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The supplementary materials include additional simulation results validating the inter- and
intra-table inference procedures in Section 1 and the proofs for the theoretical results developed
in the main article in Section 2.

1. Additional Simulation Results

This section includes additional simulation results for validating inference procedures developed
in Theorem 3 for inter-table merging and Theorem 4 for intra-table merging.

1.1 Inter-Table Merging

We seek to numerically examine the results given in Theorem 3. We consider the same setting as
in the main article, H0 : P1 = 0.1, P2 = 0.1, P3 = 0.8, and Dj ∼ Multinomial(nj , P1 = 0.1, P2 =
0.1, P3 = 0.8) for j = 1, 2 and n1/n2 = 3/7. Consider merging two tables D∗

1 and D∗
2, with

total counts n1 and n2 respectively. Let the merged private table D∗ = D∗
1 +D∗

2 and consider
sample sizes: n = n1 + n2 = 100, 1000. Setting the significance level to be 0.05, we evaluate 500
empirical test statistics. For private data obtained by five DP methods, Opt, Lap, TLap, GDP
and TGDP, we check whether the empirical type I errors can be controlled as indicated by the
results in Theorem 3. The reported average empirical type I error rates under the “Inter-Table
Merging” scenario in Table 1 are controlled fairly well at around 5% for all the mechanisms. We
note that even for small sample sizes of n1 = 30 and n2 = 70 and a high privacy requirement of
ϵ = 0.25, the type I errors can be well controlled.

n = 100 n = 1000
ϵ = 0.25 ϵ = 0.5 ϵ = 0.75 ϵ = 0.25 ϵ = 0.5 ϵ = 0.75

Inter-Table Merging
Opt 0.040 0.036 0.054 0.050 0.050 0.052
Lap 0.056 0.042 0.050 0.060 0.044 0.050

TLap 0.024 0.026 0.030 0.060 0.044 0.050
GDP 0.042 0.052 0.054 0.034 0.040 0.042

TGDP 0.020 0.018 0.024 0.034 0.040 0.038

Intra-Table Merging
Opt 0.031 0.050 0.052 0.051 0.051 0.053
Lap 0.058 0.052 0.051 0.052 0.050 0.053

TLap 0.037 0.049 0.050 0.052 0.050 0.053
GDP 0.051 0.051 0.052 0.050 0.050 0.051

TGDP 0.026 0.037 0.047 0.050 0.050 0.051

Table 1: Mean empirical type I errors out of 500 simulated samples under two study scenarios
across different sample sizes n = 100, 1000 and different privacy regimes ϵ = 0.25, 0.5, 0.75. The
two scenarios are “Inter-Table Merging”: the inference methods proposed for the merging circum-
stances considered in Section 4.1 of the main article and “Intra-Table Merging”: the inference
methods proposed for the merging circumstances considered in Section 4.2 of the main article.
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Similarly, empirical powers are evaluated and compared. The results are summarized in
Figure 1 below. Overall, the testing procedures proposed in Section 4.1 of the main article for
the Opt and Lap methods yield good statistical power when we merge the tables. Furthermore,
we note that when sample sizes and ϵ are small (n1 + n2 = 100, ϵ = 0.25), the Opt procedure
yields visibly better power than the field standard Lap/TLap mechanisms. In practice, data sets
with smaller sample sizes are prevalent and, more importantly, they are more prone to privacy
risks and the possibility of being merged is high, and as such might require a smaller and stricter
ϵ. The Opt procedure stands out in these settings.
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Figure 1: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP, on the inter-table merged private data sets.

1.2 Intra-Table Merging

Next, we examine the numerical performance of the procedures presented in Section 4.2 of the
main article. Assuming D ∼ Multinomial(n, P1 = 0.1, P2 = 0.1, P3 = 0.8), we merge the first
two cells of D∗ and consider the corresponding goodness-of-fit test of H0 : Pm1 = 0.2, Pm2 = 0.8.
Setting the significance level to be 0.05 and using 500 each per generated data sets with n = 100
and n = 1000, we check whether the empirical type I errors can be controlled for the proposed
procedures applying to the corresponding D∗. From the results reported in Table 1 “Intra-Table
Merging” scenario, we see that the empirical type I errors are controlled fairly well at around 5%
for all settings.

Empirical powers are also evaluated by considering alternative hypotheses H1 : Pm1 = pm1 =
p1 + p2, Pm2 = 1 − pm1. We explore the cases with p1 = p2 = 0.1, 0.11, ..., 0.25 for n = 100 and
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p1 = p2 = 0.1, 0.1025, , ..., 0.135 for n = 1000. The results are summarized in Figure 2. We
observe small improvements from the Opt procedure over the Lap/TLap procedure when the
sample sizes are small at n = 100 and the privacy requirement is high at ϵ = 0.25; and the
statistical powers on private data generated from the Opt and Lap/TLap are superior to those
from the GDP/TGDP.
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Figure 2: Empirical power comparisons for five privacy procedures: Opt, Lap, TLap, GDP and
TGDP, on the intra-table merged private data sets.

2. Proofs of the Main Results

We first give four supporting lemmas that will be used in the proofs of the theorems.

Lemma 1. For any ϵn > 0, if ẽi = r − i for r = 0, ..., n with probability mass gir as defined in
Section 3 of the main article. Then for any i = 0, 1, ..., n, and for any a > 0,

P
(
|ẽi/

√
n| > a

)
= O

(
e−aϵn

√
n
)

as n → ∞.

Proof. Note that in fact ẽi has a discretized Lap(0, 1/ϵn) distribution truncated at 0 and n.
We start with the non-truncated but discretized Laplace distribution. Let Y ∼ discretized
Lap(0, 1/ϵn) with

P (Y = k) = e−ϵn|k|/C, k = ...,−2,−1, 0, 1, 2, ...

where C =
∑

m∈Z e
−ϵn|m| =

(
1 + 2e−ϵn/(1 − e−ϵn)

)
. Now consider the truncated version, ẽi,

where the truncated tail probabilities are simply added to the corresponding boundaries. For
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any i = 0, ..., n,

P
(∣∣∣ ẽi√

n

∣∣∣ > a
)
= P (|ẽi| > a

√
n) ≤ P (|Y | > a

√
n) = O

(
e−aϵn

√
n
)

as n → ∞.

Lemma 2 below characterizes the L1 distance between the remapped index and the input
index under the optimal remap y introduced in Section 3 of the main article.

Lemma 2. Let P (i | r′) = α|i−r′|/
(∑n

i′=0 α
|i′−r′|) for i taking values in {0, 1, ..., n} with 0 <

α < 1 and for some fixed r′ ∈ {0, 1, ..., n}. Let r∗ be defined as

r∗ = min
k

{
k = 0, ..., n :

k∑
i=0

α|i−r′|/
( n∑
i′=0

α|i′−r′|) ≥ 1/2
}
. (1)

Then,

|r′ − r∗| = O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
as n → ∞.

Proof. Note that

n∑
i′=0

α|i′−r′| =

n−r′∑
i′=0

αi′ +

r′∑
i′=0

αi′ − 1

=
1− αn−r′+1

1− α
+

1− αr′+1

1− α
− 1

=
1 + α− αn−r′+1 − αr′+1

1− α
.

Consider
∑r∗

i=0 α
|i−r′|. We can have either r∗ ≤ r′ or r∗ > r′. When r∗ ≤ r′, we have

r∗∑
i=0

α|i−r′| =

r′∑
i=0

αi −
r′−r∗−1∑

i=0

αi

=
1− αr′+1

1− α
− 1− αr′−r∗

1− α

=
αr′−r∗ − αr′+1

1− α

Then by (1), we have for some 0 ≤ c ≤ 1/2, such that

c =

r∗∑
i=0

α|i−r′|/
( n∑

i′=0

α|i′−r′|
)
− 1

2
,

r∗∑
i=0

α|i−r′| = (0.5 + c)
( n∑
i′=0

α|i′−r′|),
αr′−r∗ − αr′+1 = (0.5 + c)(1 + α− αn−r′+1 − αr′+1),

|r′ − r∗| =
∣∣∣ log{(0.5 + c)(1 + α− αn−r′+1 − αr′+1) + αr′+1

}
/ logα

∣∣∣. (2)
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Now we discuss the order of (2). As n → ∞,

(2) =


O
(
log{0.5(1 + α)}/ log(α)

)
if r′ = ω(1) and r′ = o(n)

O
(
log{0.5(1 + α− αr′+1) + αr′+1}/ log(α)

)
if r′ = O(1)

O
(
log{0.5(1 + α− αn−r′+1)}/ log(α)

)
if r′ = Θ(n).

= O
(
log(0.5)/ log(α)

)
.

Note that c → 0 as n → ∞. Now we consider r∗ > r′,

r∗∑
i=0

α|i−r′| =

r′∑
i=0

αi +

r∗−r′∑
i=0

αi − 1.

=
1− αr′+1

1− α
+

1− αr∗−r′+1

1− α
− 1

=
1 + α− αr′+1 − αr∗−r′+1

1− α
.

Also from (1), we have

r∗∑
i=0

α|i−r′| = (0.5 + c)
( n∑
i′=0

α|i′−r′|)
1 + α− αr′+1 − αr∗−r′+1 = (0.5 + c)(1 + α− αn−r′+1 − αr′+1)

αr∗−r′+1 = −(0.5 + c)(1 + α− αn−r′+1 − αr′+1) + 1 + α− αr′+1

αr∗−r′ = −(0.5 + c)(1 + α−1 − αn−r′ − αr′) + 1 + α−1 − αr′

|r′ − r∗| =
∣∣∣ log{− (0.5 + c)(1 + α−1 − αn−r′ − αr′) + 1 + α−1 − αr′

}
/ logα

∣∣∣.
(3)

Now we discuss the order of (3). As n → ∞,

(3) =


O
(
| log(12 + 1

2α
−1))/ log(α)|

)
if r′ = ω(1) and r′ = o(n)

O
(
| log(12 + 1

2α
−1 − 1

2α
r′)/ log(α)|

)
if r′ = O(1)

O
(
| log(12 + 1

2α
−1 − 1

2α
n−r′)/ log(α)|

)
if r′ = Θ(n).

= O
(
− log(1 + 0.5α−1)/ log(α)

)
.

Hence, |r′ − r∗| = O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
as n → ∞.

Lemma 3. Assume X∗
k and X∗

Tk are from the ϵn-DP Laplace and the truncated ϵn-DP Laplace
(at zero) mechanisms respectively, with the same underlying Xk ∼ Bin(n, pk) for pk ∈ (0, 1).
Then for any 0 < △k < pk,

P (X∗
k ̸= X∗

Tk) = O
(
en(△k−pk)ϵn + e−2n△k

)
, as n → ∞.
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Proof. Note that

X∗
k = Xk + errk,

X∗
Tk = Xk + errk + bk,

where errk ∼ Lap(0, 1/ϵn) and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Xk, (4)
−(Xk + errk), otherwise. (5)

Note that for any 0 < △k < pk, we have

P (X∗
k ̸= X∗

Tk) =P (errk < −Xk)

=P (errk < −Xk | |Xk − npk|
n

> △k) · P (
|Xk − npk|

n
> △k)

+ P (errk < −Xk | |Xk − npk|
n

≤ △k) · P (
|Xk − npk|

n
≤ △k)

≤2P (errk < −Xk | |Xk − npk|
n

| > △k) · e−2n△k + P (errk < −Xk | |Xk − npk|
n

≤ △k) · 1
(6)

=P (errk < −Xk | |Xk − npk|
n

≤ △k) +O
(
e−2n△k

)
=P (errk < −Xk | npk − n△k ≤ Xk ≤ npk + n△k) +O

(
e−2n△k

)
.

where (6) follows from Hoeffding’s inequality. Further note that

P (errk < −Xk | npk − n△k ≤ Xk ≤ npk + n△k) ≤ P
(
errk < n(△k − pk)

)
=

1

2
en(△k−pk)ϵn

= O
(
en(△k−pk)ϵn

)
.

Hence, we have

P (X∗
k ̸= X∗

Tk) = O
(
en(△k−pk)ϵn + e−2n△k

)
.

Lemma 4. Assume X∗
k and X∗

Tk are from the (ϵn, δ)-DP Gaussian and the truncated (ϵn, δ)-
DP Gaussian (at zero) mechanisms respectively, with the same underlying Xk ∼ Bin(n, pk) for
pk ∈ (0, 1). Then for any 0 < △k < pk,

P (X∗
k ̸= X∗

Tk) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.

Proof. Note that

X∗
k = Xk + errk,

X∗
Tk = Xk + errk + bk,
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where errk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Xk, (7)
−(Xk + errk), otherwise. (8)

Note that for any Y ∼ N(0, σ2), we have for any t ∈ (0,∞),

P (Y > t) ≤ σ

t
√
2π

e−
t2

2σ2 . (9)

To see this, note

P (Y > t) =

∫ ∞

t

1√
2πσ2

e−
x2

2σ2 dx

≤ 1

t
√
2πσ2

∫ ∞

t
xe−

x2

2σ2 dx since
x

t
≥ 1 for x ∈ [t,∞)

=
1

t
√
2πσ2

[
− σ2e−

x2

2σ2

]∞
t

=
σ

t
√
2π

e−
t2

2σ2 .

Further note that for any 0 < △k < pk, we have

P (X∗
k ̸= X∗

Tk) =P (errk < −Xk)

=P (errk < −Xk | |Xk − npk|
n

> △k) · P (
|Xk − npk|

n
> △k)

+ P (errk < −Xk | |Xk − npk|
n

≤ △k) · P (
|Xk − npk|

n
≤ △k)

≤2P (errk < −Xk | |Xk − npk|
n

| > △k) · e−2n△k + P (errk < −Xk | |Xk − npk|
n

≤ △k) · 1

=P (errk < −Xk | |Xk − npk|
n

≤ △k) +O(e−2n△k)

=P (errk < −Xk | npk − n△k ≤ Xk ≤ npk + n△k) +O
(
e−2n△k

)
.

where the ineqaulity in the third step can be obtained from Hoeffding’s inequality. By applying
(9), we have

P (errk < −Xk | npk − n△k ≤ Xk ≤ npk + n△k) ≤ P
(
errk < n(△k − pk)

)
≤

√
ln{1.25/δ}√

πnϵn(pk −△k)
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

}
= O

( 1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.

Hence, we have

P (X∗
k ̸= X∗

Tk) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.
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Next we give a proposition specifying the rate of convergence of root-n-scaled random errors
injected by the optimal mechanism with L1 loss.

Proposition 1. For 0 < ϵn < ∞ and some fixed i ∈ {0, 1, ..., n}, let erri = r − i for r taking
values in {0, ..., n} with probability mass p∗ir as defined in Section 3 of the main article. Then for
any a > 0,

P
(∣∣∣erri/√n

∣∣∣ > a
)
= O

(
max{1 + eϵn/2, 2}e−ϵna

√
n
)

as n → ∞.

Proof. Consider

P
(∣∣∣erri√

n

∣∣∣ > a
)
= P (|erri| > a

√
n) =

∑
r:|r−i|>a

√
n,r∈{0,...,n}

p∗ir

=
∑

r:|r−i|>a
√
n,r∈{0,...,n}

( n∑
r′=0

gir′yr′r

)

=

n∑
r′=0

gir′
( ∑

r:|r−i|>a
√
n,r∈{0,...,n}

yr′r

)
, (10)

where yr′r is the (r′, r) entry of the optimal remap as defined in Section 3 of the main article.
Note that from the computation of the optimal remap y, for any given r ∈ {0, ..., n}, yr,r∗ = 1 if
r∗ equals the conditional median of i ∈ {0, ..., n} with probability mass P (i | r′), and yr,r′ = 0
for all r′ ̸= r∗. Write α = e−ϵn . Note that for any given r′ ∈ {0, 1, ..., n},

P (i | r′) = α|i−r′|∑n
i′=0 α

|i′−r′| .

By Lemma 2, we know that |r′−r∗| = O
(
max

{
− log(1+1/2α−1)/ log(α), log(1/2)/ log(α)

})
.

|r∗ − i| = |r∗ − r′ + r′ − i| ≤ |r∗ − r′|+ |r′ − i|

≤ |r′ − i|+O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
as n → ∞.

(11)

Note that there exists n′ such that for all n > n′, |r∗ − r′| ≤ C, where C = max
{
− log(1 +

1/2α−1)/ log(α), log(1/2)/ log(α)
}
. Also note that whenever |r′−i| ≤ a

√
n−C, we have |r∗−i| ≤

a
√
n for n > n′. It follows that for all n > n′,( ∑

r:|r−i|>a
√
n,r∈{0,...,n}

yr′r

)
= 0.

Hence for any n > n′,

(10) =
∑

r′:|r′−i|>a
√
n−C

gir′ ≤ 2P (Y > a
√
n− C) = O(e−aϵn

√
n+Cϵn),

where Y has discretized Lap(0, 1/ϵn) distribution. Hence, it follows that

P
(∣∣∣erri√

n

∣∣∣ > a
)
= O

(
eϵn(C−a

√
n)
)

as n → ∞. (12)
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Since α = e−ϵn , further note that

C = max
{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

}
= max

{ log(1 + 1/2eϵn)

ϵn
,
log(2)

ϵn

}
.

Substitute into (12), we have

P
(∣∣∣erri√

n

∣∣∣ > a
)
= O

(
eϵn

(
max

{
log(1+1/2eϵn )

ϵn
,
log(2)
ϵn

}
−a

√
n
))

= O
(
max

{
1 +

eϵn

2
, 2
}
e−ϵna

√
n
)

as n → ∞.

Next, we give proofs for the theorems. We start with proving Theorem 2 first.

Proof of Theorem 2. Note that

Tk =


1

√
npk

(
X∗

k − npk
)
=

√
n

pk

(Xk − npk
n

)
+

errk√
npk

if X∗
k from Lap, (13)

1
√
npk

(
X∗

k − npk

)
=

√
n

pk

(Xk − npk
n

)
+

errk√
npk

+
bk√
npk

if X∗
k from TLap, (14)

where errk ∼ Lap(0, 1/ϵn) and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Xk, (15)
−(Xk + errk), otherwise. (16)

First, we seek to show that P (
∑

k (13)2 ̸=
∑

k (14)2) = o(1) as n → ∞, so that we can ignore
the bias term bk in the test statistic in the remaining proofs. Note that for any 0 < △k < pk, by
Lemma 3, we have

P (bk ̸= 0) = O
(
en(△k−pk)ϵn + e−2n△k

)
. (17)

Now take △k = min{p1, ..., pK}/2. Further note that

P (
∑
k

(13)2 ̸=
∑
k

(14)2) = P (∪k{bk ̸= 0})

≤
K∑
k=1

P (bk ̸= 0)

= O
(
exp{−1

2
nϵnmin{p1, ..., pK}}+ exp{−nmin{p1, ..., pK}}

)
.

where the last step follows directly from (17) and the fact that K < ∞. Since the privacy regime
ϵn satisfying n−1/2ϵ−1

n → 0 as n → ∞, it follows P (
∑

k (13)2 ̸=
∑

k (14)2) = o(1) as n → ∞.
Therefore, we can ignore the bias term bk in the following proofs. Note that marginally, Xk ∼
Binomial(n, pk). By the Central Limit Theorem (CLT), we know that (Xk−npk)/n will converge
to a Gaussian variable as n → ∞ since Xk can be viewed as a sum of n i.i.d. Ber(pk) under H0.
As a direct consequence of Lemma 1, when the privacy regime ϵn satisfying n−1/2ϵ−1

n → 0 as
n → ∞, the second term in (13), errk/

√
npk

p−→ 0 as n → ∞. Therefore, overall, Tk will converge
to a Gaussian distribution as n → ∞. However, instead of treating errk/

√
n as 0, we take its first
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and second moments into account to have better finite sample approximations while maintaining
correct asymptotic distribution. Note errk ∼ Lap(0, 1/ϵn), we have E[Tk] = 0 and

V ar(Tk) =
1

npk
V ar(X∗

k) =
1

npk

{
V ar(Xk) + V ar(errk)

}
= 1− pk + 2/(npkϵ

2
n).

Note also that correlations amongst Xk induce correlations amongst Tk. For some k ̸= j, consider,

Cov(Tk, Tj) = Cov
(√ n

pk

(X∗
k

n
− pk

)
,

√
n

pj

(X∗
j

n
− pj

))
=

1

n
√
pkpj

Cov
(
Xk + errk, Xj + errj

)
=

1

n
√
pkpj

Cov
(
Xk, Xj

)
= −√

pkpj .

Let Σ be the covariance matrix of T = (T1, T2, ..., TK). Consider a matrix O = [v1, ..., vK ] ∈
RK×K consisting of the orthonormal eigenvectors of Σ as columns. So we must have ΣO = ΛO,
where Λ is a diagonal matrix with diagonal elements Λk being the eigenvalues of Σ with respect
to vk. We require ||vk|| = 1 for all k = 1, ...,K. So we must have OOT = OTO = IK .
Consider transformed vector T ′ = OT = (T ′

1, ..., T
′
K). First note that each T ′

k is asymptotically
normal since it is a linear combination of normal distributions. Further, we also have Cov(T ′) =
Cov(OT ) = Λ. Hence T ′

k are independent N(0,Λk) for k = 1, ...,K. So, T ∗ =
∑K

k=1 T
2
k = T TT =

T ′TT ′ →
∑K

k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution with degree of freedom of 1.
Now for part (b) of the theorem, again we can express

Tk =


1

√
npk

(
X∗

k − npk
)
=

√
n

pk

(Xk − npk
n

)
+

errk√
npk

if X∗
k from GDP, (18)

1
√
npk

(
X∗

k − npk
)
=

√
n

pk

(Xk − npk
n

)
+

errk√
npk

+
bk√
npk

if X∗
k from TGDP, (19)

where errk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Xk, (20)
−(Xk + errk), otherwise. (21)

Similarly, we seek to show that P (
∑

k (18)2 ̸=
∑

k (19)2) = o(1) as n → ∞, so that we can ignore
the bias term bk in the test statistic in the remaining proofs. Note that for any 0 < △k < pk, by
Lemma 4, we have

P (bk ̸= 0) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
. (22)

Again we can take △k = min{p1, ..., pK}/2. Further note that

P (
∑
k

(18)2 ̸=
∑
k

(19)2) = P (∪k{bk ̸= 0})

≤
∑
k

P (bk ̸= 0)

= O
(
exp

{
− nmin{p1, ..., pK}

}
+

1

nϵn
exp

{
− n2ϵ2nmin{p1, ..., pK}2

16 ln{1.25/δ}

})
,
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where the last step follows directly from (22) and K < ∞. Again, since the privacy regime
ϵn satisfying n−1/2ϵ−1

n → 0 as n → ∞, it follows P (
∑

k (18)2 ̸=
∑

k (19)2) = o(1) as n → ∞.
Therefore, we can ignore the bias term bk in the test statistic. The remaining proof is similar to
the Laplace case, except for the difference in the covariance Σ matrix. Note that in the case of
(ϵn, δ)-Gaussian mechanism,

V ar(Tk) =
1

npk

(
V ar(Xk) + V ar(errk)

)
=

1

npk

(
npk(1− pk) + (2 log(1.25/δ)− 1)/ϵ2n

)
= 1− pk + {2 log(1.25/δ)− 1}/{npkϵ2n},

and Cov(Tk, Tj) = −√
pkpj . Again, by considering the orthonormal eigenvectors and correspond-

ing eigenvalues Λk of Σ, we can arrive at the same conclusion that as n → ∞, T ∗ →
∑K

k=1 ΛkZk.
Therefore, the results of the theorem follow.

Proof of Theorem 1. The proof is similar as the proof of Theorem 2 except that there is an
additional de-bias term in the test statistic and errk has probability mass p∗k,· in this case.

We focus on T ′
k first,

T ′
k =

1
√
npk

(
X∗

k − npk − b(x∗k)
)
=

√
n

pk

(Xk − npk
n

)
+

errk − b(x∗k)√
npk

. (23)

Note that by CLT, we know that (Xk − npk)/n will converge to a Gaussian variable as n → ∞.
As a direct consequence of Proposition 1 and the fact that b(x∗k) = O(1), the second term in
(23) converges in probability to 0. Therefore, Tk converges in distribution to a normal random
variable as n → ∞. We just need to derive its asymptotic mean and variance to pinpoint its
distribution. Note that E[T ′

k] → 0. Before giving an estimate for the variance, we first derive
the order of V ar(errk). Let αn = e−ϵn . Note that 0 < αn < 1. First consider ẽk = j − k for
j = 0, 1, ..., n with probability mass gkj = 1−αn

1+αn
α
|j−k|
n for j = 1, ..., (n− 1), gkj = α

|j−k|
n /(1+αn)

for j = 0, n, with some fixed k ∈ {0, ..., n}. Note that

µ̃k := E[ẽk] =
n∑

j=0

gkj(j − k) =
1− αn

1 + αn

n−1∑
j=1

α|j−k|
n (j − k) +

α
|n−k|
n

1 + αn
(n− k)− kαk

n

1 + αn

= O(1) as n → ∞.

Consider variance of ẽk,

V ar(ẽk) =

n∑
j=0

gkj
(
j − k − µ̃k

)2
=

1− αn

1 + αn

n−1∑
j=1

α|j−k|
n (j − k)2 − 2µ̃2

k +
1− αn

1 + αn

n−1∑
j=1

α|j−k|
n µ̃2

k

+
k2αk

n

1 + αn
+

α
|n−k|
n

1 + αn
(n− k)2 +

µ̃2
kα

k
n

1 + αn
+

µ̃2
kα

n−k
n

1 + αn

=O(1) as n → ∞. (24)

Now denote µk := E[errk]. As a direct consequence of Lemma 2, there exists a constant C1 < ∞
such that |µ̃k − µk| < C1 and C2 < ∞ such that the input index r′ and optimally remapped



12 Chengcheng Li, Naisyin Wang, and Gongjun Xu

index r∗ satisfying |r′ − r∗| < C2. Then,

V ar(errk) =

n∑
j=0

p∗kj
(
j − k − µk

)2
≤1− αn

1 + αn

n−1∑
j=1

αC2+|j−k|
n (C1 + C2 + j − k − µ̃k)

2

+
αC2+k
n

1 + αn
(C1 + C2 + j − k − µ̃k)

2 +
αC2+n−k
n

1 + αn
(C1 + C2 + j − k − µ̃k)

2

=αC2
n

n∑
j=0

gkj

{
(C1 + C2)

2 + 2(C1 + C2)(j − k − µ̃k) + (j − k − µ̃k)
2
}

=αC2
n

{
(C1 + C2)

2 + 2(C1 + C2)(µ̃k − µ̃k) + V ar(ẽk)
}

=O(1) as n → ∞, (25)

where the last step follows from (24). Now we can evaluate the variance term.

V ar(T ′
k) =

1

npk
V ar(X∗

k) =
1

npk

(
V ar(Xk) + V ar(errk)

)
= 1− pk + V ar(errk)/(npk)

= 1− pk +O
( 1

n

)
as n → ∞. (26)

The last step follows directly from (25). Note also that

1− pk + v(x∗k)/(npk) = 1− pk +O
( 1

n

)
as n → ∞. (27)

We can see this from the construction of the variance estimate v(x∗k) in Algorithm 3 in the main
article. First note that in the step 2 of Algorithm 3, vi = V ar(erri) = O(1). {fix∗

k
: i = 1, ..., n}

is a probability distribution such that
∑n

i=1 fix∗
k
= 1. Hence, v(x∗k) =

∑n
i=1 fix∗

k
vi = O(1) as

n → ∞. From Equations (26) and (27), we have∣∣∣V ar(T ′
k)−

(
1− pk + v(x∗k)/(npk)

)∣∣∣ = O
( 1

n

)
as n → ∞.

Lastly, since Xk are correlated, T ′
k are correlated. For any k ̸= j, consider,

Cov(T ′
k, T

′
j) = Cov

(√ n

pk

(X∗
k

n
− pk

)
,

√
n

pj

(X∗
j

n
− pj

))
=

1

n
√
pkpj

Cov
(
Xk + errk, Xj + errj

)
=

1

n
√
pkpj

Cov
(
Xk, Xj

)
= −√

pkpj .

Let Σ ∈ RK×K be a matrix with diagonal entries Σkk = 1 − pk + v(x∗k)/(npk) and off-diagonal
entries Σkj = −√

pkpj for k ̸= j. Let Σ̃ be the covariance matrix of T ′ = (T ′
1, T

′
2, ..., T

′
K). We

have ∥Σ − Σ̃∥∞ = O(n−1), as n → ∞. Consider a matrix O = [v1, ..., vk] ∈ RK×K consisting
of the orthonormal eigenvectors of Σ as columns. So we must have ΣO = ΛO, where Λ is a
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diagonal matrix with diagonal elements Λk being the eigenvalues of Σ with respect to vk. We
require ∥vk∥ = 1 for all k = 1, ...,K. Following a similar argument as in the proof of Theorem 2,
we can derive that T ∗

opt →
∑K

k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution with degree
of freedom of 1.

Proof of Theorem 3. We start with proving part (a). Consider Tmk,

Tmk =
1

√
npk

( C∑
j=1

X∗
jk − npk − bM ({x∗jk}Cj=1)

)
=

√
n

pk

(∑C
j=1Xjk − npk

n

)
+

∑C
j=1

(
errjk − b(x∗jk)

)
√
npk

.

(28)

Assume H0 is true, by CLT, we know that
(∑C

j=1Xjk−npk

)
/n will converge to a Gaussian

distribution with mean 0 as n → ∞ since
∑C

j=1Xjk can be viewed as a sum of n = n1+n2+...+nC

i.i.d. Ber(pk) random variables. As a direct consequence of Proposition 1 and the facts that
b(x∗jk), C < ∞, when the privacy regime ϵn satisfying n−1/2ϵ−1

n → 0 as n → ∞, the second term
of (28) will converge in probability to 0 as n → ∞. Therefore, overall, Tmk will converge to a
Gaussian random variable. Denote Xk =

∑C
j=1Xjk and X∗

k =
∑C

j=1X
∗
jk. Also

V ar(Tmk) =
1

npk
V ar(X∗

k) =
1

npk

(
V ar(Xk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Xk) +

C∑
j=1

V ar(errjk)
)

= 1− pk +

∑C
j=1 V ar(errjk)

npk

= 1− pk +O
( 1

n

)
as n → ∞. (29)

The last step follows from (25) where V ar(errjk) = O(1) and the fact that C < ∞. Note also
that

1− pk +

∑C
j=1 v(x

∗
jk)

npk
= 1− pk +O

( 1

n

)
as n → ∞. (30)

Equation (30) follows from the facts that v(x∗jk) = O(1) as n → ∞ (for details see proof of
Theorem 1) and C < ∞. From (29) and (30), we must have∣∣∣V ar(Tmk)−

(
1− pk +

∑C
j=1 v(x

∗
jk)

npk

)∣∣∣ = O
( 1

n

)
as n → ∞.

Lastly, since Xk are correlated, Tmk are correlated. For some k ̸= j, consider,

Cov(Tmk, Tmj) = Cov
(√ n

pk

(Xk +
∑C

i=1 errik
n

− pk

)
,

√
n

pj

(Xj +
∑C

i=1 errij
n

− pj

))
=

1

n
√
pkpj

Cov
(
Xk +

C∑
i=1

errik, Xj +

C∑
i=1

errij

)
=

1

n
√
pkpj

Cov
(
Xk, Xj

)
= −√

pkpj .
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Similarly, let Σ ∈ RK×K be a matrix with diagonal entries Σkk = 1− pk + (
∑C

j=1 v(x
∗
jk))/(npk)

and off-diagonal entries Σkj = −√
pkpj for k ̸= j. Let Σ̃ be the covariance matrix of TM =

{Tm1, ..., TmK}. We have ∥Σ− Σ̃∥∞ = O(n−1), as n → ∞. By a similar argument as in the proof
of Theorem 1 we can derive that T ∗

M →
∑K

k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution
with degree of freedom of 1 and Λk are the eigenvalues of Σ corresponding to a set of orthonormal
eigenvectors of Σ. Hence, we have the result of part (a) follows.

For part (b), note that

Tmk =



√
n

pk

(∑C
j=1Xjk − npk

n

)
+

∑C
j=1

(
errjk

)
√
npk

. if X∗
jk from Lap, (31)√

n

pk

(∑C
j=1Xjk − npk

n

)
+

∑C
j=1

(
errjk + bjk

)
√
npk

, if X∗
jk from TLap, (32)

where errjk ∼ Lap(0, 1/ϵn) and bjk is the bias term which can be expressed as follows,

bjk =

{
0, if errjk ≥ −Xjk, (33)
−(Xjk + errjk), otherwise. (34)

It can be shown that P (
∑

k (31)2 ̸=
∑

k (32)2) = o(1) as n → ∞. To see this, note for any
0 < △jk < pk, by Lemma 3, it follows

P (bjk ̸= 0) = O
(
en(△jk−pk)ϵn + e−2n△jk

)
. (35)

Take △jk = min{p1, ..., pK}/2 for all j = 1, ..., C. Further note that as n → ∞,

P (
∑
k

(31)2 ̸=
∑
k

(32)2) = P (∪k ∪j {bjk ̸= 0})

≤
K∑
k=1

C∑
j=1

P (bjk ̸= 0)

= O
(
exp

{
− 1

2
nϵnmin{p1, ..., pK}

}
+ exp

{
− nmin{p1, ..., pK}

})
.

where the last step follows directly from (35) and the fact that K,C < ∞. Since the privacy
regime ϵn satisfies n−1/2ϵ−1

n → 0 as n → ∞, it follows P (
∑

k (31)2 ̸=
∑

k (32)2) = o(1) as n → ∞.
Therefore, we can ignore all the bias terms bjk and work only with (31) in the following proofs.
The remaining proofs for part (b) are similar as in part (a), except for the difference in Σ. In the
case of ϵn-Laplace mechanism in part (b), Cov(Tmk, Tmj) remains the same for j ̸= k but

V ar(Tmk) =
1

npk
V ar(X∗

k)

=
1

npk

(
V ar(Xk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Xk) +

C∑
j=1

V ar(errjk)
)

=
1

npk

(
npk(1− pk) + 2C/ϵ2n

)
= 1− pk + 2C/(ϵ2nnpk).
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Now for part (c), again we can express

Tmk =



√
n

pk

(∑C
j=1Xjk − npk

n

)
+

∑C
j=1

(
errjk

)
√
npk

. if X∗
jk from GDP, (36)√

n

pk

(∑C
j=1Xjk − npk

n

)
+

∑C
j=1

(
errjk + bjk

)
√
npk

, if X∗
jk from TGDP, (37)

where errjk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bjk is the bias term remains the same as before,

bjk =

{
0, if errjk ≥ −Xjk, (38)
−(Xjk + errjk), otherwise. (39)

Similarly, it can be shown that P (
∑

k (36)2 ̸=
∑

k (37)2) = o(1) as n → ∞. To see this, note for
any 0 < △jk < pk, by Lemma 4, we have

P (bjk ̸= 0) = O
(
exp

{
− 2n△jk

}
+

1

nϵn
exp

{
−

n2ϵ2n(pk −△jk)
2

4 ln{1.25/δ}

})
. (40)

Again, take △jk = min{p1, ..., pK}/2 for all j = 1, ..., C. Further note that as n → ∞,

P (
∑
k

(36)2 ̸=
∑
k

(37)2) = P (∪k ∪j {bjk ̸= 0})

≤
K∑
k=1

C∑
j=1

P (bjk ̸= 0)

= O
(
exp

{
− nmin{p1, ..., pK}

}
+

1

nϵn
exp

{
− n2ϵ2nmin{p1, ..., pK}2

16 ln{1.25/δ}

})
.

where the last step follows directly from (40) and the fact that K,C < ∞. Since the privacy
regime ϵn satisfying n−1/2ϵ−1

n → 0 as n → ∞, it follows P (
∑

k (36)2 ̸=
∑

k (37)2) = o(1) as
n → ∞. Therefore, we can ignore all the bias terms bjk and work only with (36). The remaining
proofs for part (c) are similar to that in part (a), except for the difference in Σ. In the case of
(ϵn, δ)-Gaussian Mechanism in part (c), Cov(Tmk, Tmj) remains the same for j ̸= k but

V ar(Tmk) =
1

npk
V ar(X∗

k)

=
1

npk

(
V ar(Xk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Xk) +

C∑
j=1

V ar(errjk)
)

=
1

npk

(
npk(1− pk) + (2C log(1.25/δ)− 1)/ϵ2n

)
= 1− pk + C(2 log(1.25/δ)− 1)/(npkϵ

2
n).

We have both parts (b) and (c) of the theorem follow.
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Proof of Theorem 4. We start with part (a). Consider Tm1,

Tm1 =
1

√
np1

( M∑
k=1

X∗
k − np1 − bM ({x∗j}Mj=1)

)
=

√
n

p1

(∑M
k=1Xk − np1

n

)
+

∑M
k=1

(
errk − b(x∗k)

)
√
np1

.

(41)

Assume H0 is true, by CLT, we know that
(∑M

k=1Xk −np1

)
/n is Gaussian asymptotically

with mean 0 as n → ∞. Following from Proposition 1 and the facts that M, b(x∗k) < ∞,
when the privacy regime ϵn satisfying n−1/2ϵ−1

n → 0 as n → ∞, the second term of (41) will
converge in probability to 0 as n → ∞. Therefore, overall, Tm1 will converge to a Gaussian
distribution. Following a similar argument as the proof of Theorem 2, we know that Tmk for
k = 2, ...,K will also converge to Gaussian random variables with mean 0 asymptotically. Denote
Xm1 =

∑M
k=1Xk and X∗

m1 =
∑M

k=1X
∗
k . Note

V ar(Tm1) =
1

np1
V ar(X∗

m1) =
1

np1

(
V ar(Xm1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Xm1) +

M∑
k=1

V ar(errk)
)

= 1− p1 +O
( 1

n

)
as n → ∞. (42)

For k = 2, ...,K,

V ar(Tmk) =
1

npk
V ar(X∗

mk) =
1

npk

(
V ar(Xmk) + V ar(errk)

)
= 1− pk +O

( 1

n

)
as n → ∞. (43)

Equations (42) and (43) follow directly from (25) and the fact that M < K < ∞. Note also
that

1− p1 +

∑M
j=1 v(x

∗
j )

np1
= 1− p1 +O

( 1

n

)
as n → ∞. (44)

1− pk +
v(x∗k)

npk
= 1− pk +O

( 1

n

)
as n → ∞. (45)

Equations (44) and (45) follow from v(x∗j ) = O(1) as n → ∞ (for more details see proofs of
Theorem 1 and the fact that M < K < ∞. From (42) and (44), we have∣∣∣V ar(Tm1)−

(
1− p1 +

∑M
j=1 v(x

∗
j )

np1

)∣∣∣ = O
( 1

n

)
as n → ∞.

Similarly, from Equations (43) and (45), we can derive for k = 2, ...,K,∣∣∣V ar(Tmk)−
(
1− pk +

v(x∗k)

npk

)∣∣∣ = O
( 1

n

)
as n → ∞.

Lastly, we derive covariance amongst Tmk, Cov(Tmk, Tmj) = −√
pkpj , for any k ̸= j.

Similarly, let Σ ∈ R(K−M+1)×(K−M+1) be a matrix with diagonal entries Σ11 = 1 − p1 +
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(
∑M

j=1 v(x
∗
j ))/(np1) and Σkk = 1− pk + v(x∗k)/(npk) for k = 2, ...,K −M + 1, and off-diagonal

entries Σkj = −√
pkpj for k ̸= j. Let Σ̃ be the covariance matrix of TM = (Tm1, ..., Tm(K−M+1)).

We have ∥Σ− Σ̃∥∞ = O(n−1), as n → ∞. Then with a similar argument as in the proof of The-
orem 2, T ∗

M →
∑K

k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution with degree of freedom
of 1 and Λk are eigenvalues of Σ corresponding to a set of orthonormal eigenvectors. Hence, the
result of part (a) follows.

For part (b) and (c), first note that using similar arguments as in the proof for Theo-
rem 2(a) and 2(b), it can be shown that the probability of test statistics obtained from the
Laplace/Gaussian mechanisms not equal to their counterparts obtained from the truncated
Laplace/Gaussian mechanisms tends to 0 exponentially fast as n goes to infinity. Therefore,
we can in fact ignore the truncation effect. The proofs for the remaining are similar to the proof
for part (a), except for the difference in Σ. In the case of ϵn-Laplace mechanism in part (b),
Cov(Tmk, Tmj) = −√

pkpj for k ̸= j remains the same but

V ar(Tm1) =
1

np1
V ar(X∗

m1) =
1

np1

(
V ar(Xm1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Xm1) +

M∑
k=1

V ar(errk)
)

= 1− p1 + 2M/(ϵ2nnp1).

For k = 2, ...,K,

V ar(Tmk) =
1

npk
V ar(X∗

mk) =
1

npk

(
V ar(Xmk) + V ar(errk)

)
= (1− pk) + 2/(npkϵ

2
n).

In the case of (ϵn, δ)-Gaussian Mechanism in part (c), Cov(Tmk, Tmj) = −√
pkpj for k ̸= j

remains the same but

V ar(Tm1) =
1

np1
V ar(X∗

m1) =
1

np1

(
V ar(Xm1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Xm1) +

M∑
k=1

V ar(errk)
)

= (1− p1) +M(2 log(1.25/δ)− 1)/(np1ϵ
2
n).

For k = 2, ...,K,

V ar(Tmk) =
1

npk
V ar(X∗

mk) =
1

npk

(
V ar(Xmk) + V ar(errk)

)
= (1− pk) + (2 log(1.25/δ)− 1)/npkϵ

2
n.

The results of both part (b) and (c) follow from a similar argument as in the proof of
Theorem 2.
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