 1, . . . , K, where Xk = xk is the actual
observation made. Since we are dealing with count data, we use a discretized version of Laplace
distribution with probability mass function, P(X∗

k = x∗
k | Xk = xk) = (1/C1) exp(−ε|xk − x∗

k |),
for any integer x∗

k , where C1 = ∑
l∈Z exp{−ε|xk − l|} = 1 + 2 exp(−ε)/{1 − exp(ε)}.

It is well-known that the above procedure satisfies ε-DP. Since frequency tables contain
non-negative cell counts only, it is natural to perform post-processing to ensure all the private
data entries are non-negative. Here we denote the Lap procedure with the post-processing of
converting all negative private entries to zero as the truncated Laplace (TLap) mechanism.
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Gaussian Mechanism (GDP). Similar to the Laplace mechanism, the Gaussian mech-
anism perturbs each of the K cells independently via X∗

k ∼ N(xk, σ
2 = 2 log(1.25/δ)/ε2) for

k = 1, . . . , K. It has been shown in Dwork and Roth (2014) that this procedure satisfies (ε, δ)-
DP whenever 0 < ε, δ < 1. Again, we use a discretized version here with P(X∗

k = x∗
k | Xk = xk) =

(1/C2) exp{−(xk − x∗
k )

2/(2σ 2)}, for any integer x∗
k , where C2 = ∑

m∈Z exp{−(xk − m)2/(2σ 2)}.
It has been shown in Canonne and Steinke T (2020) that this discrete version has approx-

imately the same privacy guarantee as the continuous Gaussian mechanism. For comparison
purpose only, we adopt this discrete version of the Gaussian mechanism. Similarly, we con-
sider the GDP with the post-processing of converting all negative private entries to zero as the
truncated GDP (TGDP) mechanism.

Binomial-Beta McClure-Reiter Mechanism (MR). McClure and Reiter (2012) pro-
pose an approach to synthesize count data using X∗

k | D = (x1, . . . , xK) ∼ Bin(n, (Xk + αk)/(n +
αk +βk)) independently for each cell Xk, where αk = βk = 1/{exp(ε/n)−1} makes this procedure
satisfy ε-DP.

This is among the most commonly used data synthesis method, adapted to satisfy the DP
requirement. Its advantage is that it preserves the underlying data structure in that, marginally,
each Xk follows a Binomial distribution. However, this procedure completely ruins the cell-wise
information due to large α and β values and will in general yield deteriorated utilities.

3 Optimal Mechanism
From the previous section, we know some existing privacy mechanisms have been developed for
releasing the frequency table data. However, these mechanisms are not optimal and have other
shortcomings. Take the most commonly used Laplace and Gaussian mechanisms as examples;
one of the concerns is that negative count data are easily generated, which does not make any
practical sense in the frequency table setting. The popular existing methods that overcome
this shortcoming often bear a large amount of variation. Taking the MR mechanism as an
example, we note that, although the negative count issue is overcome, the damages to the
utilities are not always well controlled under the targeted privacy constraints. Furthermore,
in real applications, practitioners may face too many choices of mechanisms, often making it
difficult for them to pick the “best” one to use. We also note that optimality of DP algorithms in
terms of utility maximization have been discussed by several authors. For example, Ghosh et al.
(2012) study the optimality of ε-differentially private mechanisms under a Bayesian framework.
Geng and Viswanath (2015) derive that the optimal ε-differentially private mechanism for real-
valued query functions takes the staircase-shaped probability densities that are geometrically
decaying. While Kairouz et al. (2016) prove the optimality of the randomized aggregatable
privacy-preserving ordinal response algorithm and the k-ary randomized response algorithm,
under the local differential privacy framework. In this section, we seek to extend the universal
optimality idea from Ghosh et al. (2012), in which the mechanism allows a flexible design of
loss functions to measure utility, and the corresponding expected utilities are maximized under
any given privacy requirements, and we recommend an optimal mechanism for the practitioners
when applied to releasing the frequency-table type of data.

Before introducing the optimal mechanism, we first define some notations. Denote the
observed data list as D = (x1, . . . , xK) which is generated from Multinomial(n, P1, . . . , PK).
The corresponding private data after DP procedures is denoted as D∗ = (x∗

1 , . . . , x∗
K). For

notation simplicity, we denote i ∈ {0, 1, . . . , n} as inputs (i.e. the values for xk). Further-
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more, we denote r as the private responses (i.e. the values for x∗
k ) where r ∈ {0, 1, . . . , n}.

Let p = {pir : i = 0, 1, . . . , n, r = 0, 1, . . . , n} ∈ R
(n+1)×(n+1) with pir denoting the probability

of mapping an input i to r. Then the optimal p, denoted as p∗ ∈ R
(n+1)×(n+1), minimizes the

expected loss (i.e. maximizes the expected utility), such that

p∗ = arg min
p

n∑
i=0

n∑
r=0

pirL(i, r), (31)

where L(i, r) can be any arbitrary loss function, subject only to the constraints that L(i, r) are
non-negative, and non-decreasing in |i − r| for each fixed i = 0, . . . , n. Note that p∗ = (p∗

ir )

defines a stochastic mechanism that maps an input i = 0, . . . , n to an output r = 0, . . . , n. The
commonly used loss functions include L1 and L2 losses.

The optimal mechanism is detailed in Algorithm 1. Step 1 in Algorithm 1 evaluates a per-
turbation matrix g corresponding exactly to the discretized Laplace Mechanism, but truncated
at 0 and n. The tail probabilities beyond 0 and n are all accumulated as the boundary proba-
bilities. Its optimality has been demonstrated in Geng and Viswanath (2014) and Ghosh et al.
(2012). If we fix response r in Step 2, we note that the vector h0r , . . . , hnr can be interpreted as
a list of posterior probabilities conditioned on the response r with a uniform prior imposed on
the inputs i = 0, . . . , n. We will use h to evaluate an optimal remap specific to the loss function
L, which is presented in Step 3. Its main goal is to achieve the best balance between the bias
and variance so that the expected loss can be minimized. For a general loss function L, step 3
seeks to find an optimal remap index r∗, for each response r = 0, . . . , n, such that

r∗ = arg min
j∈{0,...,n}

n∑
i=1

hirL(i, j).

Note that it is computed as the minimizer of the weighted expected loss. In reality, this opti-
mal remap often brings in some bias into the random error added, but the output variance is
significantly reduced which more than compensates for the bias. Then the optimal remapping
matrix y ∈ R

(n+1)×(n+1) is set to be yrk = 1 if k = r∗ and yrk = 0 if k �= r∗. Finally in step 4,
the optimal perturbation matrix p∗ can be obtained by combining g and the optimal remap
matrix y with p∗ = g × y, where × here denotes the matrix multiplication. Lastly, to find the
private data cell x∗

k , we can simply sample using r ∈ {0, 1, . . . , n} with probability distribution
{p∗

xkr
: r = 0, . . . , n}.

Remark 1. In step 3, when L(i, r) = |i − r| is the L1 loss, optimal remap index is simply
r∗=min{k = 0, 1, . . . , n : ∑k

i=0 hir � 0.5}. Step 3 in Algorithm 1 simply returns r∗ as the ceiling
function of the conditional median of {0, . . . , n} with probabilities hir for i = 0, . . . , n in this case.
Note that if we take L(i, j) = (i − j)2 as the squared loss, then optimal r∗ can be evaluated as
the ceiling function of the conditional mean of {0, . . . , n} with probabilities hir for i = 0, . . . , n.
Remark 2. Algorithm 1 has time complexity of O(n3) and space complexity of O(n2) in general.
Note that the time complexity is dominated by Step 3. In the most commonly used L1 and L2

losses, short-cuts in Remark 1 can be used, in which cases the time complexity can be reduced
to O(n2).

Following from Theorem 3.1 in Ghosh et al. (2012) by taking a uniform prior on the input
{i = 0, 1, . . . , n} with probability mass function P(i) = 1/(1 + n), it can be shown that the
p∗ obtained from the above steps solves the objective function (31) while satisfying the ε-DP
framework. This is formalized in the proposition below.
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Algorithm 1: Optimal Mechanism.
Input: Observed data D = (x1, . . . , xK), privacy regime ε.
Output: Optimal perturbation matrix p∗, private data D∗.
Set α = exp(−ε); Initialize g, h, y ∈ R

(n+1)×(n+1).
Step 1. Evaluate g corresponding to the truncated and discretized Laplace Mechanism.
for i = 0, 1, 2, . . . , n do

for r = 0, 1, 2, . . . , n do
if r = 0 or 1 then

gir = α|i−r|/(1 + α);
else

gir = α|i−r|(1 − α)/(1 + α).
end

end
Step 2. Evaluate the “posterior” probabilities h as if using uniform prior on i.
for r = 0, 1, 2, . . . , n do

s = (∑n
i′=0 gi′r

)
;

for i = 0, 1, 2, . . . , n do
hir = gir/s.

end
end
Step 3. Compute the optimal remap matrix y.
for r = 0, 1, 2, . . . , n do

r∗ = arg minj∈{0,...,n}
∑n

i=1 hirL(i, j).
for k = 0, 1, . . . , n do

if k = r∗ then
yrk = 1.

else
yrk = 0.

end
end
Step 4. Evaluate the optimal perturbation matrix p∗.
for i = 0, 1, 2, . . . , n do

for r = 0, 1, 2, . . . , n do
p∗

ir = ∑n
r ′=0 gir ′yr ′r .

end
end
Step 5. Generate private frequency table.
for k = 1, 2, . . . , K do

Sample x∗
k ∼ {0, 1, . . . , n} according to {p∗

xkr
: r = 0, 1, . . . , n};

D∗[k] = x∗
k .

end

Proposition 1. The perturbation matrix p∗ ∈ R
(n+1)×(n+1) obtained through Steps 1 to 4 in Algo-

rithm 1 solves the problem (31) with loss function L(i, r) that is non-negative and non-decreasing
in |i − r|, satisfying the following constraints: for any 0 < ε < ∞, (1) p∗

ir − exp(ε)p∗
(i+1)r � 0 for

i = 0, . . . , n − 1, r = 0, . . . , n and (2) exp(ε)p∗
ir − p∗

(i+1)r � 0 for i = 0, . . . , n − 1, r = 0, . . . , n.
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Therefore, the mechanism described in Algorithm 1 satisfies ε-DP.
Note that here p∗ gives a perturbation matrix that is optimal in that it minimizes the

overall expected losses while satisfying the ε-DP framework. In the following sections, we will
work with the optimal mechanism that minimizes the most commonly used expected L1 loss
and develop inference procedures for it. At the same time, the derivation applies to other losses
as well.

4 Goodness-of-Fit Test
In this section, we develop procedures for conducting goodness-of-fit tests on private data. Fur-
thermore, we also consider common operations including both inter- and intra-table mergings.

We assume the true frequency data is D = (X1, X2, . . . , XK) ∼ Multinomial(n, P1, P2, . . . , PK).
Following a common practice, we release both D∗ = (

X∗
1, X

∗
2, . . . , X

∗
K

)
, the private tabular data,

and the private mechanism used to generate D∗. Suppose we are interested in the goodness-of-fit
test H0 : P1 = p1, P2 = p2, . . . , PK = pK against H1 : P1 �= p1 or P2 �= p2,. . . , or PK �= pk. Note
that unlike the Gaussian or the Laplace mechanisms that inject a mean zero noise into each
tabular cell, the boundary truncation and the optimal remapping step in the optimal mecha-
nism will introduce some biases into the outputs to reach optimality. We propose a de-biased
goodness-of-fit test statistic on the private data generated from the optimal procedures described
in Section 3. Consider the test statistic T ∗

opt with

T ∗
opt =

K∑
k=1

(x∗
k − npk − b(x∗

k )√
npk

)2 =
K∑

k=1

T
′ 2
k ,

where b(x∗
k ) is the bias estimate stemming from the injected noise which can be evaluated using

Algorithm 2 below.
Remark 3. Step 1 of Algorithm 2 seeks to find a list of probabilities of input values (denoted as
fx∗

k
) from which the observed private x∗

k is likely to be sampled from. While step 2 computes the
list of expected biases if the input values are 0, 1, . . . , n. Step 3 computes a weighted average of
the expected biases to give the final bias estimate at x∗

k .
In order to take the second moment of the injected noise into account, we give an estimate

for the variance, v(x∗
k ), to approximate the variance of the injected noise added to xk using

Algorithm 3 below.

Algorithm 2: Evaluation of Bias.
Input: Private data D∗ and optimal perturbation matrix p∗.
Output: Bias terms b(x∗

k ) for k = 1, . . . , K.
for k = 1, . . . , K do

1. fx∗
k

= (p∗
0x∗

k
, p∗

1x∗
k
, . . . , p∗

nx∗
k
)T /

( ∑n
i=0 p∗

ix∗
k

)
;

2. Evaluate b = (b0, b1, . . . , bn):
for i = 0, 1, . . . , n do

bi = ∑n
j=0 p∗

ij (j − i);
end
3. b(x∗

k ) = ∑n
i=0 fix∗

k
bi .

end
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Algorithm 3: Evaluation of Variance.
Input: Private data D∗ and optimal perturbation matrix p∗.
Output: Variance terms v(x∗

k ) for k = 1, . . . , K.
for k = 1, . . . , K do

1. fx∗
k

= (p∗
0x∗

k
, p∗

1x∗
k
, . . . , p∗

nx∗
k
)T /

( ∑n
i=0 p∗

ix∗
k

)
;

2. Evaluate v = (v0, v1, . . . , vn):
for i = 0, 1, . . . , n do

vi = ∑n
j=0 p∗

ij (j − ∑n
j=0 jp∗

ij )
2;

end
3. v(x∗

k ) = ∑n
i=1 fix∗

k
vi .

end

Remark 4. Step 1 of Algorithm 3 is exactly the same as in Algorithm 2. Step 2 of Algorithm 3
computes a list of expected variances given the possible original observations of 0, 1, . . . , n (we
denote it as v = (v0, v1, . . . , vn)). Step 3 computes a weighted average of the expected variances
to give the final estimate for the variance term at x∗

k .
We characterize the asymptotic null distribution of T ∗

opt in the following theorem.

Theorem 1. Assume the private data are generated from the optimal procedure with privacy
regime εn satisfying ε−1

n n−1/2 → 0 as n → ∞. Then under the null hypothesis H0 : P1 =
p1, . . . , PK = pK , for some 1 < K < ∞, T ∗

opt → ∑K
k=1 �kZk in distribution, where Zk are

i.i.d. χ2
1 random variables and �k are the eigenvalues of the matrix 	 ∈ R

K×K where 	kk =
1 − pk + v(x∗

k )/(npk) for k = 1, . . . , K and 	kj = −√
pkpj for 1 � k �= j � K.

Remark 5. We can decompose x∗
k = xk+errk, and Theorem 1 takes the second moment of errk into

account so that the asymptotic null distribution can have better finite sample properties when the
sample size n is small and the privacy-protection requirement is high (small εn). Furthermore,
we state that the rate of decrease of privacy regime εn cannot be faster than n−1/2 for the
asymptotics to work. For much perturbed outputs with small n and εn, inference procedures
have low powers in general. Under such scenarios, as shown in the numerical outcomes, our
proposed optimal procedure outperforms others. When an even smaller εn is required so that
the asymptotic fails, one perhaps should carefully consider whether it is meaningful to release
such a deteriorated data set.

Theorem 1 can be generalized easily to any DP mechanisms whose injected noises are
additive to the true cell counts. Below we take the most commonly used Laplace and Gaussian
mechanisms (and their corresponding post-processing versions, TLap and TGDP) as examples
and derive their asymptotic distributions. We use a standard Pearson Chi-square test statistic
in the literature which is given as follows,

T ∗ =
K∑

k=1

(x∗
k − npk)

2

npk

=
K∑

k=1

(x∗
k − npk√

npk

)2 =
K∑

k=1

T 2
k .

Theorem 2. Assume the privacy regime εn satisfying n−1/2ε−1
n → 0 as n → ∞. Under the null

hypothesis H0 : P1 = p1, . . . , PK = pK , for some 1 < K < ∞, the following results hold.
(a). When the private data are generated from the εn-DP Laplace mechanism or the εn-DP

truncated Laplace mechanism (at zero). T ∗ → ∑K
k=1 �kZk in distribution, where Zk are i.i.d. χ2

1
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random variables and �k are eigenvalues of the matrix 	 ∈ R
K×K where 	kk = 1−pk +2/(npkε

2
n)

for k = 1, . . . , K and 	kj = −√
pkpj for 1 � k �= j � K.

(b). When the private data are generated from the (εn, δ)-DP Gaussian mechanism or the
truncated (εn, δ)-DP Gaussian mechanism (at zero) for some 0 < δ < 1. T ∗ → ∑K

k=1 �kZk

in distribution, where Zk are i.i.d. χ2
1 random variables and �k are eigenvalues of the matrix

	 ∈ R
K×K where 	kk = 1 −pk + (2 log(1.25/δ)− 1)/(npkε

2
n) for k = 1, . . . , K and 	kj = −√

pkpj

for 1 � k �= j � K.

4.1 Merging Multiple Frequency Tables

The data users may often encounter the need to merge different private tabular data sets. For
example, the users may want to merge multiple data sets across different time-periods or re-
gions before performing statistical analysis. Merging multiple frequency lists can increase sample
size and therefore improve confidence when performing statistical inference. In this section, we
develop inference procedures that can be applied to the merged private frequency tables.

Suppose the users are interested in merging C data lists j = 1, . . . , C together, with the
j ’th private data list denoted as D∗

j = {X∗
j1, X

∗
j2, . . . , X

∗
jK} with sample size nj . Further assume

n = ∑C
j=1 nj . The merged data set can then be denoted as D∗

m = {∑C
j=1 X∗

j1, . . . ,
∑C

j=1 X∗
jK}.

Furthermore, suppose the user knows the DP procedure used to create each of the private data
lists D∗

j . To test H0 : P1 = p1, P2 = p2, . . . , PK = pK against H1: H0 does not hold on the merged
data, We consider the following test statistic

T ∗
M =

K∑
k=1

(∑C
j=1 X∗

jk − npk − bM({x∗
jk}Cj=1)√

npk

)2 =
K∑

k=1

T 2
mk,

where bM({x∗
jk}Cj=1) = ∑C

j=1 b(x∗
jk). Theorem 3 characterizes the asymptotics of the T ∗

M under
the null hypothesis. We give the results for both the recommended optimal procedure and the
commonly used mechanisms in the literature.

Theorem 3. Assume ε−1
n n−1/2 → 0 as n → ∞. Under the null hypothesis H0 : P1 = p1, . . . , PK =

pK , for some 1 < K, C < ∞, the following results hold.
(a) If D∗

j are obtained from the optimal procedure with privacy regime εn, then T ∗
M →∑K

k=1 �kZk in distribution, where Zk are i.i.d. χ2
1 random variables and �k are the eigenval-

ues of the matrix 	 ∈ R
K×K where 	kk = 1 − pk + vM({xjk}Cj=1)/(npk) for k = 1, . . . , K with

vM({xjk}Cj=1) = ∑C
j=1 v(x∗

jk), and 	kj = −√
pkpj for 1 � k �= j � K.

(b) If D∗
j are obtained from the εn-DP Laplace mechanism or the truncated εn-DP Laplace

mechanism (at zero), then we set bM({x∗
jk}Cj=1) = 0 in T ∗

M . We have T ∗
M → ∑K

k=1 �kZk in distribu-
tion, where Zk are i.i.d. χ2

1 random variables and �k are the eigenvalues of the matrix 	 ∈ R
K×K

where 	kk = 1 − pk + 2C/(ε2
nnpk) for k = 1, . . . , K and 	kj = −√

pkpj for 1 � k �= j � K.
(c) If D∗

j are obtained from the (εn, δ)-Gaussian mechanism or the truncated (εn, δ)-Gaussian
mechanism (at zero) for some 0 < δ < 1, then we set bM({x∗

jk}Cj=1) = 0 in T ∗
M . We have T ∗

M →∑K
k=1 �kZk in distribution, where Zk are i.i.d. χ2

1 random variables and �k are the eigenvalues of
the matrix 	 ∈ R

K×K where 	kk = 1−pk +CvM/npk for k = 1, . . . , K with vM = (2 log(1.25/δ)−
1)/ε2

n, and 	kj = −√
pkpj for 1 � k �= j � K.
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4.2 Merging Cells Within a Frequency Table
Data users may also be interested in combining entries within a frequency table, either because
they are interested in a more general group of classes or because the sample sizes of some cells
are too small to carry out valid analysis. Similar to inter-table merging, intra-table merging
directly on the private tabular data accumulates random noises in the merged cells, resulting
in invalid analysis results if these noises are not taken into account separately. In this section,
we provide goodness-of-fit test procedures that can be applied to the intra-table merged private
data sets.

Without loss of generality, suppose the users are interested in merging the first M cells of
the private list D∗ = {X∗

1, X
∗
2, . . . , X

∗
K} for some M < K. Denote the resulting merged data set

as D∗
m = {∑M

k=1 X∗
k , X

∗
M+1, . . . , X

∗
K

} = {X∗
m1, X

∗
m2, . . . , X

∗
m(K−M+1)}. To test H0 : Pm1 = p1, Pm2 =

p2, . . . , Pm(K−M+1) = pK−M+1 against H1: H0 does not hold on the merged data set D∗
m. We

consider

T ∗
M =

K−M+1∑
k=1

(X∗
mk − npk − bM(x∗

mk)√
npk

)2 =
K−M+1∑

k=1

T 2
mk,

where bM(x∗
m1) = ∑M

i=1 b(x∗
i ) and bM(x∗

mk) = b(x∗
M+k−1) for k = 2, . . . , K − M + 1. The following

theorem characterizes the asymptotic null distribution of T ∗
M . Again, we give the results for both

the recommended optimal procedure and the commonly used mechanisms in the literature.

Theorem 4. Assume the privacy regime εn satisfies ε−1
n n−1/2 → 0 as n → ∞. Under the null

hypothesis Pm1 = p1, Pm2 = p2, . . . , Pm(K−M+1) = pK−M+1, for some 1 < K < ∞ and 1 � M < K,
the following results hold.

(a) If D∗ are from the εn-DP optimal procedure, then T ∗
M → ∑K−M+1

k=1 �kZk in distribution,
where Zk are i.i.d. χ2

1 random variables and �k are the matrix 	 ∈ R
(K−M+1)×(K−M+1) where

	kk = 1 − pk + vM(x∗
mk)/(npk) for k = 1, . . . , K − M + 1, with vM(x∗

m1) = ∑M
i=1 v(x∗

i ) and
vM(x∗

mk) = v(x∗
M+k−1) for k = 2, . . . , K − M + 1, and 	kj = −√

pkpj for 1 � k �= j � K − M + 1.
(b) If D∗ are from the εn-DP Laplace mechanism or the truncated εn-DP Laplace mechanism

(at zero), we set bM(x∗
mk) = 0 in T ∗

M . then T ∗
M → ∑K−M+1

k=1 �kZk in distribution, where Zk are
i.i.d. χ2

1 random variables and �k are the eigenvalues of the matrix 	 ∈ R
(K−M+1)×(K−M+1) where

	11 = 1 −p1 +MvM/npk for k = 1, . . . , K and 	kk = 1 −pk + vM/npk for k = 2, . . . , K −M + 1,
with vM = 2/ε2

n, and 	kj = −√
pkpj for 1 � k �= j � K − M + 1.

(c) If D∗ are from the (εn, δ)-DP Gaussian mechanism or the truncated (εn, δ)-DP Gaussian
mechanism (at zero), we set bM(x∗

mk) = 0 in T ∗
M . Then we have T ∗

M → ∑K−M+1
k=1 �kZk in distri-

bution, where Zk are i.i.d. χ2
1 random variables and �k are the eigenvalues of the matrix 	 ∈

R
(K−M+1)×(K−M+1) where 	11 = 1−p1+MvM/npk, 	kk = 1−pk+vM/npk for k = 2, . . . , K−M+1

with vM = (2 log(1.25/δ) − 1)/ε2
n, and 	kj = −√

pkpj for 1 � k �= j � K − M + 1.

5 Simulation Studies
Various simulation studies are designed to examine and compare the effectiveness of the recom-
mended Opt procedure in Section 3 with the five methods, Lap, TLap, GDP, TGDP and MR
reviewed in Section 2; the latter five are commonly used algorithms in the literature. Through-
out the section, we consider three targeted privacy regimes of ε = 0.25, 0.5, 0.75. L1 loss is used
to compare the performance of different procedures. We also numerically validate the inference
procedures given in Section 4.
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5.1 Utility

Here, sample size n = 500 and observed counts of i = 5, 200, 450 are considered. 5000 Monte
Carlo samples are generated for each setting and L1 losses are evaluated. For the MR mechanism,
α = β = 1999.5, 999.5, 666.2 are required to achieve ε = 0.25, 0.5, 0.75 respectively. For the
GDP/TGDP, since the ε-DP does not exist, we relax it to (ε, δ)-DP instead. It is a common
practice to take δ � 1/n and we set δ = 1/500 = 0.002 in this case. The distributions of the
losses across different settings are summarized and compared using box-plots in Figure 1. From
Figure 1, we note that the Opt mechanism improves utilities significantly in comparison to the
traditional data synthesis MR mechanism. We also observe that the MR method’s utility varies
with the observed values of i (5, 200, 450). The closer the observed i-value is to n/2 = 250,
the better the MR method’s utility. Regardless of the values of i, MR mechanism’s performance
is much worse than the other procedures. GDP/TGDP, on the other hand, though requiring
further relaxation on privacy regime with an additional δ of 0.002, its utility is still worse than
that of the Lap/TLap and the Opt across all scenarios. The truncated mechanisms have similar
performances as their counterparts, though they tend to give results with lower variations as
indicated by slightly smaller box sizes.

Overall, the Opt mechanism appears to achieve comparable utilities to the Lap/TLap mech-
anisms. To examine closely, we present the Monte Carlo means and variances of the L1 losses in
Table 1. Compared to the Lap/TLap mechanisms, we observe that the Opt mechanism achieves
smaller Monte Carlo means and similar variances of the L1 losses under the same privacy con-
straints. The major improvement of Opt is achieved under the most restrictive privacy regime,
ε = .25 and for the observed i = 5, most distant from the center n/2 and therefore more prone to
privacy risks. Moreover, we also point out that the truncated mechanisms, including the TLap
and the TGDP, are expected to perform no worse than their non-truncated counterparts because
converting negative cells to zero will produce private data closer to their true underlying values
which are always non-negative. Indeed, when the true value is close to zero at i = 5 and when
the privacy regime is high at ε = 0.25 (so the injected noises are large and more negative cells
would be converted to zero), we observe significant improvements on the mean and variance
of L1 losses for the truncated versions over their non-truncated counterparts. While when the
underlying value is large and privacy regime is small, the improvement is not so obvious. Some
counter-intuitive observations are due to Monte Carlo errors. In the last part of Table 1 under
‘Negative Proportion’, we report the proportion of Monte Carlo samples with at least one neg-
ative count. In reality, a negative cell count will not be observed. Releasing a private table with
a negative cell count will likely reduce the users’ confidence in the quality of the released tables.
We notice that when ε = 0.25, the proportion of negative counts yielded from the Lap and GDP
versions of private tables are 12.3% and 36.8% respectively. In contrast, the Opt mechanism
ensures that no negative count will be generated. This characteristic demonstrates the benefits
of releasing Opt versions of private frequency tables as compared to the traditional Lap or GDP
mechanism without any post-processing procedures.

5.2 Goodness-of-fit Test

In this sub-section, we seek to numerically validate the inference procedures in Section 4. Consid-
ering the frequency data D ∼ Multinomial(n, P1 = 0.1, P2 = 0.1, P3 = 0.8), we are interested in
testing H0 : P1 = 0.1, P2 = 0.1, P3 = 0.8. We consider different sample sizes n = 100, 1000, under
three privacy targets ε = 0.25, 0.5, 0.75. Setting the significance level to be 0.05, we evaluate
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Figure 1: Utility comparison (L1 loss) amongst the Opt, Lap, TLap (truncated Laplace), GDP,
TGDP (truncated GDP) and MR mechanisms across different privacy regimes ε = 0.25, 0.5, 0.75
and observed data counts i = 5, 200, 450.

500 empirical test statistics. First, we examine the use of the traditional Chi-square distribution
with K − 1 degrees of freedom as if the data is not perturbed. We check whether the empirical
type I errors could be controlled using this naive asymptotic null distribution for the private
data sets produced by the five mechanisms, Opt, Lap, TLap, GDP and TGDP. The resulting
average empirical type I errors are provided under the “Naive Method” scenario in Table 2.
Except for the setups when the sample size is large at n = 1000 and the privacy control is not
strict with ε > 0.5, the average empirical type I error rates are way above the targeted value of
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Table 1: Mean, variance of the L1 losses and proportion of negative counts out of 5000
Monte Carlo samples for different privacy regimes, ε = 0.25, 0.5, 0.75, and observed counts,
i = 5, 200, 450.

ε = 0.25 ε = 0.5 ε = 0.75

i=5 i=200 i=450 i=5 i=200 i=450 i=5 i=200 i=450
Mean

Opt 2.94 3.98 3.93 1.79 1.90 1.88 1.23 1.20 1.24
Lap 3.97 4.04 4.08 2.03 1.96 1.96 1.31 1.27 1.33
TLap 3.44 3.99 4.15 1.84 2.04 1.94 1.31 1.31 1.34
GDP 11.08 11.04 10.98 5.41 5.61 5.76 3.75 3.42 3.63
TGDP 7.82 11.19 10.40 4.47 5.64 5.67 3.49 3.74 3.67
MR 217.55 44.20 177.89 195.79 39.80 160.05 178.20 36.45 145.29

Variance
Opt 10.03 15.53 15.60 3.06 4.11 3.94 1.84 1.86 1.96
Lap 16.68 16.67 16.60 4.58 3.97 4.17 1.96 1.83 1.95
TLap 9.69 17.29 17.26 2.98 4.04 4.35 1.66 1.80 1.87
GDP 68.61 71.93 69.33 15.87 18.90 17.84 8.40 7.73 7.56
TGDP 52.56 72.54 63.63 9.41 16.87 18.64 6.03 7.38 7.33
MR 121.85 126.44 125.23 118.62 129.83 123.29 115.95 122.04 118.34

Negative Proportion
Opt 0.000 0.000 0.000
Lap 0.123 0.037 0.009
TLap 0.000 0.000 0.000
GDP 0.368 0.210 0.104
TGDP 0.000 0.000 0.000
MR 0.000 0.000 0.000

0.05 for all the mechanisms. That is, the use of the naive χ2
K−1 null distribution cannot control

the type I error in such cases. The situation is worse when the GDP or TGDP mechanisms are
used. When sample sizes are small at n = 100 or when the privacy regime is strict with ε = 0.25,
the naive method performs poorly and valid inference is impossible.

Next, we test the results in Theorems 1 and 2 under the same simulation settings as above.
The goal is to check whether the new test statistics and null distributions derived can control the
type I error rate well so that valid hypothesis testing can be implemented. Under the “Proposed
Method” scenario of Table 2, we report the mean empirical type I errors obtained from the 500
simulated samples. In contrast to the “Naive Method” scenario, the empirical type I errors are
controlled fairly well at around 5%. We point out that truncation tends to reduce the type I
error rate, especially when sample size is small and privacy regime is high.

To compare the statistical powers, we consider the alternative hypotheses H1 : P1 = p1, P2 =
p1, P3 = 1 − 2p1, where we explore the cases with p1 = 0.1, 0.11, 0.12, . . . , 0.25 for n = 100 and
p1 = 0.1000, 0.1025, 0.1050, . . . , 0.1350 for n = 1000. The results are summarized in Figure 2. In
Figure 2, as the H1 hypothesized values depart further from that in the H0, all mechanisms have
the powers rising to 1. The Lap/TLap mechanisms and the Opt procedures have significantly
higher power than the GDP/TGDP mechanisms, especially when the sample size and the ε is
small (n = 100 or ε = 0.25). The Lap/TLap and the Opt procedures perform similarly with the
Opt outperforming Lap/TLap slightly when the sample size is small. As n and ε get larger, the
differences in power amongst the mechanisms diminish. This is reasonable because the random
noise injected is inversely proportional to ε and is scaled by

√
n in the test statistic. So, when the

sample size increases, the noises become increasingly more negligible. That makes the statistical
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Table 2: Mean empirical type I errors out of 500 simulated samples under two study scenarios
across different sample sizes n = 100, 1000 and different privacy regimes ε = 0.25, 0.5, 0.75.
The two scenarios are “Naive Method”: Chi-square tests for original data, “Proposed Method”:
procedure proposed in Section 4.

n = 100 n = 1000

ε = 0.25 ε = 0.5 ε = 0.75 ε = 0.25 ε = 0.5 ε = 0.75

Naive Method
Opt 0.392 0.180 0.108 0.102 0.063 0.054
Lap 0.449 0.188 0.112 0.102 0.064 0.056

TLap 0.448 0.187 0.113 0.101 0.062 0.055
GDP 0.865 0.549 0.327 0.401 0.141 0.088

TGDP 0.865 0.549 0.327 0.401 0.141 0.088

Proposed Method
Opt 0.037 0.047 0.054 0.052 0.050 0.052
Lap 0.066 0.058 0.055 0.055 0.051 0.051

TLap 0.034 0.053 0.055 0.055 0.051 0.051
GDP 0.052 0.051 0.051 0.051 0.052 0.051

TGDP 0.023 0.028 0.038 0.051 0.052 0.051

powers for the mechanisms converge to the same performance level when the sample size becomes
large. We also note that post-processing of truncating at zero does not have much impact on
the statistical power.

Furthermore, we compare the power performance of the non-debiased and the de-biased test
statistics for the Opt under the same setting as above. The results are summarized in Figure 3.
We observe that the bias correction step can help improve statistical power slightly when ε

and sample size are small. On the other hand, the simpler version without the bias-correction
component is as competitive in all settings.

Moreover, we also conduct simulation studies to validate the results given in Theorems 3
and 4 for inter- and intra-table merging. Simulation results show that empirical type I errors
can be controlled well using the approximate null distribution developed, suggesting Theorems 3
and 4 provide valid inference procedures. Our simulation results also show that the recommended
Opt mechanism perform the best in terms of the empirical powers. Due to space limit, we include
these additional simulation results in the supplementary materials.

6 Analysis of Children’s Early Development and Learning Data
In this section, we consider an application to the data from the NCEDL’s multi-state study
(M. Clifford et al., 2017). The data set consists of 2982 records of 308 variables collected from
pre-kindergarten children in 11 states of the United States of America. We focus on one-way
frequency tables and select two categorical variables household type and family income to inves-
tigate the differences between the three east coast states, Massachusetts, New York and New
Jersey, and the other states. We start with the variable, household type. This is a variable with
five categories describing different household types: (I) single mom or dad, (II) mom and dad
both in home, (III) w/o dad, (IV) multiple adults, but parents/step-parents not both in home,
and (V) single adult, not mom or dad. After removing the instances with missing outcomes and
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Figure 2: Empirical power comparison for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP.

Table 3: One-way frequency table of the variable, household type, in Massachusetts, New York,
New Jersey and the other 8 states (denoted as Others) in the NCEDL study.

(I) (II) (III) (IV) (V) n

Massachusetts 85 237 9 36 5 372
New York 48 83 4 24 3 162
New Jersey 66 174 18 51 4 313

Others 403 1241 143 251 21 2059

collapsing into frequency tables, the values, including those from the three east coast states and
the remaining eight states, are summarized in Table 3.

State by state for the three east coast states, we apply the three mechanisms considered in
Section 5 with ε = 0.25, 0.5, 0.75, and δ = 1/n (only for GDP and TGDP) to these frequency ta-
bles. In particular, the Opt mechanism used here optimizes against L1 losses and is implemented
according to Algorithm 1. For each case, 500 private samples are simulated. Using the New York
state as an example, we report the summarized utilities for the five DP-mechanisms. In Table 4,
we present the mean values of the private entries under each of the five categories, the average
entry-wise Monte Carlo standard errors (Ave. SD), the average entry-wise L1 loss (Mean L1

loss), and the proportions of private datasets generated with at least one negative entry out of
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Figure 3: Empirical power comparisons for the Opt procedures with and without bias-correction.

500 simulated samples (‘< 0’ Proportion). We note that the Opt procedure will always produce
private data with the smallest mean L1 losses as compared to the other methods, in line with
the theoretical results in Proposition 1. The results also suggest that the improvement in the
utility is a result of the reduced uncertainty as illustrated by the smallest average Monte Carlo
SD’s achieved by the Opt mechanism. Furthermore, we observe that categories (III) and (V)
have close to 0 entries; thus their corresponding private versions for Lap and GDP procedures
might be negative, especially in high privacy regimes where noise injected is large. Indeed, when
ε = 0.25, the proportion of private frequency tables produced by the Lap and GDP mecha-
nisms with negative entries are quite high. In reality, releasing such frequency tables could cause
confusion and doubts amongst users about the usefulness of the data sets.

For the variable household type and using the entries from the other eight states, we ob-
tain the proportions under the five categories, p0 = (p01, . . . , p05)

T , where p01 = 0.196, p02 =
0.603, p03 = 0.069, p04 = 0.122, p05 = 0.010 and use them as the null-hypothesized values. Let
PMA,
, PNY,
, and PNJ,
, 
 = 1, 2, . . . , 5, denote the population proportions of the five household
type categories for the states of Massachusetts, New York and New Jersey respectively. Here, we
are interested in testing whether the distribution(s) of the variable household type for the three
east coast states equal the null hypothesized value p0. Specifically, we have the null hypothesis
H0 : PMA,
 = p0
, PNY,
 = p0
, PNJ,
 = p0
, for 
 = 1, . . . , 5. The goodness-of-fit testing proce-
dures proposed in Section 4 are directly applicable here for individual state and for the complex
H0 for all three states as stated above. We apply the test statistics constructed using results from
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Table 4: Properties of private one-way frequency tables of the variable household type in New
York state. The summary statistics reported are: mean values of the private entries under each
of the five categories (I) to (V), average Monte Carlo standard deviations of all the private data
entries (Ave. SD), mean L1 loss with respect to true values in Table 3 (Ave. L1 loss) and the
proportion of 500 private tables with at least one negative entry (‘< 0’ Proportion).

(I) (II) (III) (IV) (V) Ave. SD Ave. L1 loss ‘< 0’ Proportion

ε = 0.25

OPT 48.00 82.70 5.37 24.12 4.89 4.87 3.44 0.00
Lap 47.59 82.99 3.76 23.88 3.07 5.74 4.01 0.35

TLap 47.87 83.10 4.76 24.13 3.96 5.23 3.70 0.00
GDP 48.29 82.45 3.96 23.64 3.12 12.87 10.26 0.63

TGDP 48.29 82.45 7.16 23.84 6.79 11.20 8.84 0.00

ε = 0.5

OPT 47.79 82.92 4.25 23.77 3.32 2.59 1.79 0.00
Lap 47.79 82.98 3.87 23.95 3.01 2.88 1.99 0.12

TLap 47.79 82.98 4.04 23.95 3.21 2.72 1.92 0.00
GDP 48.14 82.69 4.01 23.84 3.05 6.45 5.12 0.45

TGDP 48.14 82.69 4.95 23.84 4.35 5.86 4.67 0.00

ε = 0.75

OPT 48.02 83.04 3.94 23.91 2.98 1.80 1.20 0.00
Lap 47.88 83.01 3.92 23.96 3.00 1.93 1.31 0.06

TLap 47.88 83.01 3.97 23.96 3.08 1.86 1.28 0.00
GDP 48.10 82.82 3.99 23.87 3.05 4.30 3.42 0.31

TGDP 48.10 82.82 4.33 23.87 3.63 4.03 3.23 0.00

Theorems 1 and 2. For the Opt mechanism, bias correction using Algorithm 2 is applied. For
all the private mechanisms tested, we add the three test statistics constructed using the private
data for each of the east coast states. From Theorems 1 and 2, we know that asymptotically
this combined test statistic is equivalent to the sum of 15 weighted Chi-square random variables
with one degree of freedom, where the weights can be evaluated according to our results. To
verify the effectiveness of our proposed procedure under this finite-sample setting, we conduct
a parallel simulation study. First, we generate new data sets assuming that the data generating
process is as in the H0 and the sample sizes are the same as those of the three east coast states.
To explore the statistical powers, we simulate data sets according to the alternative hypotheses
H1: PNJ,2 = 0.603, 0.603+0.005, . . . , 0.603+0.05, PMA,1 = 0.196, 0.196−0.005, . . . , 0.196−0.05,
and all the other terms in the H1 are kept to be the same as in the H0. We set the level of
significance to be 0.05. The empirical type I errors and powers are summarized in Table 5 and
in Figure 4 respectively. We observe that the empirical type I errors are well controlled across
all three mechanisms and for all privacy regimes. The Opt mechanism attains the highest power
compared to the other methods, especially when the level of privacy-protection is high.

Next we compare the p-values obtained using the true data and using the private data. In
the simulation, p-values are evaluated on each of the 500 simulated private data tables and the
average is reported in Table 6. Using the true data, we obtain a p-value of 0.0006, suggesting
that the distributions of the variable household type differ between the three east coast states
and the other eight states considered in the NCEDL study. However, in Table 6, we observe
that all the p-values yielded from the private data are inflated to some extent, due to the
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Table 5: Mean empirical type I errors of the goodness-of-fit test using the private data sets
generated when H0 is true. The reported values are calculated using 500 simulated samples
generated according to the NCEDL’s settings. Two variables considered are household type and
income level.

ε = 0.25 ε = 0.5 ε = 0.75

Household type

Opt 0.055 0.052 0.053
Lap 0.062 0.055 0.054

TLap 0.058 0.055 0.054
GDP 0.050 0.051 0.053

TGDP 0.033 0.050 0.053

Income level

Opt 0.052 0.051 0.050
Lap 0.052 0.050 0.052

TLap 0.051 0.050 0.052
GDP 0.051 0.051 0.052

TGDP 0.044 0.050 0.051

Table 6: Average p-values of the goodness-of-fit tests using the private data sets in the NCEDL
studies. The reported values are calculated using 500 simulated samples. Two variables consid-
ered are household type and income level.

ε = 0.25 ε = 0.5 ε = 0.75

Household type

Opt 0.372 0.042 0.006
Lap 0.326 0.068 0.006

TLap 0.394 0.054 0.010
GDP 0.450 0.297 0.157

TGDP 0.673 0.422 0.189

Income level

Opt 0.000 0.000 0.000
Lap 0.000 0.000 0.000

TLap 0.000 0.000 0.000
GDP 0.038 0.000 0.000

TGDP 0.022 0.000 0.000

information loss as a result of the random noises injected. When the privacy requirement is high
at ε = 0.25, none of the methods correctly rejects the potentially wrong H0. When ε = 0.5 and if
the level of significance is set to be 0.05, only the private data yielded from the Opt mechanism
can correctly reject H0. When the privacy regime is set at ε = 0.75, the Lap, TLap and Opt
procedures produce satisfactory p-values with the Lap and Opt mechanisms yielding a slightly
lower average p-value than TLap. All the p-values yielded from private data generated from
GDP or TGDP mechanisms do not give correct inference results. The numerical results here
suggest that the chances of the testing signals being undetermined increase with the levels of
privacy requirements (decrease with ε). The Opt mechanism tend to give the smaller deviations
from the truth, thus is more preferred to conduct private inferences.
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Figure 4: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP on household type data.

Hereafter, we consider another categorical variable family income which has 18 categories
describing the income levels of the population. The categories are (1) � $5, 000, (2) $5,001 -
$10,000, (3) $10,001 - $15,000,. . . , (18) � $85, 001. There are 354, 155 and 286 observations
for the three east coast states, Massachusetts, New York and New Jersey, respectively. It is a
common operation to reduce the total number of categories in a variable when the number of
categories is large. The results reported in Theorem 4 provide theoretical support for reducing
the number of categories via combining multiple cells into one. Here, for each state, the data is
collapsed into frequency tables with three categories: low income (� $20, 000), middle income
($20, 001 − $50, 000) and high income (� $50, 001), and denote them as DMA, DNY and DNJ

respectively. The three family income categories are constructed by respectively merging 4, 6,
and 8 out of the original 18 categories into three based on the corresponding income levels.

Goodness-of-fit tests are conducted to check whether the distributions of the variable fam-
ily income for the three east coast states differ from the targeted distribution built from the
other states. Following a similar operation as earlier for the variable household type, for the 18
categories from the eight other states, the corresponding proportions are p0 = (p0,1, . . . , p0,18)

T ,
with the value of p0 = (0.099, 0.101, 0.119, 0.118, 0.106, 0.103, 0.074, 0.043, 0.036, 0.031, 0.020,
0.026, 0.022, 0.013, 0.012, 0.014, 0.013, 0.050)T . The act of combining categories leads to the null-
hypothesized value of pc

0 = (0.437, 0.393, 0.170)T and the composite H0 : PMA,
 = pc
0,
, PNY,
 =

pc
0,
, PNJ,
 = pc

0,
, for 
 = 1, 2, 3. For the power evaluation, we construct the alternatives from
the original 18 categories. Specifically, we set p1,6 = p0,6 − k�, and p1,4 = p0,4 + k�, where
� = 0.0025 and k = 0, 1, . . . , 14, while keeping the rest of the H1 the same as the H0. Note that
p0,4 has the largest value amongst the 15 cell probabilities. The significance level is set to be
0.05. The empirical type I errors under the H0 and the statistical powers are shown in Table 5
and Figure 5, respectively. We observe that the empirical type I errors are well controlled across
all different mechanisms and for all privacy regimes. The Opt mechanism attains comparable
power to the Lap/TLap method, but much larger than those from the GDP/TGDP mechanisms.

Furthermore, we compare the p-values obtained from the true observations and from the
private data sets. A p-value of zero is obtained using the true data, suggesting that the distri-
bution for the variable income level of the east coast states differs from that of the other eight
states in the NCEDL study. For the private data, p-values are evaluated on each of the 500
Monte Carlo samples and the averages are reported in Table 6. In this case, the signal of true



Inference for Optimal Differential Privacy Procedures 273

Figure 5: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP on the intra-table merged income level data.

H1 is strong enough to be detected for all the mechanisms using a level of significance of 0.05,
and the Opt approach attains one of the smallest p-values amongst the five mechanisms.

7 Conclusion
In this paper, we recommend an optimal mechanism satisfying ε-DP, specifically applicable to
one-way frequency tables, in the sense that the expected losses are minimized under a given pri-
vacy constraint, where the losses are flexible. Furthermore, we develop valid inference procedures
for goodness-of-fit tests for the private data, not only for the optimal mechanism, but also for the
Laplace mechanism and the Gaussian mechanism (with/without post-processing of converting
negative cells to zero). In fact, the inference procedures developed work for general mechanisms
with additive noises. Everyday operations, including merging multiple frequency tables and com-
bining categories within a table, are also considered. The valid inference procedures applicable to
the private frequency tables are derived. However, ε-DP procedures can be too noisy in practice
and it might be desirable to extend the current results to the (ε, δ)-DP framework. Currently,
the developments of the (ε, δ)-DP mainly focus on the Gaussian mechanism, under which the
numerical properties are vastly inferior to other mechanisms. The investigation and develop-
ments of alternative (ε, δ)-DP mechanisms with satisfactory inference characteristics are left as
future work to explore.

Supplementary Material
Supplementary Material available online includes proofs of theoretical results and additional
simulation study results on inter- and intra-table merging.
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