
Journal of Data Science 20 (3), 413–436 DOI: 10.6339/22-JDS1035
July 2022 Data Science Reviews

Econometrics at Scale: Spark up Big Data in Economics✩

Benjamin Bluhm
1

and Jannic Alexander Cutura
2,∗

1Senior Data Scientist
2European Central Bank, Sonnemannstraße 20, 60314 Frankfurt am Main, Germany

Abstract

This paper provides an overview of how to use “big data” for social science research (with an
emphasis on economics and finance). We investigate the performance and ease of use of different
Spark applications running on a distributed file system to enable the handling and analysis of
data sets which were previously not usable due to their size. More specifically, we explain how to
use Spark to (i) explore big data sets which exceed retail grade computers memory size and (ii)
run typical statistical/econometric tasks including cross sectional, panel data and time series
regression models which are prohibitively expensive to evaluate on stand-alone machines. By
bridging the gap between the abstract concept of Spark and ready-to-use examples which can
easily be altered to suite the researchers need, we provide economists and social scientists more
generally with the theory and practice to handle the ever growing datasets available. The ease
of reproducing the examples in this paper makes this guide a useful reference for researchers
with a limited background in data handling and distributed computing.
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1 Introduction
Research in economics and finance moved towards ever larger datasets and computationally more
advanced methods, including statistical methods borrowed from the machine learning (ML) lit-
erature (Hamermesh, 2013; Einav and Levin, 2014). A growing number of papers discusses the
potential and limits of modern data analysis frameworks such as ML algorithms (Varian, 2014;
Mullainathan and Spiess, 2017), text as data (Gentzkow et al., 2019; Grimmer and Stewart,
2013) and the progress on inference methods in high-dimensional settings (Athey and Imbens,
2017; Kleinberg et al., 2015). Finally, Fernández-Villaverde and Valencia (2018) provide an intro-
duction to parallel computing for economics. While most of these works describe the underlying
algorithms at great length, there is almost no guidance on how to handle the typically very large
datasets used for these tools. As data availability is very likely to grow in the foreseeable future,
the inability to handle big data sets poses a severe challenge to empirical economic research.

This paper aims to fill this gap by providing accessible guidance on how to use distributed
computing solutions for economic research. With datasets in the billions of observations (e.g.
Cavallo and Rigobon (2016); Gao et al. (2019)) and peta-bytes of data (e.g. Ng (2017)) and
growing, economists need to be able to handle and analyse those in a practical and efficient
manner. We provide such a framework by showing how to run your existing data handling
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pipeline on a distributed computing solution. More specifically we illustrate the parallelization
of key tasks frequently encountered in economic research and policy analysis: (i) computing
summary statistics, (ii) estimating micro econometric models, (iii) panel data models and (iv)
time series models using the Apache Spark framework. The paper specifically targets a non-
expert audience and is therefore useful for researchers in economics and social sciences more
general who struggle with datasets larger than their in house resources allow them to handle.

The basic idea behind Spark is that instead of bringing the data to the computation (i.e. read
the data from your hard drive into your computers memory) you should bring the computation to
the data (i.e. run several computations in parallel on the machines where the different parts of the
dataset are stored). This allows to handle datasets which are much larger than your computers
memory usually allows to handle. There are several providers for cloud computing solutions
providing a rich ecosystem of tools for distributed data storage and processing including Spark.
In this paper we use Amazon Web Services (AWS), but the logic described seamlessly extends
to other platforms.

To illustrate the use of Spark for economists, we demonstrate four typical use cases. First,
we handle and pre-process a real-world dataset of US home mortgage applications with nearly
140 million observations using R’s sparklyr library, which is built on the popular dplyr library
providing an efficient and intuitive approach for data pre-processing. We then use this dataset
to illustrate the estimation of various micro econometric models where we provide standard
regression output tables and information on runtime performance conditional on cluster resource
constraints. Next, we use Python’s pyspark API to fit a static fixed effects model via within-group
data transformation using a simulated panel dataset with one billion observations. In this respect
we show how to compute panel robust standard errors using a simple customized distribution
scheme. Finally, we provide an example that entails forecasting a large number of time series in
parallel.

Fernández-Villaverde and Valencia (2018) conclude that Python and R are inferior to higher
level programming languages like C++ and Julia, when it comes to run-time performance based
on their comparison of value function iteration. Our results indicate, that for empirical economic
research Python and R by using Spark are well equipped for data handling and analysis of very
large datasets. As Python and R are considerably easier to learn than e.g. C++ (and in fact
today’s working standard in data science), we view our introduction to Spark (based on Python
and R) as a useful guide for economists who want to analyse datasets larger than their computer’s
memory allows. Our results in terms of runtime and ease of handling suggest Spark is a suitable
tool for economic research. Using an Elastic Map Reduce (EMR) setup we are able to pre-
process a 150 GB dataset in just under five minutes, whereas the standalone approach on our
local machine crashes. Similarly, estimating micro econometric and panel regression models on
our local machine would require computing crossproducts of very large arrays, which is not
feasible on retail grade computers. Moreover, for the time series analysis case, the distribution
scheme reduces total runtime performance by about 95% relative to a single-machine setting.

The contribution of the paper is two-fold. First, we demonstrate the usage of Spark for
economic research and its superiority in fact for many applications involving large datasets.
Secondly, the intuitive explanation of the framework along side the uses cases should enable
economists without previous experience in parallel computing to work with Spark. This will
allow them to (i) easily migrate their existing data handling and analysis to gain significant run
time performance and (ii) allow them to handle datasets which were previously not manageable.
To ease the process, we provide the codes used in this paper and (in supplementary material)
carefully explain how to connect to a cloud service to run the codes. Moreover, we show how
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you can easily develop, test and debug your Spark programs (written in Python and R) on your
local machine (avoiding paying fees for cloud services).

The remainder of the paper is organized as follows. The next section will briefly motivate the
use of distributed computing solutions for empirical economic research. Section 3 will elaborate
on the distributed computing architecture and provide a few numerical examples to illustrate
the key idea of the Spark framework. Section 4 starts with a description on how to handle and
preprocess a large real-world dataset followed by subsection 4.2 which uses this dataset to walk
through the estimation of micro econometric models in Spark. Subsection 4.3 shows how to
implement a fixed effects regression in Spark and how to obtain panel robust standard errors.
The last subsection 4.4 shows a distributed set up for estimating time series models. The last
section concludes.

2 Why Distributed Computing?
Parallel Computing has gained a lot attention and is today used across various fields in eco-
nomic research, in particular for solving highly complex quantitative models. In this paper, we
argue that Distributed Computing is the next step in the evolution of computational methods for
economic research. The major advantage of parallel computing is that it can allow to solve quan-
titative problems, that were previously prohibitive expensive to evaluate. Fernández-Villaverde
and Valencia (2018) provide an excellent overview of parallel computing performance of various
programming languages and illustrate the runtime gains for solving a standard value function
iteration problem. They point out that (depending on your problem) you can speed up the
analysis by a factor equal to the number of your computer’s CPU cores. A standard retail grade
computer at the time of writing typically comes with 4–8 cores, which means you can speed up
the performance of your computations by up to 8 times, if you use parallel computing appropri-
ately. As pointed out in Fernández-Villaverde and Valencia (2018), that very same logic holds
true for the case of distributed computing with that exception that instead of being able to only
use all your computer’s CPU cores, you can use hundreds and even thousands of CPU cores of a
cloud computing framework. Therefore, while parallel computing on your own machine certainly
speeds up the process of many applications, it pales in comparison with the performance of a
Spark cluster.

Secondly, while your own computer comes at a (potentially high) fixed cost and is only used
for a certain number of hours a day, the access to a cloud computing instance can be turned on
and off at the flick of a switch. From a societal point of view, this will save resources: Instead of
individuals owning powerful machines they only use so many hours a day, one can buy runtime
on centralized high performance cloud computers.

Thirdly, and most importantly for the scope of this paper, distributed computing allows
to tackle data handling and analysis which were previously prohibitively expensive to run. For
empiricists, this is usually the case when the dataset under consideration is considerably larger
than your computers memory, making any analysis on it painfully slow or when the number of
models which need to be evaluated becomes so large that even parallelization on a powerful retail-
grade computer does not alleviate overall runtime concerns. Moreover, the researchers training
with data handling and analysis shapes and limits the kind of research questions she conceives of
in the first place. By lowering the threshold to use distributed computing solutions for economic
research, we hope to achieve two goals. Firstly, we enable social scientists to approach their
existing (big) data handling more efficiently and tackle existing questions that were previously
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prohibitively expensive to run. Secondly, by demonstrating the ease of use of cloud computing
technologies, we hope to inspire new questions which leverage the possibilities of ever growing
and ever more accessible datasets in the future.

3 Distributed Computing Architecture

3.1 General Overview and Cluster Architecture

In this section, we describe the core architecture of a distributed computing system based on
Spark. The system is not limited to solving large-scale data handling and econometric tasks
as described in this guide, but can be applied to many other expensive computing workloads
that can be broken up into subsets of independent tasks. To only mention a few use cases from
an economist’s perspective, the distributed system in this guide could be adopted to distribute
tasks such as for example value function iteration (Aruoba et al., 2003), extreme bounds analysis
(Leamer, 1985; Sala-I-Martin, 1997), forecast combination (Clemen, 1989; Timmermann, 2006)
or hyperparameter search.

The choice of the distributed computing architecture presented in this section is guided by
the following goals:
• Facilitate distributed computations on datasets which do not fit into a single machine’s

memory
• Highly scalable to large clusters of machines
• Minimal effort for setting up a cluster and pre-installation of user-defined libraries
• Ease of use to handle and analyse data in a distributed fashion using your existing Python

and R data analysis pipelines (Other statistical packages like Stata or eViews unfortunately do
not offer any Spark interfaces. Matlab, another popular computing language, recently started
to offer Spark/Hadoop support. Java and Scala also offer interfaces, but are less known among
social scientists)
A simple diagram of the distributed computing architecture is illustrated Figure 1. There

are four layers, providing different capabilities and functionalities to the cluster. The distributed
storage layer is based on the Hadoop API and uses Amazon S3 as a distributed, scalable file
system, where input and output files from the application are stored on multiple machines,
each storing a subset of all files. Hadoop scales to hundreds or even thousands of machines
and therefore supports applications that run on very large datasets. A key idea of Hadoop
(Ghemawat et al., 2003; Dean and Ghemawat, 2004) is to move the computation to the data
(and not vice versa) in order to minimize network congestion which yields large benefits in terms
of computational efficiency for huge datasets of gigabytes to terabytes in size.

The resource management layer uses YARN (Yet Another Resource Negotiator) and is in
charge of managing cluster resources and scheduling data-processing jobs. Moreover, the cluster
resource manager is responsible for administering YARN components and keeping the cluster in
good health.

The data processing layer uses Spark, which was first introduced by Zaharia et al. (2010)
at UC Berkeley for large-scale machine learning use cases. In the meantime, Spark has turned
into an open-source, distributed data processing platform for big data workloads relating to
machine learning, stream processing and graph analytics. The Resilient Distributed Dataset
(RDD) defines the core component of Spark’s distributed data processing engine. RDDs are
collections of lazily evaluated, distributed data objects – also called partitions – which are
stored in the data nodes connected to the Spark worker nodes and can be manipulated in a
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Figure 1: Spark’s distributed computing architecture. This schema illustrates a distributed
computing architecture. When the user submits a Spark application it launches the Spark Driver
which is the process that takes care of breaking down the user program into individual tasks
and coordinating each of these tasks on the Spark Executors. The Spark Driver submits a
resource request to the Cluster Manager which launches the Spark Executors according to the
requested resources. The Spark Executors perform the tasks received from the Spark Driver. The
Distributed Storage Layer is based on the Hadoop API and holds the distributed dataset which
is partitioned across harddrives of the Spark worker nodes. Distributed datasets can be used on
any Hadoop supported storage system including for example Hadoop Distributed File System
(HDFS), S3, Cassandra, Hive and HBase. Authors graph based on Karau et al. (2015), Karau
and Warren (2017) and Samadi et al. (2018).

parallel fashion on the different executors of the system. Spark is based on a master/worker
architecture where the driver communicates with the cluster manager as a single coordinator
which is responsible for managing the workers in which executors run. The Spark driver is
a process that hosts a Spark application and executors are processes that run computations
and store data defined by your application code (for example, a sparklyr program for micro
econometric analysis). A more elaborate description of the Spark architecture can be found, for
example, in Chambers and Zaharia (2018).
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3.2 The map-reduce Framework
In this section we illustrate how Spark manipulates data in a parallel fashion using two simple
examples. The first example takes as an input an RDD with key/value pairs to highlight a map-
reduce algorithm that returns the mean value for each key. In the second example we briefly
sketch how Spark is applied to approximate the maximum likelihood estimate of a generalized
linear model.

Example 1 – A Simple Case for Distributed Computing: Compute the Mean of a
Large Data Set

Perhaps the simplest example to demonstrate the map-reduce framework is to compute the
average value for each group for a large data set. Consider a data set D = [(‘A’, 5), (‘B’, 7),
(‘C’, 3), (‘D’, 4), (‘A’, 8), (‘B’, 6), (‘C’, 2), (‘D’, 1), (‘A’, 9), (‘B’, 3)]. Figure 2 illustrates the
map-reduce logic used in Spark. As an input it takes an RDD with 10 key/value tuples where
the capital letters define the keys. The map function takes as an input the RDD with key/value
pairs which is distributed across three partitions in this example. The reduce function is called
once for each key, takes the input values to compute the average value and returns a key/value
tuple. Note that the data is shuffled between the map and reduce stage to ensure that all values
of a given key share the same node. After the reduce step is completed, the data is transferred
back to the master node, where we can find the output [(‘A’, 7.33), (‘B’, 5.33), (‘C’, 2.5), (‘D’,
2.5)], i.e. the averages for each group A, B, C and D. We can simultaneously count the number
of observations per group such that in a second step one can compute a weighted average of the
group averages, weighted with the number of observations in each group to obtain the overall

Figure 2: Distributed computation of the mean. This illustrates a simple map-reduce logic
for computing the average of a list of numbers. The data is first (randomly) mapped across
workers. In a second step it is shuffled such that all values with a given key are allocated to
the same worker. In the reduce step, the average is computed and finally returned back to the
master node. On the master node, one can then compute the weighted average of the groups’
averages.
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average. While the computational overhead of mapping the data across nodes does not justify
the efficiency gains for such a small data set, it becomes increasingly powerful when the size of
the input data grows, and in particular if the input data exceeds memory.

Example 2 – A Not so Simple Case for Distributed Computing: Compute Median
of a Large Data Set

The previous subsection outlined how to compute the average value for each group of a data
set, which is one of the most common examples to illustrate the map-reduce framework. Does
the framework easily extend to all frequently used characteristics of data? Consider a data set
D = [3, 4, 2, 6, 7, 1, 2, 4, 5, 6, 4, 4, 5, 6, 4]. If you sorted that data set by size it would look like
Dsorted = [1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7] and its median would be equal to 4. If D is too
large to be fit into memory, (how) can we use Spark to compute the median value? A simple
application of the map-reduce framework is not possible for this case, since there is no way to
allocate the data across workers in a helpful way. There is however a large literature on dealing
with these kinds of computational problems. For practical purposes Greenwald et al. (2001)
propose an algorithm implemented in Spark that strikes a good balance between accuracy and
runtime to compute percentiles on large data sets. The main take away however remains: When
computation cannot be broken down across nodes, the trivial map-reduce framework fails to
deliver a simple solution and more elaborate algorithms are required.

Example 3 – Back to Econometrics: Distributed Ordinary Least Squares

Linear regression is arguably one of the most popular statistical model used in economics. Statis-
tical software packages like Stata, eViews or SPSS as well as fully fledged programming languages
like Python or R use a range of algorithms to solve for the vector of β coefficients. Popular algo-
rithms include the (stochastic) gradient descent (SGD) and the quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. Spark uses these methods as well. In this example, we want to
demonstrate how to compute a ordinary least squares regression on a distributed system. Note
that the underlying algorithm used in Spark might be different and depend on the specific model
estimated. For illustrative purposes consider a standard optimization problem on a separable
objective function:

min
w

N∑
i=0

Fi(w)

where w ∈ R
k is a vector of weights we try to find in order to minimize the loss function

F(w). For example, in the simple case of OLS with i = 1, . . . , N observations of (xi, yi) where
xi = [xi,1, . . . , xi,k] is a k dimensional vector, the loss function is well known and given by
Fi(w) = (wT xi − yi)

2. Recall that in gradient descent (GD) we solve the above problem by some
(random) initial guess of w and then update it according to:

wj+1 ←
N∑

i=1

wj − λ∇Fi(wj )

where λ is the learning rate, ∇Fi(.) is the gradient and j is the iteration step. For OLS the
gradient can be calculated symbolically as ∇Fi(w) = 2wT wxi − 2wyi . Now suppose that the
dataset (X = [x1, . . . , xN ], y = [y1, . . . , yN ]) is too large to fit in a single computer. How can
we apply a map-reduce framework to compute gradient descent? As the loss is expressed as the
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Figure 3: Distributed linear regression algorithm. In this example, we illustrate distributed
OLS. This example uses three Spark executors w = 1, 2, 3. The input data (X, y) has n observa-
tions of k variables and a dependent variable y. In the map step, random sub-samples of the data
(m observations each) are distributed across the executors. In each iteration j , each executor
computes a partial sum of the gradient-descent. In the reduce step the partial sums are added
up to obtain the new wj+1.

sum of individual losses from each data point, the algorithm easily lends itself to be distributed.
N∑

i=1

wj − λ∇Fi(wj ) =
d∑

i=1

wj − λ∇Fi(wj )︸ ︷︷ ︸
worker 1

+
2d∑

i=d+1

wj − λ∇Fi(wj )︸ ︷︷ ︸
worker 2

+ · · · +
N∑

i=N−d+1

wj − λ∇Fi(wj )︸ ︷︷ ︸
worker d

Since the computation is performed row-by-row, the map step does not induce a shuffle
irrespective of how the data is partitioned originally, which is convenient from a run-time per-
spective. Similarly, to compute the final sum to obtain wj +1 all partial sums are communicated
in a all-to-one fashion. Overall, any computationally expensive all-to-all communication can be
avoided. A graphical representation of the procedure (with three workers) is provided in Figure 3.

4 Distributed Econometrics
In this section we discuss how to use well-known econometric techniques in a distributed setting.
The first subsection shows how to obtain summary statistics of a big data set. Subsection 4.2
and 4.3 show how to run micro-econometric and panel-regression models in spark on data which
would be too expensive to evaluate in a non-distributed fashion. Finally subsection 4.4 demon-
strates how to train time series models at scale. In all subsections, we provide information
about computing time and cluster resources which may serve as a reference for other researchers
confronted with similar big data applications. A word of caution: Some spark algorithms are
stochastic (for example stochastic gradient descent) which means that even running it against
the very same data twice will yield (slightly) different results. The estimate will oscillate around
the true value. In practice the difference between the true (deterministic) result and the stochas-
tic one will be small in most cases, yet it is good to be aware of this limitation.
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4.1 Summarising a Large Data Set

In this subsection, we discuss how to use spark to explore and understand data sets that are too
large to fit in memory (referred to as big data from here on). With ever more data being both
collected and connected, the ability to handle such data amounts is of crucial importance. Even
at the time of writing, many existing datasets used in economic research qualify as big data.
For example, Edwards et al. (2007); Dick-Nielsen et al. (2012); Jankowitsch et al. (2014) use the
TRACE data set on corporate bond trades which as of today consists of more than 230 million
observations and 32.9 GB. Many non-public data sets are even larger. For example, the European
Central Banks collects daily snapshots of derivative exposures of financial intermediaries in the
Euro area, which resulted in the need of a specific IT infrastructure (Boneva et al., 2019). With
the trend of using administrative data for research (Einav and Levin, 2014), being able to handle
such amounts of data will be crucial both for academic research and policy work (Irving-Fisher-
Committee, 2020).

Dataset

For this paper we focus on the well-known HMDA dataset, which contains loan application
data from the US, frequently used in economic research (see for example Munnell et al. (1996);
Duchin and Sosyura (2014); Gilje et al. (2016)), which is also introduced in Foster et al. (2016).
The data can be downloaded in yearly files from the Federal Financial Institutions Examination
Council (FFIEC) website. The entire data set spans from 2007–2017 and contains 150GB+ of
data, which one can reduce to 29GB by replacing character labels with numerical identifiers (for
example using the FIPS numeric code “01” instead of spelling out “Alabama”). The dataset
contains applications for loan mortgages along several characteristics of borrowers (income,
county, etc. . . ) and lenders (bank name, balance sheet info, etc. . . ). We provide a copy of the
dataset and the subset we are using on our dropbox. Please note that we do not own or maintain
this dataset. Check the FFIEC’s website for the most recent version.

Spark Setup

To analyse the data set, we follow a two-part strategy. We locally develop a Spark application on
a randomly selected sub-sample of 200,000 observations. We test and debug our spark program
on a retail grade computer and after finding satisfactory performance run the same code in a
distributed fashion on AWS. While we restrict ourselves to the main steps of the distributed
computing logic here, the complete sparklyr code is available including a fully reproducible
example on our github repository. To use sparklyr for handling and analysing large datasets, we
found the following steps useful:
• Upload the data to S3
• Do all heavy computations in sparklyr using dplyr syntax for dataframe manipulation and
spark_apply() to use base R functions

• Use collect() to get the results back to base R and continue to plot or print tables

Results

With 29.4 GB in size, we were not able to load the entire data set into R or Python on our local
machine (which featured 16 GB of memory). Therefore, running the entire analysis in base R
was not feasible. Instead we imported a subset of 200,000 randomly selected observations and
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developed a spark application which conveniently summarizes the data set. We find a combina-
tion of spark_apply() and dplyr functions very helpful to handle the data set. For example, we
need to combine the two-digit state fips code with the three-digit county fips code to create a
unique county identifier. To do so we need to pad all single-digit state codes with a leading zero
(i.e. changing “1” to “01”). There is no dplyr function to do so, so we use spark_apply to pass
a base R function to create the “state_code_fips” variable:
1 hmda_spark = hmda_spark %>%
2 spark_apply(function(e)
3 data.frame(sprintf("%02d",as.numeric(e$state_code)), e),
4 names = c(’state_code_fips’, colnames(hmda_spark)))

We can use dplyr backend to analyse large datasets, which provides very readable code.
Consider for example the following six lines of code which generate the raw data used for
Figure 4. It first groups the data by year and county and computes the average loan to income
ratio for country-year. Subsequently we use collect() to read the Spark data back onto driver
and further manipulate it:
1 hmda_group = hmda_spark %>%
2 group_by(as_of_year ,county_fips_code) %>%
3 summarise(avg_prc_to_inc = mean(loan_to_inc , na.rm=TRUE)) %>%
4 collect() %>% # read back to memory after heavy lifting is done by Spark
5 mutate(log_loan_to_inc = log(1+ loan_to_inc)) %>%
6 select(county_fips , log_loan_to_inc , as_of_year)

A visual illustration is provided in Figure 4.

Figure 4: Heat map US loan-to-income ratios. This graph plots the log of the loan-to-income
of home mortgage application ratio across US counties for 2008.
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4.2 Micro Econometrics on Spark

In this section, we explore how to run some popular micro econometric models using Spark.
We use the same dataset as in the previous section to estimate linear regression, probit and
logit models. We estimate those on a subset of the dataset locally, using base R functions and
Spark functions to demonstrate their equivalence. Finally, we run Spark functions on AWS on
the entire dataset.

Spark Setup

Using sparklyr, we access the Spark’s machine learning library MLlib, which contains many
statistical models used for economic research as well. As outlined in the previous section, we can
clean the data using dplyr syntax in sparklyr to create a spark dataframe against which we can
run regressions. sparklyr allows us to use base R formulas to be evaluated in their ml_* function
family. For example, using the 137,819,151 observations strong hmda_spark dataframe created
in the previous section, we can run a probit regression using the following code:
1 glm_model = hmda_spark %>%
2 ml_generalized_linear_regression(application_accepted ~
3 applicant_income_000s , family = "binomial", link = "probit")

sparklyr automatically distributes the computation across the cluster, increasing the speed
of computation or making it feasible in the first place. We run different versions of the following
baseline regression

LoanGrantedi = β0 · Incomei + β1 · Malei + β2 · Whitei

+ β3 · Blacki + 1Year(i) + 1LoanPurpose(i) + εi, (1)

where Income is the applicants income in $1000, Male is a dummy variable which is equal to one if
the applicant is male (and zero otherwise), White, Black are dummy variables which are equal to
one if the applicant is white or black respectively (with Hispanics being the omitted category),
1LoanPurpose(i) and 1Year(i) are loan purpose and year fixed effects respectively. LoanGranted is
a dummy variable which is equal to one if the loan application was successful. We estimate
equation (1) using OLS, probit and logit regressions.

Results

To evaluate the performance of Spark, we run 9 models and report the results in Table 1. We
run a linear regression, a probit and a logit model, each one locally on a sub-sample using base
R functions and the Spark algorithm as well as the Spark algorithm executed on AWS on the
entire dataset. While the empirical estimation confirm some well-known facts (such as white and
male privilege in the loan market), the interesting result with regards to this paper’s research
question is the performance of the sparklyr regression commands. For example consider the linear
regression estimated in column (1)–(3). Column (1) and (2) estimate a linear regression on the
same dataset. Column (1) was estimated using native R’s linear regression model, while column
(2) used Spark’s OLS via MLlib. Both report identical results, as expected. Runtime is consid-
erably larger for the Spark solution. On a small dataset, the computational overhead used for
the distribution scheme in Spark outweighs the speed benefits gained by distributed computing.
Column (3) provides the same regression on the entire dataset, ran on AWS. Columns (4)–(6)
and (7)–(9) repeat this exercise for probit and logit regression and yield similar conclusions.
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Table 1: Microeconometric regression in Spark. To estimate a linear regression, specification (1) uses native R’s lm() on
the subsample, specification (2) uses sparklyr’s ml_linear_regression() on the subsample while specification (3) uses sparklyr’s
ml_linear_regression() on the entire dataset. To estimate a probit regression, specification (4) uses native R’s lm() on the subsam-
ple, specification (5) uses sparklyr’s ml_generalized_linear_regression() on the subsample while specification (6) uses sparklyr’s
ml_generalized_linear_regression() on the entire dataset. To estimate a logit regression, specification (7) uses native R’s lm()
on the subsample, specification (8) uses sparklyr’s ml_generalized_linear_regression() on the subsample while specification (9)
uses sparklyr’s ml_generalized_linear_regression() on the entire dataset. Runtime in local spark depends on the machine it is
ran on. The results are based on an AWS EC2 instance type m5.xlarge (master + 4 nodes). Runtime is measured in minutes. ***, **,
*, indicate statistical significance at the 1%, 5%, and 10% respectively.

OLS Probit Logit

Base R Spark Spark Base R Spark Spark Base R Spark Spark
(local) (local) (AWS) (local) (local) (AWS) (local) (local) (AWS)

Loan granted (1) (2) (3) (4) (5) (6) (7) (8) (9)

Income (000$) 0.0001∗∗∗ 0.0001∗∗∗ 0.0000061944∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 0.0006∗∗∗ 0.0006∗∗∗ 0.0002∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Male 0.0250∗∗∗ 0.0250∗∗∗ 0.0298∗∗∗ 0.0639∗∗∗ 0.0639∗∗∗ 0.070∗∗∗ 0.0982∗∗∗ 0.0982∗∗∗ 0.07006∗∗∗
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Race
White 0.01383∗∗∗ 0.01383∗∗∗ 0.00829∗∗∗ 0.0354∗∗∗ 0.0354∗∗∗ 0.0264∗∗∗ 0.0613∗∗∗ 0.0613∗∗∗ 0.02645∗∗∗

(0.0113) (0.0113) (0.0000) (0.0109) (0.0109) (0.0000) (0.0061) (0.0061) (0.0000)
Black −0.1486∗∗∗ −0.1486∗∗∗ −0.1450∗∗∗ −0.3823∗∗∗ −0.3823∗∗∗ −0.3629∗∗∗ −0.6060∗∗∗ −0.6060∗∗∗ −0.3629∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

# Observations 147,329 147,329 137,819,151 147,329 147,329 137,819,151 147,329 147,329 137,819,151
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Loan Purpose FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Runtime (min) 0.71 0.007 9.90 0.146 1.556 33.69 0.026 0.995 19.833
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A concern with big data as input for regression models is that with enough observations,
any correlation will be statistically significant at conventional levels (usually 1%). This is true,
since the variance of the estimator shrinks towards zero, as the number of observations grows
to infinity. However, this does not imply that regressions on large datasets will incorrectly find
effects, it merely means that the effect size can be arbitrary small and still statistically significant.
When discussing these issues with other researchers, we often encountered suggestions like “With
big data, the size of the effect is more important”. We are sceptical of that interpretation: The
size of an effect matters for small and big data, but the larger your dataset, the more likely it
is that you are able to pick up even very small effect sizes (Flom, 2013). In fact, you pick up
effect sizes which one would simply discard as statistically “insignificant” on small datasets. For
a more thorough treatment of large sample theory, the reader is referred to Ferguson (2017).

4.3 Panel Econometrics on Spark
This section illustrates how to estimate a panel data regression in a distributed fashion using
Spark. (See Baltagi (2008) for a comprehensive treatment of panel data models). We simulate
a big data scenario by generating an artificial panel dataset that is about 90GB in size and
contains one billion observations. The key contributions of this section are as follows: First, we
illustrate a simple Spark SQL logic to implement within-group data transformation in order to
fit a one-way fixed effects estimator. While we restrict the example in this paper to a single
fixed-effect, the approach can be easily generalized to a larger number of fixed effects which are
encountered in many real-world datasets. Second, we provide empirical results on the validity of
the estimated model coefficients and we give an indication of runtime performance and required
computing resources. Third, we show how to compute panel-robust standard errors allowing for
heteroscedasticity and serial correlation. These standard errors are currently not available in
Spark MLlib, however, we show that robust standard errors can be computed in a distributed
fashion using our customized distribution scheme.

As for the other subsections, we provide the relevant source code in the format of a Jupyter
notebook available on our github repository. Additionally, the data used for this section is
provided on our Dropbox.

Dataset

To generate our large artificial dataset we simulate data according to the following linear panel
regression model (for a general introduction to panel data and fixed effects see e.g. Wooldridge
(2010)):

yit = X′
itβ + εit ∀ i = 1, . . . , N t = 1, . . . , T (2)

where subscript i defines the panel index and refers for example to an individual, subscript t

denotes the time period, yit is the dependent variable, Xit is the matrix of regressors, β denotes
the vector of parameters and εit the error term. Furthermore, we assume that the data contains
an unobserved individual-specific fixed effect that is constant over time. In particular, the error
term εit is decomposed into an idiosyncratic component uit and an individual-specific effect αi

that is constant over time:
εit = αi + uit (3)

In addition, the individual-specific fixed effect is assumed to enter one of the regressors:

X1,it = αi + γ1,it (4)
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For simplicity all random variables above are drawn from a standard normal distribution.
We simulate a dataset with T = 10, N = 100,000,000 and K = 8 (the number of regressors
including the intercept). Furthermore, we impose a coefficient of 0.5 on all regressors without
loss of generalization.

Note that the data generating process described by equations (2), (3), (4) introduces cor-
relation between the regressors and the error implying that estimation of β via OLS yields
inconsistent results. In the next section, we illustrate how to address this problem in Spark by
implementing the well known within-group data transformation scheme which allows for consis-
tent estimation of β via OLS for panels with short T and large N . Hansen (2007) showed that
tests based on robust standard errors are consistent even for large T as long as N → ∞. While
the within-group estimator is implemented in various standard econometric software packages
(see for example reghdfe command in Stata (Correia, 2016), plm and lfe packages in R (Millo,
2017; Gaure, 2019) or linearmodels in Python (Sheppard, 2019)), Spark does not yet provide any
out-of-the box functionalities for estimating panel data models.

Spark Setup

To apply the within-group data transformation scheme we rewrite (2) by following the definition
in Cameron and Trivedi (2005):

yit − ȳi = (Xit − X̄i)
′β + (εit − ε̄i) (5)

where ȳi = 1/Ti

∑Ti

t=1 yit . By subtracting the mean across time for each individual we remove the
unobserved fixed-effect such that β can be consistently estimated via OLS. Below, we provide a
brief sketch of the Spark SQL logic that implements this simple data transformation scheme for
a dataset with one right-hand side variable:
1 ## Load panel data into Spark dataframe
2 df = spark.read.parquet(’./ panel_data’)
3

4 ## Create dataframe with mean across time for each individual i
5 df.createOrReplaceTempView("df")
6 df_mean = spark.sql("SELECT i, AVG(y) AS y_bar , AVG(x1) AS x1_bar FROM df

GROUP BY i")
7

8 ## Apply within -group data transformation scheme via left join
9 df_mean.createOrReplaceTempView("df_mean")

10 df_within_group = spark.sql("
11 SELECT a.i, t, (a.y - b.y_bar) AS y_tilde , (a.x - b.x_bar) AS x_tilde
12 FROM df AS a LEFT JOIN df_mean AS b ON a.i = b.i")

Following the transformation defined by (5), we can implement the within estimator using
Spark MLlib generalized linear regression class. We should notice though that the standard
errors provided by MLlib are the default OLS standard errors which tend to be too low as
they do not account for the loss in degrees of freedom arising from demeaning the data. To
get a consistent and unbiased estimate for the standard errors we must inflate them by factor
([N(T − 1) − K]−1[NT − K])1/2 (see Cameron and Trivedi (2005) for further details).

Yet, researchers often prefer to compute a panel-robust estimate of the variance-covariance
matrix which permits serial correlation in the error term εit and heteroskedasticity of arbitrary
form. In practice, model errors are often correlated over time for a given individual which
violates the assumption of independence in the model errors. This erroneous assumption leads
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to a downward bias in conventional standard errors as the benefit of additional time periods is
overestimated. Moreover, the failure to control for heteroskedasticity induces additional bias in
the standard errors. While at the time of writing this paper, panel-robust standard errors are
not available in Spark MLlib or any other Spark package we are aware of, we can define our
own simple distribution scheme to compute these standard errors. The distribution scheme can
be easily derived from the standard definition of the estimator for the panel-robust asymptotic
variance matrix (Arellano, 1987):

V̂ [β̂] =
[

N∑
i=1

X̃′
iX̃i

]−1 N∑
i=1

X̃′
i
ˆ̃εi

ˆ̃ε′
iX̃i

[
N∑

i=1

X̃′
iX̃i

]−1

(6)

where X̃i = Xi − X̄i is a T ×K matrix of the transformed regressors and ˆ̃εi = ỹi − X̃iβ̂ is a T × 1
vector of residuals for panel index i from estimating (5) via OLS. Note that in our example
N = 100,000,000 making the size of this dataset much too large to compute V̂ [β̂] on a standard
computer. However, we exploit (6) to break the computation into small independent chunks,
apply the computation on each of them separately and finally combine the resulting output to
construct V̂ [β̂]. Figure 5 provides a graphical representation of the distribution scheme.

A paired RDD with equally sized data partitions is generated where the RDD’s key is
defined by the panel index and the value holds the data (X̃i, ˆ̃εi) for that particular index. After
mapping the RDD onto the executors a reducer function is called to perform the crossproduct
computation of submatrices. The output is then collected back to the master node where V̂ [β̂]

Figure 5: Distribution scheme for panel robust variance estimate. In this example, we
illustrate a distribution scheme for panel robust variance estimates. This example uses three
Spark executors w = 1, 2, 3. The input data (X̃, ˆ̃ε) has N × T observations of K variables and
the N × T × 1 vector of residuals of the regression ˆ̃ε. In the map step, the data (N × T/3
observations each) is distributed across executors. A hash partitioner is used to ensure that all
data for a given panel index is sent to the same executor (for details refer to the code on our
github repository). Each executor w computes (X̃′

wX̃w, X̃′
w
ˆ̃ε′
w
ˆ̃εwX̃′

w) on the sub-sample of data
allocated to the executor w. In a final step, the results are returned to the master node where
the partial sums are summed up to serve as an input for (6).
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can be computed with little computational effort. Given a size of one billion observations and
8 regressors (including the intercept), we assign one million observations to a single partition
which is reduced to two small two-dimensional arrays, each of dimension 8×8. As a result, 2,000
of these arrays are collected to the master node which are then used as an input to form (6).
Note that in order to obtain correct results when distributing the computation across executors
each RDD partition must hold all the data for a given panel index which is ensured by the hash
partitioner function.
1 ## Select relevant columns for computing sandwich VCE
2 df = df.select(["id", "time", "u", "intercept", "x1", "x2", "x3", "x4", "x5",

"x6", "x7"])
3

4 ## Create hash partitioner assuring that data for each id is in one partition
5 def key_partitioner(id):
6 return hash(id)
7

8 ## Create key -value RDD with 1,000 partitions
9 key_value_rdd = df.rdd.map(lambda x: (x[0], x[1:10])).partitionBy (1000 ,

key_partitioner)
10

11 ## Compute array cross -products for sandwich VCE and collect results to master
node

12 arr_bread_meat = key_value_rdd.mapPartitions(compute_bread_meat).collect()
13

14 ## Construct bread and meat arrays and sandwich VCE
15 bread = np.linalg.inv(sum([item [0] for item in arr_bread_meat]))
16 meat = sum([item [1] for item in arr_bread_meat])
17 vcov = bread.dot(meat).dot(bread)

Results

In this section we show results for 3 different model specifications reported in Table 2 as OLS,
Fixed Effects and Fixed Effects (Robust VCE). For each specification Table 2 shows estimation
and runtime results across three separate estimation runs. The first two columns in each speci-
fication provide a comparison of results between Spark in local mode and R’s plm package using
a small subsample of data (100,000 rows). Essentially, this comparison serves to confirm the
validity of estimated coefficients and standard errors obtained in Spark taking as a benchmark
a popular panel data package from the R community. The estimation and runtime results for
the complete dataset can be found in the last column of each specification.

Columns (1)–(3) show coefficient and standard error estimates for the OLS specification
corresponding to a linear regression without prior data transformation to account for fixed
effects. As expected the coefficient estimates on regressor X1 show in all three regressions a
significant deviation from its true value of 0.5. This bias is corrected for in the fixed effects case
when estimation is performed on the transformed dataset as shown in columns (4)–(6) where
standard errors have been adjusted for the loss in degrees of freedom. Columns (7)–(9) contain
the estimation results with panel robust standard errors using our custom distribution scheme.

A comparison of runtimes across columns shows that the performance advantage of Spark
comes into play for large volumes of data. For the cases that consider only a subsample of data the
parallelization through Spark does not provide any performance improvement over local model
fitting. Columns (3), (6) and (9) show the results when the entire dataset is used. Note that in
order to provide a realistic indication of required cluster life time the reported runtime includes
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Table 2: Panel Regression in Spark To estimate a linear regression, specification (1) uses base R’s lm() on the subsample,
specification (2) uses PySpark’s MLlib LinearRegressionModel() on the subsample while specification (3) uses PySpark’s MLlib
LinearRegressionModel() on the entire dataset. To estimate a static panel regression, specification (4) uses R’s plm() package on
the subsample, specification (5) uses PySpark’s MLlib LinearRegressionModel() on the within-group transformed subsample while
specification (6) uses PySpark’s MLlib LinearRegressionModel() on the within-group transformed entire dataset. Standard errors
under specification (4)–(6) have been adjusted for the loss in degrees of freedom induced by the within transformation. To estimate
a panel regression with robust standard errors, specification (7) uses R’s plm package on the subsample, specification (8) uses our
distributed variance covariance estimator on the subsample while specification (9) uses our distributed variance covariance estimator
on the entire dataset. Runtime in local spark depends on the machine it is ran on. The results are based on an AWS EC2 instance
type m4.xlarge (master + 10 nodes). Runtime is measured in minutes. ***, **, *, indicate statistical significance at the 1%, 5%, and
10% respectively.

OLS Fixed Effects Fixed Effects (Robust VCE)

base R Spark Spark R plm() Spark Spark R plm() Spark Spark
(local) (local) (AWS) (local) (local) (AWS) (local) (local) (AWS)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

X1 0.9975∗∗∗ 0.9975∗∗∗ 0.9999∗∗∗ 0.4997∗∗∗ 0.4997∗∗∗ 0.5000∗∗∗ 0.4997∗∗∗ 0.4997∗∗∗ 0.5000∗∗∗
(0.0027) (0.0027) (0.0000) (0.003339) (0.003339) (0.000) (0.003342) (0.003342) (0.000)

X2 0.4967∗∗∗ 0.4967∗∗∗ 0.5000∗∗∗ 0.4987∗∗∗ 0.4987∗∗∗ 0.5000∗∗∗ 0.4987∗∗∗ 0.4987∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003337) (0.003337) (0.000) (0.003361) (0.003361) (0.000)

X3 0.4895∗∗∗ 0.4895∗∗∗ 0.5000∗∗∗ 0.4916∗∗∗ 0.4916∗∗∗ 0.5000∗∗∗ 0.4916∗∗∗ 0.4916∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003338) (0.003338) (0.000) (0.003306) (0.003306) (0.000)

X4 0.5028∗∗∗ 0.5028∗∗∗ 0.5000∗∗∗ 0.5039∗∗∗ 0.5039∗∗∗ 0.5000∗∗∗ 0.5039∗∗∗ 0.5039∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003339) (0.003339) (0.000) (0.003350) (0.003350) (0.000)

X5 0.4988∗∗∗ 0.4988∗∗∗ 0.5000∗∗∗ 0.5017∗∗∗ 0.5017∗∗∗ 0.5000∗∗∗ 0.5017∗∗∗ 0.5017∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003334) (0.003334) (0.000) (0.003316) (0.003316) (0.000)

X6 0.4994∗∗∗ 0.4994∗∗∗ 0.5000∗∗∗ 0.5002∗∗∗ 0.5002∗∗∗ 0.5000∗∗∗ 0.5002∗∗∗ 0.5002∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003352) (0.003352) (0.000) (0.003354) (0.003354) (0.000)

X7 0.5101∗∗∗ 0.5101∗∗∗ 0.5000∗∗∗ 0.5036∗∗∗ 0.5036∗∗∗ 0.5000∗∗∗ 0.5036∗∗∗ 0.5036∗∗∗ 0.5000∗∗∗
(0.0039) (0.0039) (0.0000) (0.003334) (0.003334) (0.000) (0.003316) (0.003316) (0.000)

# Observations 100,000 100,000 1,000,000,000 100,000 100,000 1,000,000,000 100,000 100,000 1,000,000,000

Runtime (min) 0.019 0.017 8.33 0.183 0.083 36.09 0.386 0.367 83.52
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not only the time for the actual model fitting stage but also for the time it takes to perform the
relevant data transformation steps. A comparison of columns (3) and (6) indicates that this data
transformation can be computationally expensive as runtime is substantially higher for the fixed
effects specification. The highest runtime is reported for column 9 which is not surprising given
that on top of data transformation this specification involves both the computation of residuals
and the variance covariance matrix in a distributed fashion. Finally, note that the standard
errors in column (7) are the same as in column (8) which confirms that our custom distribution
scheme yields valid results for the panel robust variance estimator.

4.4 Time Series Econometrics on Spark
In this section we illustrate how to leverage Spark for large-scale time series analysis which plays
a crucial role in the decision making process of many public and private institutions. Real-world
forecasting systems in industries including manufacturing, retail, finance and energy nowadays
have to process large forecasting workloads scaling to millions of time series. Moreover, research
in economics often requires fitting many time series models. With each individual model typically
containing only a limited number of data points, the setup is ideal for distributed computing
since existing estimation methods can be executed in parallel across the worker nodes of the
cluster framework.

An end-to-end machine learning system for probabilistic demand forecasting at Amazon
built on Spark is described in Böse et al. (2017). The platform scales to large datasets containing
millions of time series. The authors propose a simple distribution scheme for what they call a
local learning approach, using Spark’s map() operator to distribute model fitting and forecasting
tasks across the cluster. Note that the distribution logic described in this section follows a very
similar approach. A brief review of other distributed machine learning frameworks is given by
Chun et al. (2016).

Dataset
The dataset consists of 1,000 simulated time series with each draw of length 1,000. While many
real-world time series datasets are considerably larger, the dataset is sufficiently large to demon-
strate the performance gains from distributing the model fitting and forecasting process. More-
over, the limited size of the dataset facilitates easy reproducibility of the steps in this guide.

Time series are simulated from an Autoregressive Moving Average Process (ARMA) process,
defined as follows (see, for example, Hamilton (1994)):(

1 −
2∑

i=1

αiL
i

)
Xt =

(
1 +

2∑
i=1

θiL
i

)
εt , εt ∼ N (μ, σ 2) (7)

where X is a real valued vector ordered by time index t , L is a lag operator, αi and θi define
the parameters on the autoregressive (AR) and moving average (MA) component, and εt is an
independent, identically distributed disturbance term sampled from a normal distribution. Time
series draws are generated with the arima_sim() method in R’s stats package (see R Core Team
(2019)). Following the example in the official package documentation, the orders of the AR and
MA components are restricted to two and the AR and MA coefficients α1, α2, θ1, θ2 are set to
0.89, −0.49, −0.23, 0.25 respectively. The variance σ 2 of the disturbance term is set to 0.18.

The simulated time series data is written to a csv file with three columns. One column holds
the time series data, a second column a unique identifier for each series and a third column a
sequence of numbers specifying the order of the data for each series. The last column is required
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because Spark may not preserve the temporal order of records when distributing the data across
the cluster. To be able to fit a time series model after processing the data in Spark we therefore
need to add this column in order to recover the temporal ordering of the data.

Spark Setup

This section illustrates the key concept of our distributed forecasting system in Spark. In short,
the distribution of model fitting and forecasting is broken up into the following subtasks:
• Create custom Python module (we call it fit_model_and_forecast.py) with method that

– reads time series data based on time series identifier contained in RDD partition
– fits time series models, generates forecasts and saves fitted model

• Read dataset with time series data into Spark dataframe on master node
• Create RDD with distinct time series identifiers from Spark dataframe and partition RDD

into collections of distinct identifiers
• Map RDD partitions of identifiers onto Spark executors
• On each Spark executor, import custom Python module and call method from module

To illustrate the simplicity of this approach we provide below the Python code that imple-
ments this parallelization logic in less than 10 lines of code:
1 ## Load time series data into Spark dataframe
2 df = spark.read.parquet(’/path/to/time_series_data ’)
3

4 ## Create RDD with distinct identifiers and repartition dataframe into 100
chunks

5 time_series_ids = df.select(’ID’).distinct ().repartition (100).rdd
6

7 ## Add Python module to Spark context for parallel execution
8 spark.sparkContext.addPyFile(’/path/to/python_module/fit_model_and_forecast.py

’)
9

10 ## Function to import Python module on Spark executor for parallel forecasting
11 def import_module_on_spark_executor(time_series_ids):
12 from fit_model_and_forecast import fit_model_and_forecast
13 return fit_model_and_forecast(time_series_ids)
14

15 ## Parallel model fitting and forecasting
16 time_series_ids.foreach(lambda x: import_module_on_spark_executor(x))

We first load the entire time series dataset into a Spark dataframe and create a partitioned
RDD with distinct time series identifiers. In the context of the exercise in this paper, we set
the number of RDD partitions to 100 using the repartition() function, cutting the collection of
distinct identifiers into 100 subsets. Given that we have 1,000 time series in our dataset, the
average number of identifiers in each partition is 10. Since Spark will run one task for each
partition, the number of RDD partitions in combination with the number of executors allocated
for the application is an important parameter that determines the degree of parallelism.

In order to make our custom Python module available to all Spark executors, we need to add
the module to the Spark context by calling the addPyFile method that takes as an argument the
file path to the module. Next we define a function that we call below to (i) import the Python
module on each Spark executor and (ii) to execute the Python module’s method that takes as an
input an RDD element and performs model fitting and forecasting tasks for the time series in
question. Finally, we call this function for each RDD partition and its elements in a distributed
fashion by calling Spark’s foreach method.
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Table 3: Runtime for different execution schemes. The results are based on an AWS EC2
instance type m4.2xlarge. Runtime is measured in minutes, Memory is measured in GiB, Virtual
CPUs refers to the number of virtual processing units and # Partitions defines the number of
RDD partitions, containing subsets of distinct time series IDs.

Scenario Parallel Virtual CPUs Memory # Partitions Runtime

1 no 16 32 – 201.27
2 yes 192 384 100 6.20

Results

Given a total sample size of 1,000 for each time series, we reserve the last 50 observations of
the sample for forecast evaluation while the first 950 observations are used to fit an initial
ARMA(2,2) model which is then used to produce the first forecast. Subsequently, we use a
recursive estimation scheme, i.e. the size of the estimation sample for model fitting is extended
by one observation as one makes forecasts for successive observations. As a result, a total of
50,000 estimations is performed across all time series in the dataset. The forecasts as well as the
final model, fitted on the full sample for each time series, are stored in the S3 file system. For
sake of simplicity, only one-step ahead forecasts are generated.

Table 1 shows the runtime for two different execution schemes. In the first scenario, the
forecasting algorithm is executed on the master node in a non-distributed fashion and, thus,
mirrors a single-core single-machine execution scheme. In this setting, models and forecasts are
produced by iterating through all time series identifiers using a for loop. This scenario is used
as a benchmark case to evaluate the performance gain from the distributed execution scheme.

The cluster hardware has been configured to 13 EC2 instances of type m4.2xlarge, compris-
ing a total of 192 virtual CPUs and 384 GiB of RAM for the 12 worker nodes. The number of
RDD partitions containing collections of distinct time series IDs is set to 100. Table 3 shows the
runtime results for the two different scenarios.

The total runtime for the non-distributed scheme is about 200 minutes. This compares
to roughly 6 minutes execution time for the distributed scheme, reducing runtime by about
95%. Clearly, the runtime of the distributed approach is strongly affected by the hardware
configuration and the number of RDD partitions. An increase in the number of RDD partitions
and a more powerful cluster with more CPUs and memory will likely lead to higher performance
gains. While the impact of different hardware settings on the performance gain is beyond the
scope of this paper, the results show that the distributed scheme can be used to complete
large model fitting and forecasting workloads that would be intractable without substantial
parallelization.

5 Conclusion
This paper presents a unified framework for handling large datasets for empirical research. It
enables economists to handle and analyse ever growing datasets which are computationally
difficult to evaluate on retail-grade computers using their existing data handling pipelines. With
datasets becoming larger and larger, these computational constraints are more likely to be
binding in the future. With data coming in ever higher frequency, dimensions and potential for
being linked, being able to handle such data sources will likely result in novel empirical research
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designs. By lowering the threshold of employing cloud computing solutions to handle these kinds
of data sets, we aim to contribute to this process.

The cloud computing solution we elucidate, is built in Apache Spark and the distribution
scheme is suitable for many established econometric methods as well as now popular machine
learning models. After providing some background on distributed computing architectures, we
demonstrate ease of use and (sizeable) computational gains. We do so by providing codes and
configuration instructions for easily reproducible examples featuring a range of applications from
micro-, panel- and time-series econometrics. In a first step, we demonstrate how Spark compares
to a local execution of base R and Python codes. Intuitively, the computational overhang of
mapping data cross the spark cluster is inefficient on small datasets. Yet the empirical results
are identical and the Spark code comes at almost no additional complexity. We then take the
operation to the cloud: Running the same codes we ran locally on a subset of data, we are
able to handle and analyse datasets which would have been difficult to handle on retail grade
computers. We provide an overview of popular statistical models which (i) are implemented in
Spark as of now, (ii) can be estimated using simple modifications of existing commands and (iii)
are difficult to run on Spark.

The presented approach requires minimal installation and configuration effort and it can
be implemented with little background in computer science and parallel/distributed computing
and without physical access to high performance computers. Additionally, the appendix of this
paper contains extremely detailed instructions on how to lunch a computing cluster and provides
minimal examples, which can easily be adapted to the readers needs.

Supplementary Material
Supplementary material is available on our github page, containing all codes to replicate the
results along links to the data. Additional instructions are also available, detailing how to setup
the AWS infrastructure: https://github.com/benjaminbluhm/econometrics_at_scale.
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