
Supplementary Material

Econometrics at Scale:

Spark Up Big Data in Economics

1

1 Introduction

The supplementary material contains all codes and setup details necessary to repli-
cate the results of the paper “Econometrics at Scale: Spark up Big Data in Eco-
nomics”. Moreover, we hope it is a useful guide for researchers who are not familiar
so far with distributed computing solutions. Our set up is built on Amazon Web
Services (AWS) and while it would easily translate to another provider (such as
Cloudera, Microsoft Azure, Google Cloud Platform, etc . . .), the instruction below
reference solely to the AWS platform. There is a massive amount of documenta-
tion for AWS available online and many user written tutorials describe different
applications. In what follows we condensed this information into the minimal steps
necessary to get your own data handling and analysis pipeline running on the cloud
framework. We benefited greatly both from Amazon’s official documentation as
well as various resources from third parties. Some of those explained certain steps
better than we ever could, so we merely restate them here such that the readers of
our paper have all information in one place. Such cases are clearly marked at the
beginning of each section.

A word of caution

Please be aware you will be billed by AWS for running computing instances and
trying to replicate our setup will require running AWS computing instances. Also,
uploading data to AWS may results in cyber-security risks. Make sure that you
have the relevant permissions for your data and jurisdiction. This guide comes with
absolutely no warranty. You may find some instructions helpful but you use it at
your own risk!

The appendix is structured as follows. Section 2 describes how to run spark on
your local machine. More specifically, section 2.1 describes pyspark and section 2.2
describes sparklyr. The next subsection introduces Amazon Web Servies (AWS)
and presents how to initialize a minimal setup to reproduce the results of this paper.
The last subsection 4 demonstrates how to deploy pyspark and sparklyr in section
4.1 and 4.2 respectively.

2 Running Spark on your local machine

In this section, we show how to run Spark in local mode from a Jupyter notebook
using pyspark and from RStudio using sparklyr.

2.1 PySpark on Jupyter Notebook

The first step in the installation process is to download the latest Spark release from
the official website and to decompress the folder into the home directory of your
machine and (of course) have a Python distribution installed. As a prerequisite,

2

make sure to install the latest version of the Java Development Kid 8. Afterwards
you need to add the home directory of your local Spark installation to the path
variable in your system’s environment:

• On MacOS you need to edit the .bash profile file, which is stored in your
home directory, and add the following statement (You can edit the file using
a standard text editor such as for example nano. Open the command line
interface and after changing into your home directory, type nano .bash profile
to edit the file (changes can be saved via ctrl + x). Subsequently, the changes
need to be activated via command source .bash profile):
export PATH=$PATH:/ Users /home/ spark −2.4.0−bin−hadoop2 . 7
export SPARK PATH=/Users /home/ spark −2.4.0−bin−hadoop2 . 7
export PYSPARK DRIVER PYTHON=” jupyter ”
export PYSPARK DRIVER PYTHON OPTS=”notebook”
export PYSPARK PYTHON=python3
a l i a s spark notebook=’ source a c t i v a t e your−env ; $SPARK PATH/bin /pyspark −−master l o c a l [1] ’

To start a Spark session, simply execute the following lines in your Jupyter
notebook:

in jupyte r type :
from pyspark . s q l import SparkSess ion
spa r k s e s s i o n = SparkSess ion . bu i l d e r . appName(’ e c onome t r i c s a t s c a l e ’) . getOrCreate ()

• On Windows the process is slightly more involved. Download and decompress
Spark to a local directory (avoid blanks in the path), e.g. to C:\opt\spark.
Next, download the winutils.exe into the bin folder of your Spark directory
(e.g. C:\opt \spark\spark-2.4.0-bin-hadoop2.7\bin) and add the rel-
evant environmental variables by running the following commands from the
command line interface (You can open the command line interface by pressing
ctrl + R and type cmd, which will open the console):
se tx SPARKHOME C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 . 7
se tx HADOOPHOME C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 . 7
se tx PATH ”%PATH%;C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 .7\ bin ”

Close the terminal window and reboot your computer. Restart the terminal
and enter pyspark which will open a Jupyter notebook. In the Juypter noote-
book enter the following codes to create a spark context and test whether you
are on the right version:

in Juypter type :
sc = SparkContext . getOrCreate ()
sc . v e r s i on
>> ’ 2 . 4 . 0 ’

2.2 Sparklyr on RStudio

If you are using R, chances are you are using the RStudio editor, which is free
of charge for personal and academic use at the time of writing this paper. The
developers of RStudio provide a magnificent introduction to sparklyr, which can
be found here. In what follows we borrow greatly from those resources, yet focus a
bit more on the “social scientist” perspective of data handling and analysis.

To install sparklyr simply run the following commands in your R console:

3

https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://spark.rstudio.com/

i n s t a l l . packages (” spa rk ly r ”)
l i b r a r y (spa rk ly r)
spark i n s t a l l (v e r s i on = ” 2 . 1 . 0 ”)

Once installed, load the library and create a connection:
l i b r a r y (spa rk ly r)

de f i n e spark con f i gu r a t i on
conf <− spark con f i g ()

conf $ ‘ s pa rk ly r . c o r e s . l o ca l ‘ <− 2 # number o f CPU core s spark can use
conf $ ‘ s pa rk ly r . s h e l l . d r iver−memory ‘ <− ”8G” # memory s i z e o f s h e l l d r i v e r
conf $ spark .memory . f r a c t i o n <− 0 .6 # f r a c t i o n o f t o t a l computer ’ s memory ava i l a b l e to spark

e s t a b l i s h a spark connect ion
sc <− spark connect (master = ” l o c a l ” ,

c on f i g = conf)

The official documentation continues by exploring the well-known flights dataset
and we suggest you follow it along. Here however, we would like to continue with an
example which might be a bit closer to what economists are used to. Suppose you
have a very large dataset and would like to develop your Spark application in local
mode (to avoid paying cloud services fees) but the dataset is too large to be read
into memory. Since your local spark instance is limited by the physical memory of
your computer, we will read in only a fraction of the entire dataset. As an example,
we chose the popular HMDA data provided by the Federal Financial Institutions
Examination Council (FFIEC), which contains loan application data for the US. To
develop locally we created a subsample containing the first 10,000 observations from
the yearly HMDA datasets. Since it is only a small subsample you can fit it into
your computers memory and develop your Spark application locally:
import smal l subset to R
df = read . csv (”HMDA subsample . csv ”)

copy the R dataframe df to spark us ing copy to ()
df spark = copy to (sc , df)

or load i t d i r e c t l y to spark
hmda spark= spark read csv (sc , name = ”hmda spark ” , header= TRUE, d e l im i t e r = ” , ” ,

path= ”HMDA subsample . csv ”)

Now, let’s compute the mean loan amount by year in R using dplyr and in Spark
usings sparklyr:

meanbyyear = hmda %>%
group by (as o f year) %>%
summarise (mean loan amounts 000 s =

mean(loan amount 000 s))

meanbyyear
A t i bb l e : 10 x 2

as o f year mean loan amounts 000 s
<int> <dbl>

1 2007 176 .
2 2008 201 .
3 2009 201 .
4 2010 219 .
5 2011 224 .
6 2012 225 .
7 2013 230 .
8 2014 242 .
9 2015 246 .

10 2016 259 .

meanbyyear = hmda spark %>%
group by (as o f year) %>%
summarise (mean loan amounts 000 s =

mean(loan amount 000 s)) %>%
c o l l e c t ()

meanbyyear
A t i bb l e : 10 x 2

as o f year mean loan amounts 000 s
<int> <dbl>

1 2008 201 .
2 2009 201 .
3 2011 224 .
4 2014 242 .
5 2015 246 .
6 2010 219 .
7 2016 259 .
8 2007 176 .
9 2012 225 .

10 2013 230 .

A great feature of sparklyr is that you can use dplyr syntax for your Spark ap-
plication. Note how both approaches yield the same result. Also, note that the Spark
results are not ordered. This is because the group by() command in sparklyr dis-
tributes the data across executors and collects them back after computing the mean,

4

which does not necessarily preserve the order. This example illustrates the basic data
handling pipeline in Spark using sparklyr:

1. Establish a Spark connection

2. Load the data into Spark

3. Using dplyr syntax, manipulate the Spark dataframe

4. Load the results back to the R environment using collect()

Finally, we can disconnect the local Spark interface:
spark d i s connec t (spark)

3 Setting up a cloud computing environment (on

AWS)

3.1 Setting up AWS and upload data

In this section we walk through the process of creating an Amazon Web Services
(AWS) account. Before we get into the details, note that if you are running com-
puting instances on AWS you will be billed and a credit card is necessary for the
setup. Also, note that uploading data to AWS and using computing instances may
result in data vulnerabilities. This manual comes with no warranty whatsoever.

You can create your own account at https://aws.amazon.com/. Upon login
you will see the AWS Management Console:

As a first step, we will upload data to AWS storage (called “S3”). To this end
click Services and in the Storage section choose S3. First, we create a bucket for
the project. To do so click + Create Bucket. Choose any (DNS compliant) name.

5

https://aws.amazon.com/

We named our bucket “econometricsatscalebucket” (Note that you cannot use the
same name, since all buckets have to be unique on S3.). Under Configure options
and Set permissions you may leave the standard settings.

In the bucket, we create several folders, where we store research data, bootstrap
scripts and outputs. Specifically we create 3 folders: “data”, “scripts”, “output”. In
order to replicate our analysis in section ?? and ?? upload the HMDA data to your S3
in a subfolder called data/ micro . For the panel econometrics exercise in section
??, upload our simulated data to a subfolder data/ panel . For the time series
exercise in section ??, upload our simulated time series data to a subfolder called
data/ time_ series . Additionally, we need to create subfolders to store outputs
from the exercise, namely parquet files (output/ time_ series/ parquet), forecasts
(output/ time_ series/ forecasts) and fitted models (output/ time_ series/
models). Also make sure to upload the python modul fit model and forecast.py
for computing forecasts and saving fitted models to a subfolder scripts/ time_

series . Instructions regarding the necessary bootstrap scripts for sparklyr will be
provided at the respective subsections below.

3.2 Creating an EMR cluster and installing custom software

In this section we walk through the process of creating a Spark cluster using AWS
EMR service. As emphazised earlier there are many other cloud vendors which
provide similar services, so this section only contains one out of many other existing
solutions that may be equally well or possibly even more suited for your application.

The firs step in creating a cluster is to go to the AWS Services menu and select
EMR:

The EMR dashboard will open and provide you with the option to create a
cluster as shown below:

By clicking on the “Create cluster’ button we enter the cluster configuration
dashboard, noting that we have actually not yet created a cluster so we do not have
to worry about any service charges at this stage. Next we need to configure our
cluster to install Spark (at the time of writing this paper the latest version available

6

in EMR is 2.4.0) and also Livy which is required for running a Jupyter notebook
on the cluster. In order to configure the cluster software, we click on the “Go to
advanced options” field:

In Release choose the EMR version you want to run. To replicate the finding of
this paper, choose “emr-5.23.0”. In the Software Configuration section, check the
Spark and Livy boxes and leave all other configurations at their default values:

We proceed to configure the hardware settings of the cluster including the in-
stance type and the number of instances. The hardware configuration strongly
depends on the resource requirements (and budget considerations) of the specific
application. We recommend to start with a small cluster with limited resources to
familiarize yourself with the process of deploying and running your locally developed
Jupyter notebook or RStudio script. For example, running one master and two core
instances of type m4.large will give you enough flexibility to deploy and test your
application on a small scale, while it will barely cost you more than a few dollars
over a couple of hours:

7

Once you have selected your preferred hardware configuration, go to the next
section General Cluster Settings :

At the bottom of the page there is a Bootstrap Actions field where custom actions
can be specified to install additional software or to customize the configuration of
cluster instances. In essence, bootstrap actions are scripts that run on all nodes
after the cluster is launched. For this purpose, a shell script specifying your custom
installations must be uploaded to a folder in the S3 bucket. For example, if you
want to install scikit-learn on all cluster nodes you would upload a shell script
with the following content:

8

#!/ bin /bash −xe
sudo pip i n s t a l l −U sk l ea rn

Add the bootstrap action by selecting “Custom action” and, under the “Config-
ure and add” button, browse the S3 path to the shell script (no optional arguments
needed) and click ”Add”.

After adding the custom bootstrap action, move on to the last step Security
where you have to add your previously created EC2 key pair. Finally, you can
create the cluster via the “Create cluster” button:

4 Running Spark on a cluster

4.1 Running PySpark

This section describes the procedure of creating a Jupyter notebook for running
PySpark jobs on an AWS EMR cluster. Note that the notebook will automatically
be saved to your S3 bucket so after terminating the cluster you can still use the
notebook when you start another cluster at a later stage.

To create a notebook, go to the EMR dashboard, select Notebooks and choose
Create notebook. In the notebook configurations window, you are asked to provide
a notebook name and under the Cluster* option you can either choose to create
a new cluster (via Create cluster) or alternatively you can attach to an existing
running cluster. As mentioned above, you may want to start with a small cluster to
familiarize yourself with the notebook workflow on EMR. For example, if you specify
three instances, one instance is devoted to the master node and two instances are
devoted to the worker nodes. You can also select an S3 location to store your
notebook.1 Finally, you can create the notebook by choosing Create notebook. A
new view will open showing the configuration details of the notebook. Once the
cluster is ready the notebook can be accessed via the Open button.

In the notebook, a Spark session is automatically started which can be verified
by following the example below:

1If you leave the default value a directory will automatically be created in your bucket.

9

data = [1 , 2 , 3 , 4 , 5]
sc = spark . sparkContext
d i s t da t a = sc . p a r a l l e l i z e (data)
d i s t da t a . c o l l e c t ()

4.2 Running sparklyr

In this section we show how to deploy sparklyr on AWS EMR. The general steps are:

1. Configure and upload a bootstrap script

2. launch a cluster using the appropriate bootstrap script

3. Connect remotely to your RStudio on AWS

Configuring and uploading a bootstrap script

For the first step, we suggest to upload a bootstrap script which will install RStudio
Server along with sparklyr. One such script is provided by Cosmin Catalin on his
GitHub account. For reference, we forked it to our repository and you can download
the install-rstudio-server.sh bootstrap script here. You can open it using any
editor and (if you wish) edit the following parameters:
USER=”drwho”
PASS=” t a r d i s ”
SPARK=” 2 . 1 . 1 ”

This allows to change the username and password for the web-login to the AWS
RStudio Interface and the spark version running on it. Finally, upload the install-
rstudio-server.sh to your S3 storage to any folder (for example into economet

ricsatscale\bootstrap\sparklyr.

Launch a cluster

When launching a cluster as described in 3.2, choose the install-rstudio-server.sh
as bootstrap script (and leave the additional parameters field blank). Create the
cluster. While the cluster is launching you may edit the security group of your mas-
ter node and enable TCP Port 8787 from Anywhere on your master node in order
to allow a remote connect to RStudio Server. To do so, click Security ⇒ Create a
security group. As a security group name you can choose anything, similarly for the
Description. Upon creation, click “Inbound Rules” in the ribbon, and click “Edit
rules” and then “Add Rule”. For Type choose “Custom TCP Rule”, and set the
port range to 8787. As source, choose “Anywhere”. Finish by clicking “Save rules”.

Connect remotely (from a Windows machine)

As a first step, you will need to install Putty2, an SSH client, which lets you run
sparklyr on AWS from the comfort of your local machine’s RStudio interface. Ama-
zons keypair format is not supported by putty, which is why you need to convert it

2You can find the latest version here: https://www.chiark.greenend.org.uk/~sgtatham/

putty/latest.html

10

https://gist.github.com/cosmincatalin/a2e2b63fcb6ca6e3aaac71717669ab7f#file-install-rstudio-server-sh
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

first. To do so, execute puttygen, click File ⇒ Conversions ⇒ Import Key and choose
the AWS keypair (“.pem” file) which you downloaded when creating it. Finish by
choosing Save Key. Now, you can configure PuTTy. How to do so is documented
on AWS and merely restated here for reference:

1. Click Category List ⇒ Session and in the Host name field, type “hadoop@MasterPublicDNS”,
where “MasterPublicDNS” is your master’s node address, for example:
“hadoopec2-###-##-##-###.compute-1.amazonaws.com”

2. Click Category List ⇒ Session > SSH ⇒ Auth ⇒ Browse and select the .pkk

file which you generated earlier.

3. Click Category List ⇒ Session > SSH ⇒ Tunnels and in the source port field,
type 8157. Leave the Destination field blank and select the Dynamic and Auto

options

4. Choose “Add” and “Open” and choose “Yes” to dismiss the PuTTy security
alert.

The AWS console should open. In the AWS consolte type:
sudo rs tud io−s e r v e r s t a r t

and press enter. This will launch RStudio on the AWS master node. Finally, to
access RStudio on AWS open a browser and copy and paste:

@ec2-###-##-##-###.compute-1.amazonaws.com:8787

to your browser. You will be asked to enter the username and password created
above and stored in your install-rstudio-server.sh file.

Connect remotely (from a Mac)

How to do so is documented on AWS and merely restated here for reference:

1. Open a terminal window. On Max OS X, choose Applications ⇒ Utilities ⇒
Terminal. On other Linux distributions, terminal is typically found at Appli-
cations ⇒ Accessories ⇒ Terminal.

2. To establish a connection to the master node, type the following command.
Replace “˜\mykey.pem” with the location and filename of the private key file
(.pem) used to launch the cluster:

ssh -i ~/mykey.pem hadoop@ec2-###-##-##-###.compute-1.amazonaws.com

The AWS console should open. In the AWS console type:
sudo rs tud io−s e r v e r s t a r t

and press enter. This will launch RStudio on the AWS master node. Finally, to
access RStudio on AWS open a browser and copy and paste:

@ec2-###-##-##-###.compute-1.amazonaws.com:8787

to your browser. You will be asked to enter the username and password created
above and stored in your install-rstudio-server.sh file.

11

	Introduction
	Running Spark on your local machine
	PySpark on Jupyter Notebook
	Sparklyr on RStudio

	Setting up a cloud computing environment (on AWS)
	Setting up AWS and upload data
	Creating an EMR cluster and installing custom software

	Running Spark on a cluster
	Running PySpark
	Running sparklyr

