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The supplementary materials include additional simulation results validating the inter- and
intra-table inference procedures in Section 1 and the proofs for the theoretical results developed
in the main article in Section 2.

1. Additional Simulation Results

This section includes additional simulation results for validating inference procedures developed
in Theorem 3 for inter-table merging and Theorem 4 for intra-table merging.

1.1 Inter-Table Merging

We seek to numerically examine the results given in Theorem 3. We consider the same setting as
in the main article, Hy : P; = 0.1, P, = 0.1, 3 = 0.8, and D; ~ Multinomial(n;, P; = 0.1, P, =
0.1, P3 = 0.8) for j = 1,2 and n1/ng = 3/7. Consider merging two tables D and D3, with
total counts n; and ny respectively. Let the merged private table D* = D} + D3 and consider
sample sizes: n = ny + ngy = 100, 1000. Setting the significance level to be 0.05, we evaluate 500
empirical test statistics. For private data obtained by five DP methods, Opt, Lap, TLap, GDP
and TGDP, we check whether the empirical type I errors can be controlled as indicated by the
results in Theorem 3. The reported average empirical type I error rates under the “Inter-Table
Merging” scenario in Table 1 are controlled fairly well at around 5% for all the mechanisms. We
note that even for small sample sizes of n; = 30 and ne = 70 and a high privacy requirement of
€ = 0.25, the type I errors can be well controlled.

n = 100 { n = 1000
€e=025 €=05 e€=07|€e=025 e€=05 €=0.75
Opt 0.040 0.036 0.054 0.050 0.050 0.052
Inter-Table Merging Lap 0.056 0.042 0.050 0.060 0.044 0.050
TLap 0.024 0.026 0.030 0.060 0.044 0.050
GDP 0.042 0.052 0.054 0.034 0.040 0.042
TGDP 0.020 0.018 0.024 0.034 0.040 0.038

Opt 0.031 0.050 0.052 0.051 0.051 0.053
Intra-Table Merging Lap 0.058 0.052 0.051 0.052 0.050 0.053
TLap 0.037 0.049 0.050 0.052 0.050 0.053
GDP 0.051 0.051 0.052 0.050 0.050 0.051
TGDP 0.026 0.037 0.047 0.050 0.050 0.051

Table 1: Mean empirical type I errors out of 500 simulated samples under two study scenarios
across different sample sizes n = 100, 1000 and different privacy regimes € = 0.25,0.5,0.75. The
two scenarios are “Inter-Table Merging”: the inference methods proposed for the merging circum-
stances considered in Section 4.1 of the main article and “Intra-Table Merging”: the inference
methods proposed for the merging circumstances considered in Section 4.2 of the main article.

*Corresponding author. Email: gongjun@umich.edu
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Similarly, empirical powers are evaluated and compared. The results are summarized in
Figure 1 below. Overall, the testing procedures proposed in Section 4.1 of the main article for
the Opt and Lap methods yield good statistical power when we merge the tables. Furthermore,
we note that when sample sizes and € are small (n; + ny = 100, € = 0.25), the Opt procedure
yields visibly better power than the field standard Lap/TLap mechanisms. In practice, data sets
with smaller sample sizes are prevalent and, more importantly, they are more prone to privacy
risks and the possibility of being merged is high, and as such might require a smaller and stricter
€. The Opt procedure stands out in these settings.
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Figure 1: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP, on the inter-table merged private data sets.

1.2 Intra-Table Merging

Next, we examine the numerical performance of the procedures presented in Section 4.2 of the
main article. Assuming D ~ Multinomial(n, P, = 0.1, P, = 0.1, P; = 0.8), we merge the first
two cells of D* and consider the corresponding goodness-of-fit test of Hy : Py1 = 0.2, Ppre = 0.8.
Setting the significance level to be 0.05 and using 500 each per generated data sets with n = 100
and n = 1000, we check whether the empirical type I errors can be controlled for the proposed
procedures applying to the corresponding D*. From the results reported in Table 1 “Intra-Table
Merging” scenario, we see that the empirical type I errors are controlled fairly well at around 5%
for all settings.

Empirical powers are also evaluated by considering alternative hypotheses Hy : Pp1 = pm1 =
P14+ P2, Pno = 1 — pm1. We explore the cases with p; = po = 0.1,0.11, ...,0.25 for n = 100 and
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p1 = p2 = 0.1,0.1025,,...,0.135 for n = 1000. The results are summarized in Figure 2. We
observe small improvements from the Opt procedure over the Lap/TLap procedure when the
sample sizes are small at n = 100 and the privacy requirement is high at ¢ = 0.25; and the
statistical powers on private data generated from the Opt and Lap/TLap are superior to those

from the GDP/TGDP.
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Figure 2: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP, on the intra-table merged private data sets.

2. Proofs of the Main Results

We first give four supporting lemmas that will be used in the proofs of the theorems.

Lemma 1. For any e, > 0, if & =r — i for r = 0,...,n with probability mass g;» as defined in
Section 3 of the main article. Then for any i =0,1,...,n, and for any a > 0,

P(|é¢/\/ﬁ| > a) = O(e_‘“”‘/ﬁ> as m — oo.

Proof. Note that in fact é; has a discretized Lap(0,1/e€,) distribution truncated at 0 and n.
We start with the non-truncated but discretized Laplace distribution. Let Y ~ discretized
Lap(0,1/ey) with

P(Y =k)=eF/Cc  k=.,-2-1,01,2..

where C' = ) e~enlml = <1 +2e /(1 — 6_6")>. Now consider the truncated version, é;,

where the truncated tail probabilities are simply added to the corresponding boundaries. For
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a) = P(|&i| > av/n) < P(|Y| > av/n) = o(e*aen\/ﬁ) as n— oo.
]

Lemma 2 below characterizes the L, distance between the remapped index and the input
index under the optimal remap y introduced in Section 3 of the main article.

Lemma 2. Let P(i | 1) = a'i_’”/‘/(zzzo a‘il_”) for i taking values in {0,1,...,n} with 0 <
a < 1 and for some fixred v’ € {0,1,...,n}. Let r* be defined as

r*:mkm{ N Zall W'/ Z;) Z77J|)21/2}. (1)

Then,

" =1 = O max {~log(1 +1/2a7")/og(a), log(1/2)/log(a)} )  as n - oo

Proof. Note that

n n—r’ r’
R~ -/ -/
E:ah T\ZE:al_’_E:az_l
=0 =0 i'=0

1— an—r’—l—l 1— O['r'—&—l
- 1
11—« + 1—«
1+a— an—’r’—i—l _ ar’—i—l
N 11—« '

. * T, .
Consider S°7_, al"=""l. We can have either r* <’ or r* > 7/. When r* < 7/, we have

—r*—1
DR S o
i=0
A
l-a  l-a

r/—r* ar’+1

l—«

Then by (1), we have for some 0 < ¢ < 1/2, such that
/ 1
= S (S -
7‘* . .
Za\z—r | — (0.5 + C)(Za\z —r |)

=0 /=0
/ *

o T — @ = (054 ¢)(1+a— T oY),
v —r| = ’ log {(0.5 +o)(14+a—a™ " — g 4 ofurl}/loga’. (2)
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Now we discuss the order of (2). As n — oo,

O log{0.5(1 + a)}/log(a)) if " =w(l) and " =o(n)
2) = { O(10g{0.5(1 +a —a”*+1) + of’+1}/1og(a)) it ' =0(1)
O( log{0.5(1 + o — a® "' *1)}/ log(a)) if ' =0(n).
- O(log(0.5) /log(a)).
Note that ¢ — 0 as n — oo. Now we consider r* > 7/,
Za‘i_M = Zai + Z ol — 1.
i=0 =0 i=0
1—a”tt 1 -
- 1
l1-a + l-«a
B 1+a— ar’—‘rl _ ar*—r’—i—l
N 11—«
Also from (1), we have
Z ali=r —= (0.5 + C)(Z a\i’,M)
=0 i=0

l+a—a" o™ = (054 )1 +a—a® " — o't
T = 05+ )1 +a—a" T —" T 414 a— o !
o T = (0541 +at =" —a ) +14+a —a”

=t =[log{ — 05+ )1 +a7 —a" " —a”) +1+a7 —a"}/logal.

(3)
Now we discuss the order of (3). As n — oo,
O(|1og(} + %a‘l))/log(aﬂ) if ' =w(1) and + =o(n)
(3) = O(Jlog(} + 3ot = Ja")/log(a)]) if ' =O(1)
O(|log( + 3a71 — %a”fw)/log(aﬂ) if ' =0(n).
= O( —log(1 4+ 0.5a71)/ log(a)).
Hence, |7’ — 7| = O (max {—log(1 4+ 1/2a71)/log(c), log(1/2)/log(a)}) as n — oo. O

Lemma 3. Assume X; and X7, are from the €,-DP Laplace and the truncated €,-DP Laplace

(at zero) mechanisms respectively, with the same underlying Xy ~ Bin(n,px) for pr € (0,1).
Then for any 0 < Ay < px,

P(X} # X7p) = O(e”(A’fp’“)E" + e*Z”A’“), as n — o0.
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Proof. Note that
X = Xk + erry,
X;“k = X +erry + by,
where erry, ~ Lap(0,1/e,) and by is the bias term which can be expressed as follows,

b — {0, if erry, > — X, (4)
kT —(Xy +errg), otherwise. (5)

Note that for any 0 < A, < pg, we have
P(X} # Xr1p.) =P(err, < —Xy)
X — X, —
—P(erry < — Xy | ”fnnp’f’ > Ap) .p("fnnpk’ > Ay)
| X

_ X, —
n n

+ P(errp < — Xk |

X — X, —
§2P(errk < —Xg ‘ M’ > Ak) e by + P(errk < —X; ’ M < Ak) 1
n n
(6)
— |Xk3 - npk" —2nl\g
=Plerry < =X | ————— < Ap)+Ofe
n
=P(erry < —Xg | npr — nlp < X < npy +nlg) + O(eanAk).
where (6) follows from Hoeffding’s inequality. Further note that
Perry < =Xj | npr, — nly, < Xg < npy +nly) < Plerry < n(Dy — pr))
— 1 n(Ak_pk)€n
— O(en(Ak‘_pk)fn) .
Hence, we have
O

Lemma 4. Assume X; and X7, are from the (en,8)-DP Gaussian and the truncated (ep,9)-
DP Gaussian (at zero) mechanisms respectively, with the same underlying Xy ~ Bin(n,py) for
pr € (0,1). Then for any 0 < AN < pg,

PO i) = O(eXp{ - 2Mk} " nlen eXp{ N niefln(«]{jfg;/%y }>

Proof. Note that

Xi = Xk + erry,
X;“k = Xk +erry + bk,
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where errj, ~ N(0,2In{1.25/6} /e2) and by, is the bias term which can be expressed as follows,

b — {0, if erry, > — X, (7)
b —(Xy +errg), otherwise. (8)

Note that for any Y ~ N(0,0?), we have for any t € (0,00),

2

o 2
PY >t) < e 202, 9
(V> < 7 Q
To see this, note
00 1 22
PY >t :/ e 202dx
( ) t  V2mwo?
1 > 2 T
< re 202dx since — > 1 for = € [t, 0
tV2ro? /t 13 f,00)
1 g _ a2
pry |:— g e 24721|
tV2ro? t
o __t
= e 202,
t\/2m

Further note that for any 0 < A < pg, we have
P(X; # X7p) =P(erry < —Xi)

Xy — Xy —
_Plerry < — X | | X nnpk! >Ak)-P(| K nnpk| > A

— npg| | X% — np|

X
+ P(erry, < =X | X - < Ap) - P( < Ag)

n

| X

X, — _
<2P(erri < —Xp | M| > Ay) - e Bk 4 Plerry, < — X, X0 = i | <ANg)-1
n n

| X,

—=Plerr, < —X | n”p’“’ < Ag) 4 O(e 28k)

=P(erry < —Xg | npr — nlp < X < npy +nlg) + O(eanAk).

where the ineqaulity in the third step can be obtained from Hoeffding’s inequality. By applying
(9), we have

P(erry < =X | npr — nlp < Xk < npp +nl\g) < P(errk < n(Qg —pk))

VIn{1.25/6} p{ e (pr — Ak)2}

~ Vmnen(pr — Ak) o 41n{1.25/6}

n?e2 (px — 2
- O(i eXp{ - 415?525/%5? })

Hence, we have

POG X5~ 0(cxn {-s}  Lnp(- ZlE a7
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Next we give a proposition specifying the rate of convergence of root-n-scaled random errors
injected by the optimal mechanism with L loss.

Proposition 1. For 0 < €, < oo and some fized i € {0,1,...,n}, let err; = r — i for r taking
values in {0, ...,n} with probability mass p},. as defined in Section 3 of the main article. Then for
any a > 0,

P()ern/\/ﬁ‘ > a) = O(max{l + 66"/2,2}676”(1\/5) as mn— 0.

Proof. Consider

err;

Vn

i

> a) = P(lerr;] > ay/n) = Z jos

ri|r—i|>ay/n,re{0,...,n}

= Z < Zn: gir’yr’r)

rilr—i|>ay/n,re{0,...,n} 1'=0

n
- Z Gir! ( Z yr’r)a (10)
P20 rdri>ayire{0..n)

where v, is the (r/,r) entry of the optimal remap as defined in Section 3 of the main article.
Note that from the computation of the optimal remap y, for any given r € {0, ...,n}, yp» = 1 if
r* equals the conditional median of i € {0,...,n} with probability mass P(i | '), and y,,» = 0
for all 7/ # r*. Write & = e~ “». Note that for any given v’ € {0,1,...,n},

oli="l

Siga T

By Lemma 2, we know that |[r' —r*| = O(max {—log(1+1/2a71)/log(a), log(1/2)/ log(a)}>.

P(i|r') =

Ir* — il =|r* = + 0 =i < | =+ ] =
<|r' —i| + O(max{ —log(1+ 1/204_1)/log(a),log(1/2)/log(a)}) as n — oo.
(11)
Note that there exists n’ such that for all n > n’/, [r* — /| < C, where C' = max { — log(1 +

1/2a71)/log(a),log(1/2)/log(ax) }. Also note that whenever |1/ —i| < ay/n—C, we have |r* —i| <
ay/n for n > n’. It follows that for all n > n/,

Z yr’r) =0.
ri|r—i|>ay/n,re{0,...,n}
Hence for any n > n/,
(1))=Y g <2P(Y >ayn—C) = O(e nViCm),
r’:|r'—i|>a/n—C
where Y has discretized Lap(0, 1/¢,,) distribution. Hence, it follows that

o

err;

NG

a) = O(eG”(C*a‘/ﬁ)> as m — o0. (12)
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Since o = e~ “», further note that

C:max{—log(1+1/2a_1)/log(oz), log(1/2)/log(« }—m {log 1+1/2e€n),10g(2)}.

€n

Substitute into (12), we have

> ) = e ({5  am)) o

err;

P(\F

n

76”“‘/5) as n — 0o.

O
Next, we give proofs for the theorems. We start with proving Theorem 2 first.

Proof of Theorem 2. Note that

1 n ( Xp — npg erry .
X — :1/7( ) f X* from Lap, 13
\/Tpk( k npk) o o + N if X’ from Lap (13)

1 ( n (X —npg err, bi .
X*—np)zﬂ—( )—i— + if X from TLap, 14
v/ NPk F g Pk n VIPE A/ TPk F (1)

where erry ~ Lap(0,1/€,) and by is the bias term which can be expressed as follows,

T =

b — 0, it erry, > — X, (15)
kT —(Xy +errg), otherwise. (16)
First, we seek to show that P(3, (13)% # 32, (14)%) = o(1) as n — 00, so that we can ignore

the bias term b;, in the test statistic in the remaining proofs. Note that for any 0 < A < pg, by
Lemma 3, we have

P(by #0) = o(enwk—wfn + e_Q”A"‘). (17)
Now take Ay = min{py, ..., px }/2. Further note that

Z 13) #Z 14)%) = P(U{br, # 0})

P(by, #0)

\MN

O(exp{ fnen min{p1, ...,px }} + exp{—nmin{py, ...,pK}}>.

where the last step follows directly from (17) and the fact that K < oo. Since the privacy regime
e, satisfying n™1/2¢,;1 — 0 as n — oo, it follows P(3, (13)? # Dok (14)%) = o(1) as n — ooc.
Therefore, we can ignore the bias term by in the following proofs. Note that marginally, X ~
Binomial(n, p;). By the Central Limit Theorem (CLT'), we know that (Xj —nps)/n will converge
to a Gaussian variable as n — oo since X}, can be viewed as a sum of n i.i.d. Ber(py) under Hy.

As a direct consequence of Lemma 1, when the privacy regime e, satisfying n=1/ 21— 0 as

n — 0o, the second term in (13), erry//npg 25 0 as n — oo. Therefore, overall, T}, will converge
to a Gaussian distribution as n — co. However, instead of treating erry/\/n as 0, we take its first
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and second moments into account to have better finite sample approximations while maintaining
correct asymptotic distribution. Note erry ~ Lap(0,1/€,), we have E[T;] = 0 and

1 1
Var(Ty) = n—kaaT(X};) = nTok{VGT(Xk) + Var(erry) }

=1—pp+ 2/(npkei).

Note also that correlations amongst X}, induce correlations amongst T. For some k # j, consider,

X7 X7 1
Cov(Ty, T;) = Cov( ﬁ( k —pk>, \ /£<—j —pj)> = 7COU(X;€ +erry, X; + erm)
PN bj\n n./PrP;

1
= Cov <Xk,Xj>
N\/PkDj

= —+/PkPj-

Let ¥ be the covariance matrix of T' = (11,75, ...,Tk). Consider a matrix O = [vy,...,vg] €
REXK consisting of the orthonormal eigenvectors of ¥ as columns. So we must have O = AO,
where A is a diagonal matrix with diagonal elements Ay being the eigenvalues of ¥ with respect
to vg. We require |[vg|| = 1 for all k = 1,..., K. So we must have OOT = 07O = Ig.
Consider transformed vector TV = OT = (17, ..., T} ). First note that each T}, is asymptotically
normal since it is a linear combination of normal distributions. Further, we also have Cov(T") =
Cov(OT) = A. Hence T}, are independent N(0,Ay) fork =1,..., K. So, T* = Z,l::l TR =TTT =
7T — Z,[f:l A Zy, where Zj, are i.i.d. Chi-square distribution with degree of freedom of 1.
Now for part (b) of the theorem, again we can express

1 (X* _ npk) _ E(Xk’ — npk) err,
N e’ n NG
1 . n , X — npk erry by,
X — =,/— +

NGO (Xt = np) P =) NN

where errj, ~ N(0,2In{1.25/6} /e2) and by, is the bias term which can be expressed as follows,

if X} from GDP, (18)
T}, =

if X7 from TGDP,  (19)

. 0, if err, > — X, (20)
b —(Xy +errg), otherwise. (21)
Similarly, we seek to show that P(}, (18)? # >k (19)?) = o(1) as n — 00, so that we can ignore

the bias term b in the test statistic in the remaining proofs. Note that for any 0 < A < pg, by
Lemma 4, we have

P(by #0) = o(exp{ - 2nAk} + n1€n exp{ - ”Zeil(ff;g)%y }) (22)

Again we can take Ay = min{pi, ..., px }/2. Further note that

P()_(18)2 # Y (19)%) = P(Up{by, # 0})
k k
<Y P(by #0)
k

n?e2 min{py, ..., pr })
b

161n{1.25/6}

1
= O(exp{ — nmin{py, ...,pK}} + —exp{ —
ney
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where the last step follows directly from (22) and K < oo. Again, since the privacy regime
e, satisfying n™1/2¢,;1 — 0 as n — oo, it follows P(}", (18)? # >k (19)%) = o(1) as n — oo.
Therefore, we can ignore the bias term by in the test statistic. The remaining proof is similar to
the Laplace case, except for the difference in the covariance ¥ matrix. Note that in the case of
(én, 0)-Gaussian mechanism,

Var(Ty) = nlpk (Var(Xk) + Var(errk)>

_ L(npk(l — pr) + (2log(1.25/6) — 1)/6%)
NPk

=1—pp, + {2log(1.25/8) — 1} /{npre’},

and Cov (T}, T;) = —./PkD;- Again, by considering the orthonormal eigenvectors and correspond-

ing eigenvalues A of X, we can arrive at the same conclusion that as n — oo, T* — Zle ApZ.
Therefore, the results of the theorem follow. O

Proof of Theorem 1. The proof is similar as the proof of Theorem 2 except that there is an
additional de-bias term in the test statistic and err; has probability mass pz?, in this case.
We focus on T}, first,

y 1 n (Xk - npk) LTk b(x,’;) (23)

T, = —— (X} —npr —b(z})) =/ —
F kT b)) = [ (T N

Note that by CLT, we know that (Xj — npy)/n will converge to a Gaussian variable as n — oo.
As a direct consequence of Proposition 1 and the fact that b(z}) = O(1), the second term in
(23) converges in probability to 0. Therefore, T}, converges in distribution to a normal random
variable as n — co. We just need to derive its asymptotic mean and variance to pinpoint its
distribution. Note that E[T]] — 0. Before giving an estimate for the variance, we first derive
the order of Var(erry). Let ay, = e~“». Note that 0 < «,, < 1. First consider é; = j — k for
j =0,1,...,n with probability mass g;; = ﬁgzalﬂ_kl forj=1,....,(n—1), grj = al{_m/(l + ap)
for j = 0,n, with some fixed k € {0,...,n}. Note that

n n—1 [n—kK| k
~ E[N ] Z ( . k) 1—op, Z |jfk|( . k) + On ( k) kozn
His k jzog’”] T a, J 1+ 1+ o
=0(1) asn — oc.
Consider variance of €,
n ) 1 a n—1 1 a n—1
5.) — (i, )= O li—kl(; _ )2 _ 972 _n |j—Fk] 2
Var(én) =>_gui(i =k = )" = T - Dol NG =R = 2+ - >l i
7=0 7j=1 7j=1
—k ~ ~ _
L Ko o " (n— 1)+ fros  gap*
1+, 1+a, 1+« 1+«
= as n — 0o.
O(1 24

Now denote py := E[erry]. As a direct consequence of Lemma 2, there exists a constant C; < oo
such that |fix — x| < C1 and Co < oo such that the input index 7’ and optimally remapped
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index r* satisfying |’ — r*| < C3. Then,

Var(erry) = Zp,’gj (j — k- uk)Q
=0

-1
1— a3 Cotlie ) ~
< 2ROy + Oy + j — k — [ig)?
¥ 'E oy, (C1+Ca+ fir)

7=1
aCQ“rk 5 aCQ—i-n—k: )
n Cq, + C i — k — [ 2 (C;+C i —k — [
+1+an<l+ 2+ Mk)+1+an(1+ >+ fir:)

=023 g {(C1+ Co)? +2(C1+ Co)( = b= n) + (G = b = r)? |
7=0

:047?2{(01 + C9)2 +2(Cy + Cy) (jig — i) + Var(ék)}
O(1) asn — oo, (25)

where the last step follows from (24). Now we can evaluate the variance term.

Var(T}) = LVar(X,Z) = i(Var(Xk) + Var(erry))

npg npg
=1—pr+ Var(erry)/(npg)
1
:l—pk—i—O(;) as n — oo. (26)

The last step follows directly from (25). Note also that

1 —pr +v(xy)/(npk) zl—pk+0<%) as n — 0o. (27)

We can see this from the construction of the variance estimate v(z) in Algorithm 3 in the main
article. First note that in the step 2 of Algorithm 3, v; = Var(err;) = O(1). {fiz; :i=1,...,n}
is a probability distribution such that Y77, fi,x = 1. Hence, v(z}) = Yi'; fizzvi = O(1) as
n — oo. From Equations (26) and (27), we have

‘Var(T,é) - (1-pr+ v(xZ)/(npk))‘ = O(%) as m — 00.

Lastly, since X}, are correlated, T}, are correlated. For any k # j, consider,

X7 Xz 1
COU(TIQ,T]{) = Cov(\/T( k —pk>, E(—j —pj)> = Cov (Xk +erry, X; + erm)
PN bi\n n\/PkPj
1
= Cov(Xk,Xj)
N+\/PkPj
= —+/PkPj-

Let ¥ € REXK be a matrix with diagonal entries Xy = 1 — py + v(x})/(npx) and off-diagonal
entries Xy; = —,/prp;j for k # j. Let 3 be the covariance matrix of TV = (T}, T3, ...,T}). We
have |2 — Xl = O(n™ 1Y), as n — oco. Consider a matrix O = [vy,...,v;] € REXK consisting

of the orthonormal eigenvectors of 3 as columns. So we must have O = AO, where A is a
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diagonal matrix with diagonal elements Ay being the eigenvalues of ¥ with respect to vi. We

require ||vg|| =1 for all k =1, ..., K. Following a similar argument as in the proof of Theorem 2,
we can derive that T,, — Zle A Zy, where Zj, are i.i.d. Chi-square distribution with degree
of freedom of 1. O

Proof of Theorem 3. We start with proving part (a). Consider T},

C C C *
1 . % 1 C _In ijl Xk — npy, Ej:l (errjk — b(xjk))

j (28)

Assume Hj is true, by CLT, we know that (Z]C:l Xk — npk> /n will converge to a Gaussian

distribution with mean 0 as n — oo since chzl Xji, can be viewed as a sum of n = ni+na+...4+n¢
ii.d. Ber(py) random variables. As a direct consequence of Proposition 1 and the facts that
b(x’;k), C < oo, when the privacy regime e, satisfying n_l/Qe,;l — 0 as n — oo, the second term
of (28) will converge in probability to 0 as n — oo. Therefore, overall, T,,;; will converge to a
Gaussian random variable. Denote X = chzl X and X} = Z]CZI X7 Also

c
1 1
Var(Tink) = nTJkVW(XZ) = TZ?IC(VQT(X]C) +Var() errjk;))
=1
c

1
— —~ (Var(x 1% -
npk< ar( k)+]§1 ar(err]k)>
Z;’;l Var(errjy)
npg

zl—pk—i—O(%) as n — 0o. (29)

=1—pr+

The last step follows from (25) where Var(err;,) = O(1) and the fact that C' < co. Note also
that

c
Zj:l U(-T}kk)
NPk

Equation (30) follows from the facts that v(z},) = O(1) as n — oo (for details see proof of
Theorem 1) and C' < co. From (29) and (30), we must have

1—pr+ :1—pk+0< ) as n — oo. (30)

1
n

‘Var(ka) — <1 —pr + W)‘ = O(%) as n — 0o.

Lastly, since X}, are correlated, T,,; are correlated. For some k # j, consider,

X ¢ , X, % g
Cov(Tink, Tinj) = Cov( E( bt 2 e —pk>, \/ g( RV . Pj))
j

Pk n n

C C
1
= Cov (Xk + > erry, X+ 67“7“")
1
= Cov(Xk,Xj)
n\/DkDj

= —/PkPj-
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Similarly, let ¥ € RE*K bhe a matrix with diagonal entries Yy, = 1 — py + (ZJCZI v(@y,))/ (npr)
and off-diagonal entries ¥x; = —,/pgp; for k # j. Let ¥ be the covariance matrix of Ty =
{Trn1, s T }- We have |2 — 2|00 = O(n~1), as n — oc. By a similar argument as in the proof
of Theorem 1 we can derive that T, — 215:1 A Zy, where Zj, are i.i.d. Chi-square distribution
with degree of freedom of 1 and Ay are the eigenvalues of ¥ corresponding to a set of orthonormal

eigenvectors of ¥. Hence, we have the result of part (a) follows.
For part (b), note that

o c
\/W(ZJ1 jk pk) I i Jk), if X3, from Lap, (31)
Dk n

npg
mk — C C
1 Xjk—n 1 (errji +b;
[ (23_1 i pk) + 21 (errie + bie) , if X7, from TLap, (32)
Pk n NPk
where errj;, ~ Lap(0,1/€,) and b, is the bias term which can be expressed as follows,
b 0, if errjr > — X, (33)
i —(Xjk +errji), otherwise. (34)

It can be shown that P(}_, (31)% # Dk (32)?) = o(1) as n — co. To see this, note for any
0 < Aji < pk, by Lemma 3, it follows

Plbje #0) = O(n@nmmlen 4 =205 ), (35)
Take Aji, = min{p1,...,px }/2 for all j = 1,...,C. Further note that as n — oo,

P> (312 £ > (32)%) = P(Up Uj {bj # 0})
k k

K C
§:§: (bjk 7 0)
=0

1 . ;
exp{ — §n€n mln{plv 7pK}} + eXp{ - nmln{pl’ 7pK}}>

where the last step follows directly from (35) and the fact that K,C < co. Since the privacy
regime €, satisfies n =2, — 0 as n — oo, it follows P(Y, (31)% # 32, (32)%) = o(1) as n — oo.
Therefore, we can ignore all the bias terms bj;, and work only with (31) in the following proofs.
The remaining proofs for part (b) are similar as in part (a), except for the difference in . In the
case of e,-Laplace mechanism in part (b), Cov(Tjk, Trnj) remains the same for j # k but

Var(Toi) = —Var(Xk)
NPk
1 C
= (Var Xi) + Var Zerr]k )
npy, =

= (Var Xi) + ZVCLT err]k))

npy, o
= L(npk:(l —p) +2C/€)
npg "

1 — py + 2C/(E2npy).
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Now for part (c), again we can express

C C
- X —n _q lerr;
\/W(Zj_l ik Pk) 2 ( ]k)_ if X%, from GDP, (36)
Pk
P

n npg
mk — C
X —n errjk + b;
n(zg1 jk p’f) Lo (ermji Jk), if X7 from TGDP, (37)
Pk n 1Pk ’

where errj, ~ N(0,2In{1.25/6} /¢2) and bjj, is the bias term remains the same as before,
b — 0, if errjp > —Xji, (38)
ik —(Xjk +errji), otherwise. (39)

Similarly, it can be shown that P(37, (36)* # 32, (37)%) = o(1) as n — oc. To see this, note for
any 0 < Aji < pg, by Lemma 4, we have

Ploy#0) = 0(exp { ~ 2y} + e { - DAY gy

Again, take Aji = min{py,...,px }/2 for all j = 1,...,C. Further note that as n — oo,

P> (36)* £ > (37)%) = P(Ur U {bji # 0})
k k

K C

<33 Plby £0)

k=1 j=1

1 2.2
= O(exp{ — nmin{py, ...,pK}} + 7exp{ -
ney

n?e2 min{py, ..., prc } })
161n{1.25/6}

where the last step follows directly from (40) and the fact that K,C < oco. Since the privacy
regime e, satisfying n=/2e;1 — 0 as n — oo, it follows P(Y, (36)% # 3, (37)%) = o(1) as
n — o0o. Therefore, we can ignore all the bias terms bj;, and work only with (36). The remaining
proofs for part (c) are similar to that in part (a), except for the difference in . In the case of
(€n, 6)-Gaussian Mechanism in part (c), Cov(Tyuk, Trnj) remains the same for j # k but

Var(Thk) = —Var(Xk)
npk
1 C
= (Var Xi) + Var Zerr]k )
npy, =

= — (Var Xi) + ZV(LT err]k))

= ——(npu(1 = i) + (2CTog(1.25/6) ~ 1)/3)
=1—pp + C(2log(1.25/8) — 1)/ (npre2).

We have both parts (b) and (c) of the theorem follow. O
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Proof of Theorem 4. We start with part (a). Consider T,

(31 ottt = (B o) B

Tml -

W
(41)

Assume Hj is true, by CLT, we know that (Z]kvi 1 Xk — npl) /n is Gaussian asymptotically

with mean 0 as n — oo. Following from Proposition 1 and the facts that M, b(z}) < oo,
when the privacy regime e, satisfying n=/2¢-1 — 0 as n — oo, the second term of (41) will
converge in probability to 0 as n — oco. Therefore, overall, T,,; will converge to a Gaussian
distribution. Following a similar argument as the proof of Theorem 2, we know that T}, for
k= 2,..., K will also converge to Gaussian random variables with mean 0 asymptotically. Denote

ml = Sy Xp and X, = S0, X;}. Note

M
1
Var(Tm) = —Var m Var(Xm1) + Var( err
(Ton) = o Var(X) = - (Var(Xm) "> 0)
1
= (Var( m1) + ;Var errk)>
1
:1—p1+0<a> as n — 00. (42)
Fork=2,..,K,
1

Var(Tk) = —Var( ) = = (Va'r’(ka) + Var(errk))

:1—pk+0<ﬁ> as n — oo. (43)

Equations (42) and (43) follow directly from (25) and the fact that M < K < co. Note also
that

Z;wl (517*)

1—p1+ —1—p1+0( ) as n — oo. (44)
np1
*
1—pk+M:1—pk+O<7) as n — oo. (45)
npg n

Equations (44) and (45) follow from v(z}) = O(1) as n — oo (for more details see proofs of
Theorem 1 and the fact that M < K < co. From (42) and (44), we have

)Var(Tml) - <1 —p1+ W)’ = O<l> as n — oo.

npi n

Similarly, from Equations (43) and (45), we can derive for k =2, ..., K,

’Var(ka) — (1 —pr + véfi))‘ = O(%) as n — 0o.

Lastly, we derive covariance amongst Ty,k, Cov(Tik, Tmj) = —./Pkpj, for any k # j.
Similarly, let ¥ € RE-M+DX(K-M+1) L6 5 matrix with diagonal entries $1; = 1 — p; +
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(Z;‘/Il v(z}))/(np1) and Xy = 1 — pg +v(xy)/(npy) for k =2,..., K — M + 1, and off-diagonal
entries Ek] —/PkDj for k # j. Let > be the covariance matrix of Tyy = (Tpn1, ..., To(K—M+1))-
We have ||~ — ¥||oo = O(n~!), as n — co. Then with a similar argument as in the proof of The-
orem 2, Ty, — Zszl ApZi, where Zy, are i.i.d. Chi-square distribution with degree of freedom
of 1 and Ay are eigenvalues of ¥ corresponding to a set of orthonormal eigenvectors. Hence, the
result of part (a) follows.

For part (b) and (c), first note that using similar arguments as in the proof for Theo-
rem 2(a) and 2(b), it can be shown that the probability of test statistics obtained from the
Laplace/Gaussian mechanisms not equal to their counterparts obtained from the truncated
Laplace/Gaussian mechanisms tends to 0 exponentially fast as n goes to infinity. Therefore,
we can in fact ignore the truncation effect. The proofs for the remaining are similar to the proof
for part (a), except for the difference in 3. In the case of €,-Laplace mechanism in part (b),
Cov(Tink; Ting) = —+/Prkpj for k # j remains the same but

M
Var(Tmn1) = n—praT( Xo1) = n; (Var + Var( Z erry )
k=1
= n; (Var( m1) + ZV(ZT‘ errk)>

=1—p1+ 2M/(6nnp1).

For k =2,..., K,

1 . 1
Var(Tmk) = n—kaar(ka) = TLTDk <Var(ka) + Var(errk)> =(1—pp)+ 2/(npke,21).

In the case of (e, 0)-Gaussian Mechanism in part (c), Cov(Tyk, Tm;) = —+/PkD; for k # j
remains the same but

M:

1
Var(Tml):—Var( Xon) = (Va?” m1) + Var(

errk )
npi np1

k=1

= (Var ZV(LT (erry) )

npi1

=1 —p)+ M(210g(1.25/6) —1)/(np1€2).

For k =2,..., K,

Var(Tk) = n—kaar( ) = v~ (Var( mk)—i—Var(errk.))

— (1—p) + (210g(1.25/3) — 1) /npye?.

The results of both part (b) and (c) follow from a similar argument as in the proof of
Theorem 2. O
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