
Time Series Econometrics at Scale:

A Practical Guide to Parallel Computing in (Py)Spark

Benjamin Bluhm∗

August 6, 2018

Abstract

This paper provides a practical programming guide to setting up a minimum
working example of a distributed system for parallel time series analysis. The sys-
tem is built in Apache Spark on top of Amazon’s Hadoop-based service Elastic
MapReduce (EMR). A simple forecasting exercise with 1,000 time series illustrates
the proposed parallelization scheme, which reduces total runtime performance by
about 95% relative to a single-core, single-machine setting. The ease of implement-
ing this scheme makes this guide a useful reference for econometricians with a limited
background in parallel programming. To facilitate reproducibility of the practical
steps in this guide, the PySpark/Python code is available for download on github.1

Keywords: Time Series Econometrics, Distributed Computing, Apache Spark

1 Introduction

Time series analysis plays a crucial role in the decision making process of many public
institutions and private firms. The availability of more and more data in recent years
offers promising opportunities to optimize this data-driven decision process. At the same
time, the need to process ever growing amounts of data poses significant computational
challenges requiring new analytical tools and approaches. Real-world forecasting systems
in industries including manufacturing, retail, finance and energy nowadays have to pro-
cess large forecasting workloads scaling to millions of time series. The large size of these
datasets requires a high degree of parallelism to enable data scientists and researchers to
quickly engage in data exploration, model fitting and parameter tuning. In this context,
substantial progress has been made over recent years in developing distributed systems
that leverage the power of massive clusters of shared machines.

While some papers by large internet companies illustrate how to take advantage of
distributed systems for large-scale parallel time series analysis, the literature provides

∗Email: benjaminbluhm@gmail.com
1The github repository to reproduce the steps in this guide is available via: https://github.com/

benjaminbluhm/spark_parallel_forecasting

1

https://github.com/benjaminbluhm/spark_parallel_forecasting
https://github.com/benjaminbluhm/spark_parallel_forecasting


little guidance on the technical implementation details. The objective of this paper is
to bridge this gap by providing a practical programming guide to setting up a minimum
working example of a distributed system suitable for parallel time series analysis and
forecasting. The system builds on Apache Spark on top of Amazon’s Hadoop-based
service Elastic MapReduce (EMR) which supports memory and CPU-intensive parallel
computations. I will illustrate the parallelization scheme, which reduces total runtime
performance by about 95% relative to a single-core single-machine setting, by walking
through a simple forecasting exercise applied to a dataset of 1,000 time series. The ease
of implementing this scheme makes this guide a useful reference for econometricians with
a limited background in parallel programming.

The remainder of the paper is organized as follows. The next section will briefly
review the related work on distributed computing frameworks for time series analysis.
Section 3 will elaborate on the parallel computing architecture and provide some guid-
ance on setting up a Spark cluster on EMR. The description of the dataset and some
important aspects of data partitioning and formatting are given in section 4. A simple
time series forecasting example is presented in section 5, while the parallelization logic
is outlined in section 6. Evidence on scalability in terms of total runtime performance
is presented in section 7, before concluding the paper in section 8.

2 Related work

Different parallel systems for time series forecasting have been proposed in the liter-
ature. Stokely et al. [2011] introduce a computational infrastructure for large-scale
statistical computing at Google using the MapReduce paradigm for R. Their technique
is able to generate hundreds of thousands of forecasts in a matter of hours, using the
googleparallelism package. An end-to-end machine learning system for probabilistic de-
mand forecasting at Amazon built on Apache Spark is described in Böse et al. [2017].
The platform scales to large datasets containing millions of time series. The authors
propose a trivial parallel execution scheme for what they call a local learning approach,
using Spark’s map() operator to distribute model fitting and forecasting tasks across the
cluster. Note that the simple parallelization logic described in this practical guide follows
a very similar approach. A brief review of other parallel machine learning frameworks
is given by Bilenko et al. [2016].

Noteworthy, there are two libraries for distributed time series analysis in Apache
Spark. The spark-ts package provides functionalities for fitting time series models and
manipulating large time series datasets.2 The package contains some frequently used
univariate time series models, however, it is not under active development anymore
and does not allow for parallel execution of algorithms not covered by the package
(for example, multivariate time series models).3 Another initiative is Flint, a library
for highly optimized time series operations in Spark, which provides functionalities to

2For further details see: https://github.com/sryza/spark-timeseries
3The set of supported models is found here: https://github.com/sryza/spark-timeseries/tree/

master/python/sparkts/models

2

https://github.com/sryza/spark-timeseries
https://github.com/sryza/spark-timeseries/tree/master/python/sparkts/models
https://github.com/sryza/spark-timeseries/tree/master/python/sparkts/models


efficiently compute across large panel and high frequency data.4. To the best of my
knowledge, at the time of writing this guide Flint does not provide methods to fully
parallelize all stages of the model fitting and forecasting process.

3 Parallel computing architecture

In this section, I describe the design of the high-level architecture as the basis for a
distributed system and I will give some guidance on setting up a Spark cluster us-
ing Amazon’s EMR service. Note that the choice of Amazon as a service provider is
somewhat arbitrary and, thus, the distributed system described in this guide could be
implemented on any other suitable cloud-based or on-premise Hadoop platform. More-
over, this system is not limited to the use case of time series analysis and can be applied
to any expensive computing workload that can be broken up into subsets of independent
tasks. For example, the parallelization scheme in this guide could be adopted to perform
tasks such as value function iteration, extreme bounds analysis, forecast combination or
complete subset regression. A comprehensive guide on parallelization techniques and
use cases in economics is provided by Fernández-Villaverde and Zarruk Valencia [2018].

3.1 EMR architecture

The choice of the parallel computing architecture presented in this section is guided by
the following goals:

• Facilitate parallel computations on large time series datasets

• Highly scalable to large clusters of machines

• Minimal effort to start a cluster and pre-install user-defined libraries

• Use of Python as a programming language

Regarding the choice of the programming language, Spark applications can be im-
plemented in different languages including Scala, Java, Python and R. For the purpose
of this practical guide, I will use Python because it offers a variety of time series libraries
and it also has become the default language for many data scientists and researchers.
Nonetheless, the steps in this guide can be reproduced in any of the other languages.

A simple diagram of the Amazon EMR service architecture is illustrated in fig. 1.
There are four layers, providing different capabilities and functionalities to the cluster.
The storage layer uses the EMR File System (EMRFS) which contains Amazon S3 as
a distributed, scalable file system, where input and output data is stored. In the Spark
application of this guide, time series data and output from model fitting and forecasting
will be stored in Amazon S3. Note that Amazon S3 is a persistent storage device so
after terminating a cluster you still have all the data at your disposal and you also have
the option to download the data to your local machine.

4The github repository can be found at https://github.com/twosigma/flint

3

https://github.com/twosigma/flint


Figure 1: Amazon EMR Architecture

The resource management layer uses YARN (Yet Another Resource Negotiator) and
is in charge of managing cluster resources and scheduling data-processing jobs. Moreover,
EMR’s cluster resource manager is responsible for administering YARN components and
keeping the cluster in good health.

The data processing framework layer uses Apache Spark, which was first introduced
by Zaharia et al. [2010] at UC Berkeley for large-scale machine learning use cases. In
the meantime, Spark has turned into an open-source, distributed data processing plat-
form for big data workloads relating to machine learning, stream processing and graph

4



analytics.5 Spark is based on a master/worker architecture where the Spark driver com-
municates with the YARN cluster resource manager as a single coordinator which is
responsible for managing the Spark workers in which executors run. The Spark driver,
also known as the master node, is a Java process that hosts a Spark application and
executors are Java processes that run computations and store data defined by your
Spark application code (for example, a Python module for time series analysis). A more
elaborate description of Spark’s architecture can be found, for example, in Chambers
and Zaharia [2018]. In the context of the forecasting exercise of this paper, each Spark
executor processes a different subset of time series contained in the dataset stored in
Amazon S3. As a result the degree of parallelism is crucially determined by the num-
ber of executors spawned by the Spark cluster. Note that this approach requires each
individual time series to fit into the memory of an individual executor process which is
a realistic scenario for many real-world time series datasets.6

Finally, the EMR cluster contains a layer for applications and programs that interact
with Spark. For the use case presented in this paper, we will deploy various Python
libraries to the cluster, facilitating econometric tasks as well as data exchange between
the storage layer and Spark.

3.2 Setting up a Spark cluster on EMR

If you do not have an AWS account yet, you need to sign up for one. Once you have set
up an account, you have to create an S3 bucket and an Elastic Compute Cloud (EC2)
key pair to be able to connect to the cluster nodes via Secure Shell (SSH) protocol.
These steps are described in more detail in the official AWS EMR documentation.7 In
what follows, I will only emphasize the steps and configurations in the cluster creation
process which are specific to the use case in this guide and not immediate from the
official documentation.

As the Python program in the following sections was developed under Spark version
2.2.1, the first step is to select a corresponding EMR release when launching the cluster.
Under advanced options, select emr-5.12.1 in the software configuration panel and make
sure to check the box with Spark 2.2.1. Next you have to configure the hardware of your
cluster including the instance type and the number of instances. While the hardware
configuration strongly depends on the resource requirements (and budget considerations)
of the specific use, the forecasting example in this paper is based on a general-purpose
instance type, providing a balanced ratio of the number of CPUs relative to the amount
of RAM.8

Once you have selected your preferred hardware configuration, go to the next section

5For further details on Spark see: https://spark.apache.org/
6High-frequency time series with millions of data points may be a notable exception to the above

mentioned scenario. In this case, it may be more appropriate to rely on parallel frameworks like Flint
or spark-ts, explicitly allowing to operate in parallel on individual time series.

7https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs-prerequisites.html
8A list of available instance types and prices can be found at: https://aws.amazon.com/de/ec2/

pricing/on-demand/.

5

https://spark.apache.org/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs-prerequisites.html
https://aws.amazon.com/de/ec2/pricing/on-demand/
https://aws.amazon.com/de/ec2/pricing/on-demand/


which asks you to specify some general cluster settings. At the bottom of the page there
is a bootstrap action panel where custom actions can be specified to install additional
software or to customize the configuration of cluster instances. In essence, bootstrap
actions are scripts that run on all nodes after the cluster is launched. We will use the
bootstrap action to install a few python libraries required for the parallel forecasting ex-
ercise. For this purpose, a shell script called install python libraries.sh with the following
content must be uploaded to a folder in the S3 bucket:

Box 1: install python libraries.sh
#!/ bin /bash −xe
sudo pip i n s t a l l −U pandas sc ipy f a s tpa rque t s 3 f s s 3 i o j o b l i b s tat smode l s

Next, add the bootstrap action by selecting custom action and, under the configure and
add button, browse the S3 path to the shell script (no optional arguments needed). After
adding the custom bootstrap action, move on to the last step security settings where
you can simply follow the default instructions. Finally, the cluster can be be created.

In order to deploy the Spark application with our parallel forecasting algorithm to
the master node, we have to establish an SSH connection between our local machine
and the master node. To enable this connection we need to edit the security rules for
the inbound traffic of the master node after the cluster has been successfully created.
In particular, you need to add a new inbound security rule to the master group, setting
the inbound type to SSH, the port range to 22, and the source to your local machine’s
IP address.9

Once the cluster is up and running and the security rule for SSH inbound traffic has
been added, the Spark application can be deployed to the master node. One possible
way to deploy an application is to use a professional deployment tool which is included in
different integrated development environments (IDE). When working with Python, one
good option for a deployment tool is PyCharm which is a commonly used IDE among
Python developers.10

4 Dataset

This section describes the dataset and discusses the choice of data partitioning and file
storage format for saving the data in the S3 bucket. Subsequently, I will walk trough a
PySpark program that performs the data partitioning and storage tasks.

4.1 Description

The dataset consists of 1,000 simulated time series with each draw of length 1,000. While
many real-world time series datasets are considerably larger, the dataset is sufficiently

9More details on controlling network traffic on your cluster can be found at: https://docs.aws.

amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
10Note that you will need to install the Professional Edition of PyCharm because the community

edition does not provide functionality to connect to a remote machine. A brief guide on deploying your
PyCharm project to AWS is provided in the following blog: https://minhoryang.github.io/ko/posts/
connect-aws-ec2-instance-with-pycharm-professional/

6

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
https://minhoryang.github.io/ko/posts/connect-aws-ec2-instance-with-pycharm-professional/
https://minhoryang.github.io/ko/posts/connect-aws-ec2-instance-with-pycharm-professional/


large to demonstrate the performance gains from parallelizing the model fitting and fore-
casting process. Moreover, the limited size of the dataset facilitates easy reproducibility
of the steps in this guide.

The time series are simulated from an Autoregressive Moving Average Process (ARMA)
process, defined as follows (see, for example, Hamilton [1994]):

(
1−

2∑
i=1

αiL
i

)
Xt =

(
1 +

2∑
i=1

θiL
i

)
εt, εt ∼ N (µ, σ2) (1)

where X is a real valued vector ordered by time index t, L is a lag operator, αi and θi
define the parameters on the autoregressive (AR) and moving average (MA) component,
and εt is an independent, identically distributed disturbance term sampled from a normal
distribution.

Time series draws are generated with the arima sim() method in R’s stats package
(see R Core Team [2016]). Following an example in the official package documentation,
the orders of the AR and MA components are restricted to two and the AR and MA
coefficients α1, α2, θ1, θ2 are set to 0.89, -0.49, -0.23, 0.25 respectively. The variance σ2

of the disturbance term is set to 0.18.11

The simulated time series data is written to a csv file with three columns. One
column holds the time series data, a second column a unique ID for each series and a
third column a sequence of numbers specifying the order of the data for each series.12

The last column is required because Spark does not preserve the original order of records
when distributing the data across the cluster. To be able to fit a time series model after
processing the data in Spark we therefore need to add this column in order to recover
the original ordering of the data.

4.2 Data partitioning and file storage format

Suppose you have a large time series dataset with thousands of series and you fit models
only for small subsets of series on each Spark executor in a parallel fashion as described
in section 3. In this setting, it is important to limit the size of the input data processed
on each executor. If the input data on a single executor is (too) large this may have
different negative implications. First, when the input data doesn’t fit into the executor’s
memory the application will fail and, second, the computational overhead for reading
large datasets can slow down the application significantly, potentially eliminating some
of the performance gains from parallelization. Thus, it makes sense to break up a large
dataset into smaller chunks where each chunk only contains a subset of all items. In
a distributed file system, typically these smaller data chunks are stored in a separate
directory where the directory name contains an identifier for this chunk. In Spark, the

11For further details see: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.

sim.html
12In analogy to a timestamp or date in a real-world time series dataset.

7

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.sim.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.sim.html


logic of splitting the dataset into smaller pieces is defined by one or multiple partitioning
columns, using the partitionBy() method.

Another aspect of importance is the storage format of the dataset. The example in
this guide uses Apache Parquet which is a free and open-source column-storage format
of the Apache Hadoop ecosystem.13 Using Parquet as opposed to traditional storage
formats offers some important benefits. As Parquet is known to provide an efficient data
compression and encoding scheme, data volume will be substantially lower and data
query runtimes will be much faster compared to, for example, csv format. The latter
aspect crucially determines the performance gains from parallelization and, thus, also
the efficient use of cluster resources.

4.3 Preparing the dataset in Spark

Finally, let’s take a look at the PySpark program that creates a Spark session and
performs the data preparation tasks, i.e. loading the time series dataset from a csv
file into a Spark dataframe and writing it back to S3 in Parquet file format. A Spark
session must be created first to be able to load the time series data into Spark, using
the create spark session.py module:14

Box 2: create spark session.py

# Import Python modules
import os
import sys

# Set path
os . environ [ 'SPARKHOME ' ] = ' / usr / l i b / spark '
sys . path . append ( ' / usr / l i b / spark /python ' )
sys . path . append ( ' / usr / l i b / spark /python/ l i b /py4j−0.10.4− s r c . z ip ' )

# Import PySpark modules
from pyspark . s q l import SparkSess ion

de f c r e a t e s p a r k s e s s i o n ( ) :

s p a r k s e s s i o n = SparkSess ion . bu i l d e r . appName( ' s p a r k p a r a l l e l f o r e c a s t i n g ' )\
. master ( ' yarn ' ) . getOrCreate ( )

re turn spa r k s e s s i o n

The function call create spark session() returns a Spark session, encapsulating a
Spark context. The Spark context acts as the master of your application and can be
used to create distributed entities such as Resilient Distributed Datasets (RDD), a fault-
tolerant collection of elements which can be operated on in parallel. The Spark session
serves as the entry point to programming in Spark with the Dataset and DataFrame
API.

After creating a Spark session, we load a dictionary with some basic configurations,
including file path definitions and the AWS S3 endpoint used to establish a connection
between the Spark application and the S3 file system:

Box 3: create config.py

13For further details on Apache Parquet see: https://parquet.apache.org/documentation/latest/
14Note that all Python modules presented in this guide are located in the following directory on the

master node: ’/home/hadoop/spark parallel forecasting’.

8

https://parquet.apache.org/documentation/latest/


def c r e a t e c o n f i g ( ) :

c on f i g = {}

# Def ine Path
con f i g [ ' base path hadoop ' ] = ' /home/hadoop/ s p a r k p a r a l l e l f o r e c a s t i n g / '
c on f i g [ ' base path s3 ' ] = ' s3 :// data−f o l d e r s / s p a r k p a r a l l e l f o r e c a s t i n g / '
c on f i g [ ' pa th t r a i n i n g da t a c s v ' ] = con f i g [ ' base path s3 ' ] + ' t r a i n i n g da t a / csv /rawdata . csv '
c on f i g [ ' pa th t ra in ing da ta pa rque t ' ] = con f i g [ ' base path s3 ' ] + ' t r a i n i n g da t a /parquet / '
c on f i g [ ' pa th f o r e c a s t s ' ] = con f i g [ ' base path s3 ' ] + ' f o r e c a s t s / '
c on f i g [ ' path models ' ] = con f i g [ ' base path s3 ' ] + ' f i t t e d mode l s / '

# Def ine AWS S3 endpoint f o r your r eg ion
con f i g [ ' s 3 ho s t ' ] = ' s3 . eu−cent ra l −1.amazonaws . com '

# Def ine s e r i e s and eva luat i on length
con f i g [ ' l e n s e r i e s ' ] = 1000
con f i g [ ' l e n e v a l ' ] = 50

return con f i g

Now, the dataset can be prepared by calling the partition and save dataset() func-
tion. After loading the csv file into a Spark dataframe, the dataset is partitioned by
the ID column and, thus, a separate Parquet file and directory is created for each time
series. Note that other partitioning schemes may be more suitable depending on the
use case. For example, if the goal is to jointly model subsets of time series, it would be
advisable to allocate these item subsets into one partition:15

Box 4: partition and save dataset.py

def p a r t i t i o n and s av e da t a s e t ( spa rk s e s s i on , c on f i g ) :

df = spa r k s e s s i o n . read . opt ion ( ”header ” , ” t rue ” )\
. csv ( c on f i g [ ' pa th t r a i n i n g da t a c s v ' ] , inferSchema=True )

df . r e p a r t i t i o n ( ”ID” ) . wr i t e . opt ion ( ” compress ion ” , ” gz ip ” ) . mode( ” overwr i t e ” )\
. par t i t i onBy ( ”ID” ) . parquet ( c on f i g [ ' pa th t ra in ing da ta pa rque t ' ] )

All main tasks that the program will perform are contained in the main.py module:

Box 5: main.py

# Import Python modules
from c r e a t e s p a r k s e s s i o n import c r e a t e s p a r k s e s s i o n
from c r e a t e c o n f i g import c r e a t e c o n f i g
from pa r t i t i o n and s av e da t a s e t import pa r t i t i o n and s av e da t a s e t

de f main ( ) :

# Create Spark s e s s i o n
spa r k s e s s i o n = c r e a t e s p a r k s e s s i o n ( )

# Load con f i g d i c t i ona ry
con f i g = c r e a t e c o n f i g ( )

# Par t i t i on and save datase t in Parquet f i l e format to S3
pa r t i t i o n and s av e da t a s e t ( spa rk s e s s i on , c on f i g )

i f name == ' main ' :
main ( )

15As a data compression type, gzip is used. Note that I do not investigate the performance impact of
the compression type. The other two available Parquet compression types are snappy and uncompressed.

9



5 A simple forecasting example

Given a total sample size of 1,000 for each time series, the last 50 observations of the
sample are used for forecast evaluation. The first 950 observations are used to fit an
initial ARMA(2,2) model which is then used to produce the first forecast. I use a
recursive estimation scheme, i.e. the size of the estimation sample for model fitting is
extended by one observation as one makes forecasts for successive observations. As a
result, a total of 50,000 estimations is performed across all time series in the dataset.
The forecasts as well as the final model, fitted on the full sample for each time series,
are stored in the S3 bucket. For the sake of simplicity, only one-step ahead forecasts are
generated. However, the Python module presented in this section can easily be extended
to include additional models and forecasts for multiple horizons.

While the forecasts are stored in Parquet file format, the final model is saved as a
pickle object which is a standard format for model persistence in Python.16 For model
fitting and forecasting, I use Python’s StatsModels module (see Seabold and Perktold
[2010]), providing a class for fitting ARMA models via maximum likelihood. The fastpar-
quet module, which is a Python interface to the Parquet file format, is used to read and
write Parquet files in the S3 bucket from Python. The fitted model objects are saved
via the pickle module which implements a protocol for serializing and de-serializing
Python objects. The set of Python modules installed on the cluster is complemented
by the modules pandas (see McKinney [2010]), scipy (see Jones et al. [2001]), s3fs, s3io,
joblib.17

A minimum working example of the time series forecasting algorithm is provided in
the fit model and forecast.py module below:

Box 6: fit model and forecast.py

# Import python modules
import s 3 f s
import j o b l i b
import s 3 i o
import boto
import pandas as pd
import numpy as np
from fa s tpa rque t import ParquetFi le , wr i t e
from stat smode l s . t sa . arima model import ARMA

def f i t mod e l a nd f o r e c a s t ( i d l i s t , c on f i g ) :

# Cast c o l l e c t i o n o f d i s t i n c t time s e r i e s IDs in to Python l i s t
i d l i s t = l i s t ( i d l i s t )

# Open connect ions to S3 F i l e System
s3 = s 3 f s . S3FileSystem ( )
s3 open1 = s3 . open
s3 open2 = boto . connect s3 ( host=con f i g [ ' s 3 ho s t ' ] )

# Loop over time s e r i e s IDs
f o r i , id in enumerate ( i d l i s t ) :

# Determine S3 f i l e path and load data in to pandas dataframe
f i l e p a t h = s3 . g lob ( c on f i g [ ' pa th t ra in ing da ta pa rque t ' ] + ' ID= ' + s t r ( id ) +

' /∗ . parquet ' )
d f data = ParquetFi l e ( f i l e p a t h , open with=s3 open1 ) . to pandas ( )

16See for example: http://scikit-learn.org/stable/modules/model_persistence.html
17The pandas module is used to the store forecasts in a dataframe and scipy is needed as a dependency

for the StatsModels module. The other three mentioned modules are required to manage connections
and enable file exchange between S3 and Python.

10

http://scikit-learn.org/stable/modules/model_persistence.html


# Sort time s e r i e s data accord ing to o r i g i n a l o rde r ing
d f data = df data . s o r t v a l u e s ( 'ORDER ' )

# I n i t i a l i z e dataframe to s t o r e f o r e c a s t
d f f o r e c a s t s = pd . DataFrame (np . nan , index=range (0 , c on f i g [ ' l e n e v a l ' ] ) ,

columns=[ 'FORECAST ' ] )

# Add columns with ID , t rue data and order ing in format ion
d f f o r e c a s t s . i n s e r t (0 , ' ID ' , id , a l l ow dup l i c a t e s=True )
d f f o r e c a s t s . i n s e r t (1 , 'ORDER ' , np . arange (1 , c on f i g [ ' l e n e v a l ' ] + 1) )
d f f o r e c a s t s . i n s e r t (2 , 'DATA ' , d f data [ 'DATA ' ] [ range ( ( c on f i g [ ' l e n s e r i e s ' ] −

c on f i g [ ' l e n e v a l ' ] ) ,
c on f i g [ ' l e n s e r i e s ' ] ) ] . values ,
a l l ow dup l i c a t e s=True )

# Loop over s u c c e s s i v e e s t imat ion windows
f o r j , t r a in end in enumerate ( range ( ( c on f i g [ ' l e n s e r i e s ' ] − c on f i g [ ' l e n e v a l ' ] − 1) ,

( c on f i g [ ' l e n s e r i e s ' ] − 1 ) ) ) :

# Fit ARMA(2 ,2 ) model and f o r e c a s t one−s tep ahead
model = ARMA( df data [ 'DATA ' ] [ range (0 , t r a in end +1)] , (2 , 2 ) ) . f i t ( d i sp=False )
d f f o r e c a s t s . at [ j , 'FORECAST ' ] = model . p r ed i c t ( t r a in end+1, t r a in end+1)

# Write dataframe with f o r e c a s t to S3 in Parquet f i l e format
path = con f i g [ ' pa th f o r e c a s t s ' ] + ' ID= ' + s t r ( id ) + ' . parquet '
wr i te ( path , d f f o r e c a s t s , wr i t e i ndex=False , append=False , open with=s3 open1 )

# Save f i t t e d ARMA model to S3 in p i c k l e f i l e format
path = con f i g [ ' path models ' ] + ' ID= ' + s t r ( id ) + ' . model '
with s3 i o . open ( path , mode= 'w ' , s 3 connec t i on=s3 open2 ) as s 3 f i l e :

j o b l i b . dump(model , s 3 f i l e )

Note that the function fit model and forecast() takes an argument called id list, con-
taining a collection of unique time series IDs. In a non-parallel setting, this collection is
simply a Python list with distinct IDs.

The outer loop in the function iterates over the list of IDs, using the ID information
to read the time series data via fastparquet from the corresponding directory in the
S3. The inner loop contains the statements for model fitting and forecasting, iterating
recursively over the estimation sample. The last two blocks of code are responsible for
storing the fitted model and forecasts respectively.

In order to execute the forecasting algorithm in a non-distributed fashion,
we simply import the fit model and forecast.py module into another module called
do non parallel forecasting.py which generates a list of distinct IDs from our time se-
ries dataset and calls the fit model and forecast() function:

Box 7: do non parallel forecasting.py

from f i t mod e l a nd f o r e c a s t import f i t mod e l a nd f o r e c a s t

de f d o n o n p a r a l l e l f o r e c a s t i n g ( spa rk s e s s i on , c on f i g ) :

# Load time s e r i e s data in to Spark dataframe
df = spa r k s e s s i o n . read . parquet ( c on f i g [ ' pa th t ra in ing da ta pa rque t ' ] )

# Create RDD with d i c t i n c t IDs
t im e s e r i e s i d s = df . s e l e c t ( ”ID” ) . d i s t i n c t ( ) . rdd

# Create Python l i s t with d i c t i n c t IDs
t im e s e r i e s i d s = [ i n t ( i . ID) f o r i in t im e s e r i e s i d s . c o l l e c t ( ) ]

# Perform non−p a r a l l e l f o r e c a s t i n g
f i t mod e l a nd f o r e c a s t ( t im e s e r i e s i d s , c on f i g )

We can now extend our main.py program to include a task for non-distributed fore-
casting by calling do non parallel forecasting():

Box 8: main.py

11



# Import Python modules
from c r e a t e s p a r k s e s s i o n import c r e a t e s p a r k s e s s i o n
from c r e a t e c o n f i g import c r e a t e c o n f i g
from pa r t i t i o n and s av e da t a s e t import pa r t i t i o n and s av e da t a s e t
from do n on p a r a l l e l f o r e c a s t i n g import d o n on p a r a l l e l f o r e c a s t i n g

de f main ( ) :

# Create Spark s e s s i o n
spa r k s e s s i o n = c r e a t e s p a r k s e s s i o n ( )

# Load con f i g d i c t i ona ry
con f i g = c r e a t e c o n f i g ( )

# Par t i t i on and save datase t in Parquet f i l e format to S3
pa r t i t i o n and s av e da t a s e t ( spa rk s e s s i on , c on f i g )

# Perform non−p a r a l l e l model f i t t i n g and f o r e c a s t i n g
d o n on p a r a l l e l f o r e c a s t i n g ( spa rk s e s s i on , c on f i g )

i f name == ' main ' :
main ( )

When running this program, the forecasting algorithm will be executed only on the
master node of the cluster, i.e. the model fitting and forecasting task is not distributed to
the Spark executors. The runtime of this program is taken as a performance benchmark
against which the distributed forecasting algorithm can be evaluated.

6 Parallelization

The parallelization of the forecasting algorithm presented in the previous section only
requires a few additional programming steps in PySpark. First, we create a new Python
module called do parallel forecasting.py :

Box 9: do parallel forecasting.py

def d o p a r a l l e l f o r e c a s t i n g ( spa rk s e s s i on , c on f i g ) :

# Load time s e r i e s data in to Spark dataframe
df = spa r k s e s s i o n . read . parquet ( c on f i g [ ' pa th t ra in ing da ta pa rque t ' ] )

# Create RDD with d i s t i n c t IDs and r e p a r t i t i o n dataframe in to 100 chunks
t im e s e r i e s i d s = df . s e l e c t ( ”ID” ) . d i s t i n c t ( ) . r e p a r t i t i o n ( 1 00 ) . rdd

# Function to import model Python module on Spark executor f o r p a r a l l e l f o r e c a s t i n g
de f import module on spark executor ( t im e s e r i e s i d s , c on f i g ) :

from f i t mod e l a nd f o r e c a s t import f i t mod e l a nd f o r e c a s t
re turn f i t mod e l a nd f o r e c a s t ( t im e s e r i e s i d s , c on f i g )

# Pa r a l l e l model f i t t i n g and f o r e c a s t i n g
t im e s e r i e s i d s . f o r each ( lambda x : import module on spark executor (x , c on f i g ) )

In the above code, we first load the time series data into a Spark dataframe and create
a partitioned RDD with distinct time series IDs. By calling the repartition() function,
the number of RDD partitions is set to 100, cutting the distributed collection of IDs into
100 chunks. Given that we have 1,000 time series in our dataset, the average number of
IDs in each partition is 10.18 Since Spark will run one task for each partition, the number
of RDD partitions is an important parameter that determines the degree of parallelism
of your Spark application. In this particular example, the 100 RDD partitions can be

18Note that Spark does not automatically distribute the number of elements evenly across partitions.
Therefore, it is likely that some partitions contain more and others contain less than 10 elements.

12



processed in parallel as long as there are sufficient cluster resources available in terms of
the number of Spark executors and executor memory.

To apply our fit model and forecast.py module to each RDD partition in a dis-
tributed fashion, we need to make sure that the module is imported by each Spark
executor, before calling the function inside the module. Calling the function im-
port module on spark executor() as part of the foreach() operation in the last statement
of the do parallel forecasting.py module ensures that each Spark executor imports the
fit model and forecast.py module.

In order to make the fit model and forecast.py module available to all Spark execu-
tors, we need to add the module to the Spark context by calling the addPyFile() function
that takes as an argument the file path to the module. To finally execute our forecasting
algorithm in a parallel fashion, we extend our main.py program as follows:

Box 10: main.py

# Import Python modules
from c r e a t e s p a r k s e s s i o n import c r e a t e s p a r k s e s s i o n
from c r e a t e c o n f i g import c r e a t e c o n f i g
from pa r t i t i o n and s av e da t a s e t import pa r t i t i o n and s av e da t a s e t
from d o p a r a l l e l f o r e c a s t i n g import d o p a r a l l e l f o r e c a s t i n g

de f main ( ) :

# Create Spark s e s s i o n
spa r k s e s s i o n = c r e a t e s p a r k s e s s i o n ( )

# Load con f i g d i c t i ona ry
con f i g = c r e a t e c o n f i g ( )

# Par t i t i on and save datase t in Parquet f i l e format to S3
pa r t i t i o n and s av e da t a s e t ( spa rk s e s s i on , c on f i g )

# Add Python module to Spark context f o r d i s t r i bu t ed model f i t t i n g and f o r e c a s t i n g
s pa r k s e s s i o n . sparkContext . addPyFile ( c on f i g [ ' base path hadoop ' ] +

' f i t mod e l a nd f o r e c a s t . py ' )

# Perform p a r a l l e l model f i t t i n g and f o r e c a s t i n g
d o p a r a l l e l f o r e c a s t i n g ( spa rk s e s s i on , c on f i g )

i f name == ' main ' :
main ( )

7 Empirical runtime performance

This section provides experimental results of the runtime performance for the forecasting
example described in sections 5 and 6. Table 1 shows the runtime for two different
execution schemes. In the first scenario, the forecasting algorithm is executed on the
master node in a non-parallel fashion and, thus, mirrors a single-core single-machine
execution scheme. This scenario is used as a benchmark case to evaluate the performance
gain from the parallel execution scheme.

The cluster hardware has been configured to 13 EC2 instances of type m4.2xlarge,
comprising a total of 192 virtual CPUs and 384 GiB of RAM for the 12 worker nodes.
The number of RDD partitions containing collections of distinct time series IDs is set
to 100. Table 1 shows the runtime results for the two different scenarios.

13



Table 1: Runtime for different execution schemes

Scenario Parallel vCPU RAM Partitions Runtime

1 no 16 32 - 12076

2 yes 192 384 100 372

The results are based on an AWS EC2 instance type m4.2xlarge. Runtime is
measured in seconds, RAM is measured in GiB, vCPU refers to virtual CPU
and Partitions defines the number of RDD partitions, containing subsets of
distinct time series IDs.

The total runtime for the non-distributed scheme is about 200 minutes. This com-
pares to roughly 6 minutes execution time for the parallel scheme, reducing runtime
by about 95%. Clearly, the runtime of the parallel scheme is strongly affected by the
hardware configuration and the number of RDD partitions. An increase in the number
of RDD partitions and a more powerful cluster with more CPUs and memory will most
likely lead to even higher performance gains. While the impact of different hardware
settings on the performance gain is beyond the scope of this paper, the results show that
the parallelization scheme can be used to complete large model fitting and forecasting
workloads that would be intractable without substantial parallelization.

8 Conclusions

This paper introduced a step-by-step practical guide for setting up a minimum working
example of a distributed system for time series analysis and forecasting. The system is
built in Apache Spark and the parallelization scheme is suitable (but not limited to) par-
allel computations on large time series datasets. A simple forecasting exercise illustrates
that the parallelization scheme reduces total runtime performance substantially rela-
tive to a single-machine setting. The presented approach requires minimal installation
and configuration effort and it can be implemented with little background in computer
science and parallel programming.

14



References

Mikhail Bilenko, Tom Finley, Shon Katzenberger, Sebastian Kochman, Dhruv Mahajan,
Shravan Narayanamurthy, Julia Wang, Shizhen Wang, and Markus Weimer. Salmon:
Towards production-grade, platform-independent distributed ml. In The ML Systems
Workshop at ICML, 2016.

Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin Lange,
David Salinas, Sebastian Schelter, Matthias Seeger, and Yuyang Wang. Probabilistic
demand forecasting at scale. 10:1694–1705, 08 2017.

B. Chambers and M. Zaharia. Spark - The Definitive Guide: Big Data Processing Made
Simple. O’Reilly Media, Incorporated, 2018. ISBN 9781491912218.

Jesús Fernández-Villaverde and David Zarruk Valencia. A Practical Guide to Paral-
lelization in Economics. CEPR Discussion Papers 12890, C.E.P.R. Discussion Papers,
April 2018.

James Douglas Hamilton. Time series analysis. Princeton Univ. Press, Princeton, NJ,
1994. ISBN 0691042896.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001.

Wes McKinney. Data structures for statistical computing in python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Confer-
ence, pages 51 – 56, 2010.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016.

Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical modeling
with python. In 9th Python in Science Conference, 2010.

Murray Stokely, Farzan Rohani, and Eric C Tassone. Large-Scale Parallel Statistical
Forecasting Computations in R. JSM Proceedings, Section on Physical and Engineer-
ing Sciences, American Statistical Association, 2011.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, Berkeley, CA, USA,
2010. USENIX Association.

15


	Introduction
	Related work
	Parallel computing architecture
	EMR architecture
	Setting up a Spark cluster on EMR

	Dataset
	Description
	Data partitioning and file storage format
	Preparing the dataset in Spark

	A simple forecasting example
	Parallelization
	Empirical runtime performance
	Conclusions

