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Abstract 

For statistical classification problems where the total sample size is slightly 

greater than the feature dimension, regularized statistical discriminant rules may 

reduce classification error rates. We review ten dispersion-matrix regularization 

approaches, four for the pooled sample covariance matrix, four for the inverse 

pooled sample covariance matrix, and two for a diagonal covariance matrix, for 

use in Anderson’s (1951) linear discriminant function (LDF). We compare these 

regularized classifiers against the traditional LDF for a variety of parameter 

configurations, and use the estimated expected error rate (EER) to assess 

performance. We also apply the regularized LDFs to a well-known real-data 

example on colon cancer. We found that no regularized classifier uniformly 

outperformed the others. However, we found that the more contemporary 

classifiers (e.g., Thomaz and Gillies, 2005; Tong et al., 2012; and Xu et al., 2009) 

tended to outperform the older classifiers, and that certain simple methods (e.g., 

Pang et al., 2009; Thomaz and Gillies, 2005; and Tong et al., 2012) performed 

very well, questioning the need for involved cross-validation in estimating 

regularization parameters. Nonetheless, an older regularized classifier proposed by 

Smidt and McDonald (1976) yielded consistently low misclassification rates 

across all scenarios, despite the shape of the true covariance matrix. Finally, our 

simulations showed that regularized classifiers that relied primarily on asymptotic 

approximations with respect to the training sample size rarely outperformed the 

traditional LDF, and are thus not recommended. We discuss our results as they 

pertain to the effect of high dimension, and offer general guidelines for choosing a 

regularization method for poorly-posed problems. 

 

Keywords: Poorly-posed classification problems, Shrinkage estimator, Eigenvalue 

adjustment, Expected error rate 
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1 Introduction 

For classification problems with high dimensional sets of features, feature selection methods 

are often used to locate the features most important for separating classes. Once these methods 

are used, one hopes that the resulting classification problem can proceed using conventional 

methods such as linear or quadratic discriminant analysis. For example, Soukup and Lee (2004) 

construct a classifier to classify malignant and benign tumors using 57 tissue samples (36 tumor; 

21 normal) and 2,000 genes. The number of genes was reduced to the two most-relevant genes 

using a stepwise feature selection method. The resulting classifier correctly classified all 19 test 

samples. Feature selection methods can be very successful in reducing the classification 

problem to a size where conventional methods may be used. Indeed, a two-stage combination of 

principal components analysis followed by LDA has been used in the facial recognition 

literature for years (Belhumeur, et al., 1997). However, with some problems, the number of 

important features does not reduce to a small set of genes, and might remain with more genes 

than the number of training samples. For example, for the same data set, Klaus (2013) found 

between 13 and 168 genes depending on the variable selection method used. Therefore, it can be 

important to use a regularization method after feature selection when building classifiers for 

high dimensional data sets. 

Some regularization methods include a variable selection step. For example, in Guo et al.’s 

(2007) ”Shrunken Centroids” regularized classifier, the class means of each gene are shrunk 

toward their grand means, based on a threshold, to the extent that the class-specific means may 

be determined not to differ across classes. This procedure selects the most important genes for 

classification. More recently, Ramey et al. (2017) included variable selection for their 

regularization of the quadratic discriminant function, and Klaus (2013) introduced a variable 

selection method called ”misclassification rate based variable selection” that chooses features 

based on their effect sizes. However, most regularization methods do not also introduce a new 

variable selection method. Therefore, we consider a situation where feature selection has been 

completed (perhaps qualitatively), leaving the number of features just under the training sample 

size, and in need of further dimension reduction. When the number of features is less than, but 

close to the total training size, the classification problem may be called poorly-posed. Despite 

the total training sample size being larger than the number of features, poorly-posed problems 

can still lead to instability in estimating the classifier (Seber, 1984; Bai and Saranadasa, 1996). 

In this paper we compare ten regularization methods plus LDA for the linear discriminant 

function (LDF) using four configurations of true means and covariances taken from Friedman 

(1989). The methods were selected so that they apply to the LDF, and do not include a feature 

selection step. However, we also evaluate Guo et al.’s (2007) and Klaus’ (2013) methods when 

we re-analyze the colon cancer data set above. In addition, we evaluate a contemporary 

regularization method from the facial recognition literature (Yang and Wu, 2014) on this data 

set. We focus on linear discriminant analysis because of its parsimony in terms of covariance 

elements, and its general good performance in discrimination tasks even under evidence of 

different class covariance matrices (e.g., Dudoit, et al., 2002). 
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We have organized the remainder of the paper as follows. In Section 2, we introduce 

notation regarding the LDF for classification. In Section 3, we briefly discuss poorly-posed 

LDFs and several previously proposed solutions, while in Sections 4, 5, and 6, we review the 

different regularization approaches. In Section 7 we describe the simulation configurations and 

the subsequent simulation results. We then apply the competing linear discriminant regularized 

classifiers and the LDF to the colon cancer data set from Soukup and Lee (2004) in Section 8. 

We give a discussion in Section 9, providing guidelines based on simulation results, and 

mention further results in an appendix. 

 

2 Notational Background 

Consider L distinct populations or classes that occur with prior probabilities 𝜋𝑘 = 1,… , 𝐿. 
For a statistical classification problem, we wish to construct a classification rule that classifies 

unlabeled objects into one of the L distinct groups based on a vector of measurements or features. 
For multivariate normal population problems with known means and equal known covariance 

matrices, the Bayes classifier is equivalent to classifying an unlabeled real observation vector 𝑥 

into the kth class using the following rule: 

𝐴𝑠𝑠𝑖𝑔𝑛 𝑥 𝑡𝑜 𝐶𝑘  ⇔ 𝑑𝑘(𝑥) = 𝑚𝑖𝑛
𝑘=1,…,𝐿

(𝑥 − 𝜇𝑘)′∑(𝑥 − 𝜇𝑘) − 2(𝑙𝑛 𝜋𝑘),

−1

 (1) 

where 𝜇𝑘 ∈ ℝ𝑝×1  is the 𝑘𝑡ℎ  population mean, ∑ ∈ ℝ𝑝
>  is the common covariance matrix, 

ℝ𝑝×𝑞 represents the real space for a 𝑝 × 𝑞 matrix, ℝ𝑝
> represents a positive definite 𝑝 × 𝑝 

matrix, and 𝜋𝑘  is the a priori probability that an unlabeled observation 𝑥  belongs to 

population 𝐶𝑘 , 𝑘 = 1,… , 𝐿. Because the population parameters 𝜇𝑘  and Σ are unknown in 

practice, one must estimate them from training samples whose class origins are known. Here, 

we consider only the case of two Gaussian populations 𝐶1 and 𝐶2. 

Assuming equal a priori probabilities 𝜋𝑘 , k = 1﹐2﹐ and equal covariance matrices 

∑ = ∑ ,21  one can easily show that an estimated Bayes rule for classifying an unlabeled 

observation 𝑥 is: 

 

Assign 𝑥 to 𝐶1 if 𝑊(𝑥) ≥ 0; otherwise, assign 𝑥 to 𝐶2, where 

𝑊(𝑥) ≡ [𝑥 −
1

2
(�̅�1 + �̅�2)]

′

𝑆−1(�̅�1 − �̅�2) (2) 

with �̅�𝑘 = (1/𝑛𝑘)∑ 𝑥𝑘𝑖
𝑛𝑘
𝑖=1  as the 𝑘𝑡ℎ  class sample mean and 𝑆 = (𝑛1 + 𝑛2 − 2)

−1[(𝑛1 −

1)𝑆1 + (𝑛2 − 1)𝑆2]  as the common estimated covariance matrix, where 𝑆𝑘 = (1/(𝑛𝑘 −

1))∑ (𝑥𝑘𝑖 − �̅�𝑘)(𝑥𝑘𝑖 − �̅�𝑘)′
𝑛𝑘
𝑖=1  is the estimated covariance matrix for class 𝑘, 𝑖 = 1,… , 𝑛𝑘, 

and 𝑘 = 1﹐2. The discriminant function (2) is known as Anderson’s linear discriminant 
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function (LDF) (see Anderson, 1951). One can express the expected error rate (EER) associated 

with (2) analytically as follows. Using a 0-1 loss function and assuming 𝜋1 = 𝜋2 , we have that 

𝐸𝐸𝑅 ≡
1

2
∑𝑃((−1)2−𝑘𝑊(𝑥) ≥ 0|𝑥 ∈𝐶𝑘).

2

𝑘=1

 (3) 

John (1961) has derived the exact unconditional distribution of (2) under the assumption of 

multivariate normality, though it is cumbersome. However, one can condition on the current 

training samples and use (3) as a measure of the probability of misclassification for (2). Thus, 

conditioning on �̅�1﹐�̅�2, and 𝑆 while assuming 𝜋1 = 𝜋2, we have that the conditional error 

rate (CER), 

𝐶𝐸𝑅 ≡
1

2
∑𝛷

(

 
 
(−1)2−𝑘 (𝜇𝑘 −

1
2
(�̅�1 + �̅�2)) ′𝑆

−1(�̅�1 − �̅�2)

[(�̅�1 − �̅�2)′𝑆
−1∑𝑆−1(�̅�1 − �̅�2)]

1
2

)

 
 
,

2

𝑘=1

 (4) 

is an explicit function of the estimators �̅�𝑘, 𝑆, the location parameter 𝜇𝑘 , k = 1,2, and the 

common dispersion parameter Σ. Averaging (4) over the distributions of the sample moments 

estimates the EER in (3). 

When the total training-sample size 𝑁 = 𝑛1 + 𝑛2 is slightly greater than 𝑝, the inverse 

covariance matrix estimator 𝑆−1 exists in theory but is highly unstable. The instability has been 

discussed under the general category of asymptotics of multivariate statistics when 𝑁, 𝑝 → ∞ 

but 𝑝/𝑁 → 1 (e.g., Yao, et al., 2015). Bai (1999) showed that the limiting spectral distribution 

(LSD) of 𝑆 (the limiting empirical distribution of the sample eigenvalues) is the (generalized) 

Marčenko-Pastur distribution with ratio index 𝑦, where 𝑝/𝑁 → 𝑦 ∈ (0,∞). As a result, Yao et 

al. (2015) illustrate that when 𝛴 = 𝐼𝑝, the sample eigenvalues of 𝑆 do not converge to the 

population values (of 1) as 𝑝/𝑁 → 𝑦 ∈ (0,∞). Because the sample eigenvalues are functions of 

the elements of 𝑆, 𝑆 is not reliably estimated. Consequently, the estimator 𝑆−1 produces a 

highly volatile and unreliable classification rule (2), notably when 𝑦 ∈ (0,∞)  (Bai and 

Silverstein, 1996). Thus, although additional feature information may be available to 

discriminate among the two classes, classification accuracy does not improve unless one obtains 

enough training-sample observations to reliably estimate the increased number of parameters 

(i.e., when 𝑝/𝑁 → 0, and hence the LSD of 𝑆 has ”jumps” at the true eigenvalues). When N is 

small relative to 𝑝 but 𝑁 > 𝑃, we consider the classification problem to be poorly-posed; 

when 𝑁 < 𝑃, we define the classification problem to be ill-posed. This paper focuses mainly on 

poorly-posed problems for Anderson’s LDF given in (2), but addresses the case of 𝑁 = 𝑃 for 

appropriate methods. 

We use Monte Carlo simulations to compare different dispersion matrix regularization 

approaches, using the estimated EER as our comparison criterion. We examine the 

performance of these regularization techniques, along with the LDF, for the two-class problem 

using several types of mean configurations and covariance matrices, for both small and 

moderate training-sample sizes relative to 𝑝. 

  



6 A COMPARISON OF REGULARIZED LINEAR DISCRIMINANT FUNCTIONS FOR POORLY-POSED  

CLASSIFICATION PROBLEMS 
 

 

3 A Poorly-posed Linear Discriminant Function 

One can readily see the effect of an unstable dispersion estimator on (2) when expressing 

𝑆−1 in terms of the spectral decomposition as 𝑆−1 = ∑ 𝑣𝑗𝑣𝑗
′/𝑒𝑗

𝑝
𝑗=1  , where 𝑒𝑗  is the 𝑗th largest 

eigenvalue of 𝑆 and 𝑣𝑗  is the associated eigenvector, 𝑗 = 1, … , 𝑝. Using this notation, one can 

express the estimated discriminant score for (1) as 

�̂�𝑘(𝑥) ≡∑
[𝑣𝑗
′(𝑥 − �̅�𝑘)]

2

𝑒𝑗

𝑝

𝑗=1

 (5) 

Clearly, the smallest eigenvalues and the directions associated with their eigenvectors highly 

influence (5). The eigenvalues of 𝑆−1 are well known to be biased such that the smallest 

eigenvalues are underestimated (see, for example, Seber, 1984, and Ledoit and Wolf, 2004). 

This bias increases as the training-sample size decreases relative to 𝑝. Consequently, with 

relatively small total training-sample size 𝑁 , (2) yields an inaccurate estimator of the 

population discriminant rule. 

A more formal demonstration (and proof) of the unreliability of 𝑆−1  when  𝑁～𝑝 is 

provided in Bai and Saranadasa (1996), and in comprehensive detail in Yao et al. (2015), and 

references therein. Briefly, with iid random p-vectors 𝑥1, … , 𝑥𝑁  with mean 0 and covariance 

matrix 𝐼𝑝, when 𝑝/𝑁 → 𝑦 ∈ (0,1), the ratio of the largest to smallest eigenvalues of 𝑆 tends 

to (1 + √𝑦)
2
/(1 − √𝑦)

2
 . Hence, when y is close to 1 (so, for example, 𝑝 is close to, but less 

than, 𝑁), 𝑆−1 will have some huge eigenvalues. Bai and Saranadasa (1996) illustrate that this 

problem can occur in practice even if 𝑝 and 𝑁 are not especially large, which is the case for 

our simulations presented later. 

Conventional statistical methods of dealing with poorly-posed discriminant analysis 

problems include variable selection or dimension reduction procedures, such as principal 

components analysis, canonical analysis, and other dimension-reduction methods (see Cook and 

Yin, 2001 or Tibshirani, et al., 2003). Although feature selection is popular and effective for 

ill-posed scenarios where 𝑁 ≪ 𝑝, such as in the genomics literature, we do not consider it 

formally here because our focus is mainly on regularization as a method of dimension reduction, 

potentially after feature selection has been done. Nonetheless, for the case 𝑁 = 𝑃, we consider 

methods that incorporate a feature selection property in their estimation. 

Regularizing the sample covariance matrix prior to inverting 𝑆 offers one solution for 

reducing the variability in (5), and researchers have proposed many other covariance matrix 

regularization algorithms to stabilize (2) (see Mkhadri, Celeux, and Nasroallah (1997), Greene 

and Rayens (1989), Rayens and Greene (1991), or Peck and Van Ness (1982)). In the next three 

sections, we describe both recent and older methods from the literature. 
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4 Covariance Matrix Estimator Regularization 

Numerous methods of regularization in the linear discriminant case shrink the extreme 

sample eigenvalues toward more moderate and, thus, more stable values. Known as eigenvalue 

adjustment, this technique effectively decreases larger eigenvalues while increasing smaller 

eigenvalues to counter their bias (Koolaard, Ganesalingam, and Lawoko, 1998). One method for 

performing eigenvalue adjustment consists of augmenting the pooled sample covariance matrix 

with a matrix that is proportional to the identity matrix. Early attempts by DiPillo (1976), Smidt 

and McDonald (1976a), and Smidt and McDonald (1976b) have substituted the ridge-like 

estimator (𝑆 + 𝛾𝐼𝑝)
−1

, 0 ≤ γ ≤ 1, in place of 𝑆−1 in (2). DiPillo (1976) and DiPillo (1979) 

have given results for the optimal value of γ for various parameter configurations, while Smidt 

and McDonald (1976b) have shown that for certain values of 𝛾, (𝑆 + 𝛾𝐼𝑝)
−1 has smaller mean 

squared error than 𝑆−1. 

4.1. Smidt and McDonald’s (1976) Shrunken Sample Covariance Matrix Estimators 

Although Smidt and McDonald (1976a) have proposed several estimators of 𝛾, we consider 

two of their covariance matrix estimators of the form 

Σ̂𝑆𝑀
−1 ≡ [𝑆 + (𝑟�̂�𝑝)𝐼]

−1
 ﹐ 

where �̂�𝑝 is the smallest eigenvalue of 𝑆 and r is a positive constant determined from the data. 

Smidt and McDonald (1976b) have shown that when 𝛾 is proportional to �̂�𝑝, the bias in the 

estimated eigenvalues is corrected. The difference between the two estimators that we use is the 

method applied for choosing the shrinkage estimator 𝑟. 

The first regularized covariance estimator determines a scalar 𝑟  that minimizes the 

leave-one-out cross-validation error rate. We refer to the regularized linear classifier using this 

shrunken covariance estimator as SM1. In the second shrunken covariance estimator, we attempt 

to find a choice of r using the discriminant vector 

[𝑆 + (𝑟�̂�𝑝)𝐼]
−1
(�̅�1 − �̅�2) (6) 

Consider a set of m non-negative numbers 𝑅 = (𝑟1, … , 𝑟𝑚), and let 𝑣𝑟,𝑖   denote the 𝑖𝑡ℎ 

element of the vector in (6). We seek to find the value of 𝑟 ∈ 𝑅, say  rj, such that |𝑣𝑟𝑗,𝑖| /

|𝑣𝑟𝑗+1,𝑖| ∈ (0.95,1.05) for all 𝑖 = 1,… , 𝑝, 𝑗 = 1,… ,𝑚 − 1. We use the interval (0.95,1.05) in 

order for the ratio of successive values of (6) to be relatively stabilized around 1.0. The authors 

do not recommend a particular method for choosing m or the values of 𝑟 ∈ 𝑅. We have found 

that a grid of values from 0 to 10 by increments of 0.1 has worked well. We refer to this 

classifier as SM2. 
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4.2. Raudys, Skurikhina, Cibas, and Gallinari’s (1994, 1995) Shrunken Covariance Matrix 

Estimator 

Raudys and Skurihina (1994) and Raudys, Skurihina, Cibas, and Gallinari (1995) have 

derived a regularized inverse covariance matrix estimator that minimizes Raudys’ 

approximation to the EER of the corresponding shrunken classification rule. The regularized 

covariance matrix inverse estimator of Raudys et al. (1995) is 

Σ̂𝑅𝑆𝐶𝐺
−1 ≡ (𝑆 + �̂�𝑅𝑆𝐶𝐺𝐼)

−1
. 

Moreover, Raudys et al. (1995) have shown that the shrinkage estimator that minimizes an 

asymptotic approximation to the EER is 

𝜆𝑅𝑆𝐶𝐺 ≡ 𝐶
−1 − 2B−1 (7) 

where B ≡
2

1−𝑦
𝛽2 +

𝐷𝑡𝑟
−1

𝑚
,C ≡

1

1−𝑦
𝛽1, 𝛽𝑘 ≡

𝑀′𝐷−1𝑀

𝛿2
𝛼𝑘 +

𝐷𝑡𝑟
−1

2𝑚−𝑝
, for K = 1,2 1, 2k = . And, 𝑦 ≡

𝑝

2𝑚
, m = n1 = 𝑛2, 𝛼1 = 1, 𝛼_2 ≡ (1 +

2𝑡𝑟𝐷
−1

𝑚𝑀′𝐷−1
) , δ2 ≡ 𝑀′𝑀 = (𝜇1 − 𝜇2)′ ∑ (𝜇1 − 𝜇2)

−1 , and 

𝐷 is a diagonal matrix composed of the eigenvalues of Σ. Clearly, the parameters in (7) must 

be estimated with sample moments from the training data. We also remark that as the common 

training sample size m increases (with fixed p), �̂�𝑅𝑆𝐶𝐺 → 0, and the resulting classification rule 

approaches Anderson’s LDF given in (2). We denote this regularized classification rule by 

RSCG. 

4.3.  Thomaz and Gillies’ (2005) Shrunken Covariance Matrix Estimator 

Thomaz and Gillies’ (2005) attempt at eigenvalue adjustment adjusts only the smallest 

eigenvalues of the sample covariance matrix toward the mean of the sample eigenvalues. Each 

of the sample eigenvalues is replaced by the sample mean of the eigenvalues if the mean is 

larger than the sample eigenvalue itself. Then, a new pooled sample covariance matrix is 

constructed with the adjusted eigenvalues. The method is intended to stabilize the smallest 

sample eigenvalues, thereby regularizing the covariance matrix. We denote this regularized 

classifier by (NLDA) to stand for new LDA. 
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5 Shrinkage Estimator Regularization 

5.1. Loh’s (1995) Regularized Shrunken Inverse Covariance Matrix Estimator 

Another approach to regularization involves shrinkage estimates resembling Stein-like 

biased estimators that are convex combinations of 𝑆−1 and the identity matrix 𝐼𝑃. Alternatively, 

Loh (1995) uses a convex combination of 𝑆 and 𝐼𝑃. 

�̂�−1 = [(1 − 𝛾)𝑆 + (𝛾𝑡𝑟𝑆)𝐼𝑃]
−1. (8) 

One obvious advantage to regularizing 𝑆 rather than 𝑆−1 is that no computational stability 

issues occur as with computing 𝑆−1. 

Loh (1995) has derived an expression for 𝛾 that minimizes an asymptotic expansion of the 

difference in EER between the regularized linear classification rule and (2). The 

shrinkage-constant estimator given in Loh (1995) is 

 

𝛾𝐴𝑆𝑌𝑀𝑃
∗ ≡

𝑝
𝑡𝑟𝑆 {(

𝑛1 + 𝑛2
𝑛1𝑛2

) [(𝑡𝑟𝑆−1) − 𝑝𝐷1
−2𝐷2

2] +
1

𝑛1 + 𝑛2 − 2
 [𝐷1

2(𝑡𝑟𝑆−1) − 𝐷2
2]}

(𝐷3
2 − 𝐷1

−2𝐷4
2)

, 

 

where𝐷𝑗
2 ≡ (�̅�1 − �̅�2)

′𝑆−𝑗(�̅�1 − �̅�2), 𝑗 = 1,2,3,4. If 𝛾𝐴𝑆𝑌𝑀𝑃
∗ ∉ (0,1), one sets 𝛾𝐴𝑆𝑌𝑀𝑃

∗  to 0 or 

1, appropriately. The inverse of the shrunken covariance matrix estimator is then 

�̂�𝐿𝑂𝐻
−1 ≡ [(1 − 𝛾𝐴𝑆𝑌𝑀𝑃

∗ )𝑆 +
𝛾𝐴𝑆𝑌𝑀𝑃
∗

𝑝
(𝑡𝑟𝑆)𝐼𝑝]

−1

 (9) 

Loh (1995) has compared the performance of the corresponding regularized discriminant 

function using (9) with the LDF and ridge classification rules where 𝛾 minimizes either the 

cross-validated CER or a bootstrap error rate. We remark that these criteria for selecting 𝛾 are 

relatively more computationally demanding. We denote the classification rule corresponding to 

this estimator by LOH. 

 

5.2. Mkhadri’s (1995) Regularized Inverse Covariance Matrix Estimators 

Mkhadri (1995) has proposed two inverse covariance matrix estimators that are convex 

combinations of  𝑆−1 and 𝐼𝑝, where the regularization parameter 𝛾 is chosen to minimize 

either a cross-validated estimated EER or an estimated generalized distance measure. We refer 

to the two corresponding regularized classification rules as MCV and MGD, respectively. The 

first regularized inverse covariance estimator uses the shrinkage parameter that minimizes the 

cross-validated risk, where for 𝑖 = 1,… , 𝑛1 + 𝑛2, 
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𝛾𝑜𝑝𝑖
𝐶𝑉 = {

0, 𝑖𝑓 𝑜𝑛𝑙𝑦 𝑊(𝑖) (𝑥𝑖)𝑖𝑠 𝑢𝑠𝑒𝑑

1, 𝑖𝑓 𝑜𝑛𝑙𝑦 𝐸(𝑖) (𝑥𝑖)𝑖𝑠 𝑢𝑠𝑒𝑑

[𝑎𝑊(𝑖)(𝑥𝑖)] [𝑎𝑊
(𝑖)(𝑥𝑖) − (𝑏 𝑡𝑟𝑆/𝑖 ⁄ )𝐸𝑖(𝑥𝑖))]⁄ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

𝑆/𝑖  is the sample covariance matrix with the 𝑖th observation removed. Here, 𝑊(𝑖)(𝑥𝑖) is (2) 

with the ith observation removed, 𝐸(𝑖) (𝑥𝑖) is the Euclidean classifier, which is 𝑊(𝑖)(𝑥𝑖) with 

the matrix I in place of 𝑆/𝑖
−1, and a and b are constants defined later. As alluded to in Mkhadri 

(1995), a maximum of N + 2 candidate regularization parameters exist for any training set (the 

additional 2 candidates account for values of 0 and 1). For each 𝛾𝑜𝑝𝑖
𝐶𝑉 , we calculate the 

regularized leave-one-out classifier, leaving out each observation in turn, except the 𝑖th used to 

calculate 𝛾𝑜𝑝𝑖
𝐶𝑉 . The value of 𝛾𝑜𝑝𝑖

𝐶𝑉  with the lowest misclassification rate among the 𝑁 −  1 

rates is chosen as the optimal regularization parameter for that training sample. 

The second regularized inverse covariance matrix estimator uses the shrinkage constant that 

minimizes the distance between the training-set observations and their actual class mean vectors, 

yielding the criterion expression 

�̂�∗(𝛾) ≡ ∑ ∑ (𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ )
′
𝑆/𝑖
∗−1(𝛾)(𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ ) + ln|𝑆/𝑖

∗−1(𝛾)|𝑖∈𝐶𝑘
2
𝑘=1  , (11) 

where 𝑆/𝑖
∗−1(𝛾) is the regularized estimator of 𝑆/𝑖

−1,and �̅�𝑘 𝑖⁄  is the sample mean vector for the 

kth group with the 𝑖th observation omitted. The optimal shrinkage constant is 

 

𝛾𝑜𝑝
𝐺 ≡

𝑎𝐷1 − 𝑏𝐷2 + ∑ ∑ ∑ (𝛽𝑘
𝑗
− 1)𝑝

𝑗=1𝑖𝑘

∑ ∑ ∑ (𝛽𝑘
𝑗
− 1)𝑝

𝑗=1𝑖𝑘

2 ,  (12) 

 

D1 ≡∑ ∑ (𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ )′
𝑖𝑘

𝑆/𝑖
−1(𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ ), 

D2 ≡∑ ∑ (𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ )′
𝑖𝑘

(𝑥𝑘𝑖 − �̅�𝑘 𝑖⁄ )/ (
𝑛

𝑛 − 1
𝑡𝑟𝑆 − 𝑟𝑖

′𝑟𝑖) 

, 

𝛽𝑘𝑖
𝑗
≡

𝑏(𝜆𝑗−𝑟𝑘𝑖
′ 𝑟𝑘𝑖)

𝑎(
𝑛

𝑛−1
)𝑡𝑟𝑆−𝑟𝑘𝑖

′ 𝑟𝑘𝑖
 ,rki ≡

(𝑥𝑘𝑖−�̅�𝑘)

√(𝑛−1)(𝑛𝑘−1)/𝑛𝑘
 , 𝑛 ≡ 𝑛1 + 𝑛2 − 2 ,  𝑎 ≡ (𝑛 − 𝑝 − 3)/𝑛 , 

𝑏 ≡ 𝑝/𝑛, 𝜆𝑗  is the jth eigenvalue of 𝑆, and 𝑗 = 1,… , 𝑝. The resulting two regularized 

inverse covariance-matrix estimators are 
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�̂�𝑀𝐻
−1 ≡ (1 − 𝛾𝑜𝑝

𝐻 )𝑎𝑆−1 + (𝑏𝛾𝑜𝑝
𝐻 𝑡𝑟𝑆⁄ )𝐼𝑝, where 𝐻 = 𝐶𝑉, 𝐺𝐷. (13) 

Our formulation of (12) differs slightly from that of Mkhadri (1995). We have provided the 

modification to reconcile Mkhadri’s (1995) regularized classifier with that of the regularized 

classifier of Friedman (1989). Furthermore, if 𝑛 ≤ 𝑝 + 3, we set 𝑎 = 1/𝑛 to ensure that a is 

always positive. 

In a series of simulations using different Mahalanobis distances and intraclass correlation 

matrices, Mkhadri (1995) has shown that the MCV and MGD linear classifiers perform as well 

as or better than (2) for the configurations he considered. He has also noted that the shrinkage 

parameter values for (12) tend to be smaller when one is minimizing the generalized distance 

(11), as opposed to the cross-validated EER. 

5.3. Xu, Brock, and Parrish’s (2009) Modified Regularized Inverse Covariance Matrix 

Estimator 

Xu et al. (2009) introduced a modified regularizer that uses Ledoit and Wolf’s 

(2004) ”well-conditioned estimator” for large-dimensional covariance matrices. Their goal is to 

find the linear combination𝛴∗ = 𝜌1𝐼 + 𝜌2𝑆 whose expected quadratic loss E(‖𝛴∗ − 𝛴‖2) is 

minimized, where ‖𝐴‖ = √𝑡𝑟(𝐴𝐴′/𝑝). Ledoit and Wolf (2004) show that the solution is 𝛴∗ =
𝛽2

𝛿2
𝜇𝐼 +

𝛼2

𝛿2
𝑆, where 𝜇 = 𝑡𝑟(𝛴)/𝑝  , which can be estimated using the sample covariance matrix. 

The other parameters can also be estimated consistently using sample values. See Ledoit and 

Wolf (2004) for the expressions. The authors note that 𝜇𝐼 can be interpreted as a shrinkage 

target, with its corresponding weight 
𝛽2

𝛿2
 the normalized shrinkage intensity. As the shrinkage 

intensity increases, there is more shrinkage toward the target than toward the sample covariance 

matrix. The optimally shrunken estimator 𝛴∗ corrects for the bias in the sample eigenvalues by 

shrinking them toward their grand mean. The estimated 𝛴∗ is then used in (2). Xu et al. (2009) 

showed that their Modified regularizer outperformed several other regularized estimators, 

including Thomaz and Gilles’ (2005) estimator mentioned above, as well as Guo et al.’s 

(2007) ”Shrunken Centroids” regularizer (referred to as SCRDA). However, their problems were 

ill-posed, where the number of features was much larger than the number of observations. We 

evaluated Xu et al.’s (2009) modified regularizer in poorly-posed problems, and found 

(consistent with the authors’ Figure 3 and Ledoit and Wolf’s simulations) that the advantages of 

their classifier show up when p approaches N, but that it is also competitive in our poorly-posed 

scenarios. We refer to the classification rule (2) that uses Xu et al.’s (2009) modified regularized 

covariance matrix as MLDA to be consistent with their paper. 
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6 Diagonal Estimators of the Covariance Matrix 

Another category of regularization focuses on diagonal covariance matrices. Although it 

may rarely be true that features are truly uncorrelated, Dudoit et al. (2002) showed good 

performance for diagonal discriminant analysis even with correlation among features. We 

consider two related estimators of this type. The first adjusts the diagonal elements of the 

sample covariance u.sing a shrinkage parameter estimated by minimizing the average risk using 

a James-Stein loss function. The second uses the sample diagonal common covariance matrix, 

and adds a shrinkage adjustment to the sample class mean vectors so that the average risk is 

minimized under quadratic loss. 

6.1. Pang et al.’s (2009) Shrinkage-based Diagonal Discriminant Analysis 

Pang et al. (2009) use a diagonal linear discriminant rule, but incorporate regularization of 

the estimated diagonal covariance matrix in order to improve reliability when p is large. They 

start with estimates of the feature-specific precisions on the diagonal of the inverse of the 

common sample covariance matrix, then adjust the precisions using a shrinkage parameter, α, so 

that for feature j, the precision estimate is �̃�𝑗
−2(𝛼), where 0 ≤ α ≤ 1. Pang et al. (2009) use 

Tong and Wang’s (2007) family of shrinkage estimators 

�̃�𝑗
−2(𝛼) = (ℎ𝑝�̂�𝑝𝑜𝑜𝑙

−2 )
𝛼
(ℎ1�̂�𝑗

−2)
1−𝛼

   

where ℎ𝑝 = (
2

𝑁−2
) (

Γ(
𝑁−2

2
)

Γ((𝑁−2)/2−1/𝑝)
)

𝑝

 , �̂�𝑝𝑜𝑜𝑙
−2 = ∏ (�̂�𝑗

−2/𝑝
)𝑝

𝑗=1 , �̂�𝑗
−2is the jth feature’s estimated 

precision, p is the number of features, and N is the combined sample size of the two classes. The 

shrinkage parameter α is chosen as the minimizer of the average risk when the loss function is 

the Stein loss function 𝐿𝑆𝑡𝑒𝑖𝑛(𝜎
2, �̃�2) = �̃�2/𝜎2 − 𝑙𝑛(�̃�2/𝜎2) − 1 (see Pang et al., 2009, for 

details). The resulting regularized inverse covariance matrix is 

�̂�𝑆𝐷𝐿𝐷𝐴
−1 = 𝐷𝑖𝑎𝑔 (�̃�1

−2(𝛼∗),… , �̃�𝑝
−2(𝛼∗))  (14) 

where  𝛼∗ is the minimizer mentioned above. 

After shrinking the inverse covariance matrix, Pang et al. (2009) discuss regularizing 

between the individual class-based covariance estimates and the pooled covariance estimate. 

However, because our work deals only with linear discriminant analysis, we do not study this 

regularization. We refer to Pang et al.’s estimator of the LDF that uses (14) as SDLDA. 
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6.2. Tong et al.’s (2012) Mean-adjusted Diagonal Discriminant Analysis 

Tong et al. (2012) propose a shrinkage-based diagonal discriminant rule that replaces the 

sample class means by estimators that shrink them toward their grand mean. When the number 

of training class samples is small, in particular less than the number of features, the ordinary 

sample class means can be unreliable. The authors’ proposed class mean estimator is based on 

the posterior mean under a hierarchical Bayesian model with conjugate priors, as well as the 

James-Stein type estimator, incorporating a shrinkage parameter, r: 

�̂�𝑘(𝑟) = (1 −
𝑟

‖�̅�𝑘‖𝑆
2) �̅�𝑘 (15) 

where 𝑆 estimates the common covariance matrix (the authors use a diagonal matrix with 

sample feature variances on the diagonal), and �̅�𝑘 is the sample class mean. The authors note 

that the estimator in (15) dominates the sample mean under a quadratic loss function when 0 <

r < 2(𝑝 − 2)/(𝑁 + 1). 

Tong et al. (2012) provide the expression for the optimal shrinkage parameter minimizing 

risk under a quadratic loss function, then show that for high dimensional data (large p), it can be 

approximated by �̂�𝑜𝑝𝑡 = [(𝑁 − 1)(𝑝 − 2)]/[𝑁(𝑁 − 3)]. The optimal shrinkage estimator for 

the sample mean then substitutes �̂�𝑜𝑝𝑡  for r in equation (15). They then substitute these class 

specific shrinkage mean estimators into the LDF, along with the diagonal sample common 

covariance matrix estimate to arrive at their shrinkage-based diagonal discriminant rule. In our 

simulations, we use the shrinkage estimator applied to the deviations of the class means from 

the grand mean (see equation (6) in Tong et al. (2012)). We refer to the resulting classification 

rule as SmDLDA. We also tried using the diagonals of Pang et al.’s (2009) regularized 

covariance matrix in Section 6.1, but the results were almost identical to using SDLDA. This 

occurrence indicates that both adjustments may not be beneficial to the scenarios we examined, 

answering a question posed by Tong et al. (2012) in their discussion. 

 

7 Simulation Description and Results 

We conducted simulations to evaluate the classification performance of the classifiers 

described in Sections 4 through 6, in addition to the LDF. For each simulation, we generated 

100,000 training samples (using a high performance computing cluster running 1,000 nodes 

simultaneously) from specified Gaussian distributions with dimension 𝑝 = 50  and equal 

training sample sizes of either 𝑛1 = 𝑛2 = 26 , 𝑛1 = 𝑛2 = 35 , or 𝑛1 = 𝑛2 = 50. For each 

regularized inverse covariance estimator 𝑆𝑅𝑗
−1and training set, and assuming 𝜋1 = 𝜋2, the CER 

is 

𝐶𝐸𝑅𝑅𝑗 ≡
1

2
∑𝛷

(

 
 
(−1)2−𝑘 (𝜇𝑘 −

1
2
(�̅�1 + �̅�2))

′

𝑆𝑅𝑗
−1(�̅�1 − �̅�2) 

[(�̅�1 − �̅�2)′𝑆𝑅𝑗
−1∑𝑆𝑅𝑗

−1(�̅�1 − �̅�2)]
1/2

)

 
 

2

𝑘=1
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where 𝑆𝑅𝑗
−1, j = SM1, SM2, RSCG, LOH, MCV, MGD, MLDA, NLDA, SDLDA, SmDLDA, LDF, 

are the competing inverse sample covariance matrices defined in Sections 4 through 6, and 𝜇𝑘, 

k = 1,2, and 𝛴 are the multivariate Gaussian location and dispersion parameters, respectively. 

For each classifier and for (2), we reported the estimated EER of the corresponding classifier 

and its standard deviation by averaging over the 100,000 training sets. We also reported the 

average of each regularization parameter and its associated standard deviation. 

To accommodate ties in the choice of parameters for any of the configurations, we chose the 

estimate of the parameter(s) that yielded the smallest level of regularization. Some evidence 

exists that the manner in which ties are broken does not affect CER estimates (Koolaard et al. 

1998). However, for the estimators that used the tie-breaking scheme (i.e., MCV and SM1), the 

tie-breaking scheme appeared to moderately affect the EER (In the Appendix, we present the 

results after breaking ties in the direction of more regularization). Descriptions of each of the 

four simulation configurations (A-D) appear in Table 1. The configurations are similar to those 

used by Friedman (1989).  

For each configuration, we have used 𝛴 = 𝑑𝑖𝑎𝑔(𝑒𝑗) , 𝑗 = 1, … , 𝑝, for the common population 

covariance matrices, and we have normed the mean differences to obtain a Mahalanobis 

distance of 3.76, which corresponds to a Bayes classification error of 0.03. 

 
Table 1: Simulation Configurations for 𝑝 = 50 and 𝜇1 = 𝑂𝑝 

 Description 𝜇2 Eigenvalues of 𝛴 

A 
Means differ in one orthogonal  

direction; spherical covariance 
[
√3.76
0𝑝−1

] 𝑒𝑗 = 1 ,1 ≤ 𝑗 ≤ 𝑝 

B 

Means differ in first  𝑝 − 1  

features; differ in low-variance 

subspace 

𝜇2𝑗 = 2.5√𝑒𝑗/𝑝
𝑝 − 𝑗

𝑝/2 − 1
 

1 ≤ 𝑗 ≤ 𝑝 

𝑒𝑗 = [9(𝑗 − 1) (𝑝 − 1)⁄ + 1]2 

C 

Means differ in last 𝑝 − 1 

features; differ in high-variance 

subspace 

𝜇2𝑗 = 2.5√𝑒𝑗/𝑝
𝑗 − 1

𝑝/2 − 1
 

1 ≤ 𝑗 ≤ 𝑝 

𝑒𝑗 = [9(𝑗 − 1) (𝑝 − 1)⁄ + 1]2 

D 

Means differ in low-variance  

subspace and are informative 

 in first [𝑝/2] directions 

𝜇2𝑗 = {
𝑒𝑗 , 1 ≤ 𝑗 ≤ ⌊𝑝/2⌋

0, 𝑗 > ⌊𝑝/2⌋
 𝑒𝑗 = [9(𝑗 − 1) (𝑝 − 1)⁄ + 1]2 
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7.1. Configuration A: Means differ in one orthogonal direction; equal eigenvalues 

In the first parameter configuration, the eigenvalues of the common population covariance 

matrix are all equal to one. Therefore, we expect greater shrinkage toward the identity matrix 

for the regularized covariance matrix estimators. As mentioned in Section 3, the sample 

eigenvalues may be much different from 1, ranging from 0.004 to 3.93. So, regularization that 

achieves eigenvalue adjustment, especially of the smallest sample eigenvalues, may perform 

well in classification. Table 2 shows the estimated EERs and their corresponding average 

regularization parameters, along with standard deviations. 

 
Table 2: Configuration A: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 
Function 

𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.453 (0.045) 0.350 (0.035) 0.290 (0.026)  None None None 

𝑆𝑀 1 0.374 (0.085) 0.316 (0.051) 0.274 (0.032) �̅�𝑆𝑀 1 0.357 (1.150) 0.489 (1.374) 0.374 (1.210) 

𝑆𝑀 2 0.253 (0.021) 0.235 (0.016) 0.218 (0.012) �̅�𝑆𝑀 2 7.129 (3.279) 8.814 (1.868) 8.958 (1.732) 

RSCG 0.453 (0.045) 0.348 (0.035) 0.285 (0.024) λ̅ 1e-8 (1e-8) 0.001 (0.0003) 0.017 (0.004) 

LOH 0.451 (0.046) 0.335 (0.039) 0.268 (0.027) Υ̅𝐿𝑂𝐻 0.0001 (0.001) 0.021 (0.023) 0.105 (0.073) 

MCV 0.288 (0.083) 0.346 (0.037) 0.290 (0.025) Υ̅𝑀𝐶 0.813 (0.390) 0.289 (0.328) 0.216 (0.280) 

MGD 0.370 (0.106) 0.350 (0.035) 0.290 (0.026) Υ̅𝑀𝐺 0.408 (0.492) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.250 (0.020) 0.234 (0.016) 0.218 (0.012) �̅�1 0.991 (0.032) 0.995 (0.027) 0.997 (0.022) 

    �̅�2 0.009 (0.018) 0.005 (0.013) 0.003 (0.009) 

NLDA 0.259 (0.021) 0.242 (0.017) 0.225 (0.013)  None None None 
SDLDA 0.220 (0.022) 0.207 (0.016) 0.195 (0.011) �̅� 0.456 (0.049) 0.438 (0.048) 0.412 (0.046) 
SmDLDA 0.331 (0.018) 0.312 (0.017) 0.288 (0.016)  None None None 

The regularized diagonal rule estimator SDLDA gives the lowest error rates for all three total 

sample sizes. Its average shrinkage parameter is relatively large compared to its average from 

the other configurations B through D, as will be seen. This is reasonable because the feature 

variances are actually the same, and so a common pooled value on the diagonal of 𝑆 should be 

preferred compared to other forms of 𝑆. NLDA and MLDA also did well due to their equalizing 

of the sample eigenvalues. In general, estimators that chose greater amounts of regularization on 

average (in particular, MLDA and SM2) obtained good classification results, whereas SM1 and 

MGD chose relatively smaller parameter values, and therefore did not perform as well. One 

reason why SM2 performed so much better than SM1 may be due SM2’s attempt to stabilize the 

sample discriminants, whereas SM1 does not have such a goal. Mkhadri (1995) found that MCV 

tended to produce larger regularization parameters than MGD, which leads to MCV performing 

better than MGD in this configuration. The MGD classifier had a relatively high estimated EER 

for all sample sizes, as it did not regularize much, therefore performing not much better than the 

LDF. 

SM2, MLDA, NLDA, and SDLDA performed well for all sample sizes while LOH and SM1 

did relatively better with the larger training-sample sizes. In both cases, MLDA correctly chose a 

higher shrinkage toward the target 𝜇 (which was reasonably estimated as about 1.00 on 

average). Not surprisingly, the asymptotic-based classifiers LOH and RSCG performed 

relatively poorly for the smaller total training-sample size  𝑁 = 52. Based on their average 

regularization parameter estimates, LOH and RSCG chose estimates that were too small 
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compared to the other methods. Finally, the SmDLDA diagonal classifier did not perform well in 

this configuration, at least compared to the other classifiers. One reason may be due to its direct 

use of the diagonals of S instead of any eigenvalue equalization. 

Any differences in the estimated EERs between LDF and the regularized LDFs diminished 

as N increased, and LDF became suitable. 

7.2. Configuration B: Means differ in last 𝒑 − 𝟏 features; elliptical covariance matrix 

In this configuration, we speculated that regularized classifiers might not perform well in 

discrimination because dispersion regularizing matrices tend to equalize the unequal 

eigenvalues, thus making the regularized covariance matrix more spherical. If the covariance 

matrix becomes more spherical and the dispersion potentially increases in the low-variance 

subspace, the detection of the mean differences in the low-variance subspace may diminish. 

Thus, we thought that smaller estimated regularization parameters would be preferred to 

improve classification. However, we were incorrect. The true covariance matrix has large 

magnitude diagonals, covering a wide range. Any given sample covariance matrix may be much 

different from the true covariance matrix, requiring regularization to stabilize eigenvalues for 

better class separation. We provide the estimated EERs, the corresponding average 

regularization parameters, and their respective standard deviations in Table 3. 

Table 3: Configuration B: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.185 (0.041) 0.290 (0.026)  None None None 

𝑆𝑀 1 0.335 (0.093) 0.171 (0.041) 0.274 (0.032) �̅�𝑆𝑀 1 0.102 (0.492) 0.720 (1.905) 2.086 (3.098) 

𝑆𝑀 2 0.171 (0.033) 0.136 (0.024) 0.218 (0.012) �̅�𝑆𝑀 2 7.079 (3.282) 8.267 (2.208) 7.713 (2.424) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.285 (0.024) λ̅ 4e-8 (6e-8) 0.002 (0.001) 0.020 (0.016) 

LOH 0.382 (0.074) 0.174 (0.040) 0.268 (0.027) Υ̅𝐿𝑂𝐻 3e-5 (0.0002 0.003 (0.004) 0.006 (0.006) 

MCV 0.247 (0.074) 0.184 (0.041) 0.290 (0.025) Υ̅𝑀𝐶 0.840 (0.366) 0.219 (0.309) 0.162 (0.274) 

MGD 0.311 (0.101) 0.186 (0.041) 0.290 (0.026) Υ̅𝑀𝐺 0.457 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.182 (0.030) 0.156 (0.025) 0.218 (0.012) �̅�1 24.077 (1.351) 21.441 (1.069) 18.046 (0.788) 

    �̅�2 0.354 (0.037) 0.424 (0.030) 0.516 (0.022) 

NLDA 0.189 (0.031) 0.169 (0.026) 0.225 (0.013)  None None None 
SDLDA 0.341 (0.034) 0.325 (0.033) 0.195 (0.011) �̅� 0.119 (0.009) 0.095 (0.008) 0.071 (0.006) 
SmDLDA 0.088 (0.028) 0.078 (0.025) 0.288 (0.016)  None None None 

Classifiers with higher average regularization parameters performed better than those with 

less regularization. This applied to both SM2 and MLDA, at least for the two smaller total 

sample sizes. For all sample sizes, MLDA had a relatively high average shrinkage toward the 

identity matrix. For the largest sample size, this could have resulted in an estimated covariance 

matrix that was too spherical, leading to a higher error rate. The SM1 classifier performed 

relatively poorly for the 𝑁 = 52 case likely due to its low average estimated regularization 

parameter. SM2 did better than SM1, perhaps due, again, to its process of stabilizing the sample 

discriminants. MGD performed relatively poorly, as it had a smaller average regularization 

parameter. Again, it chose a smaller regularization parameter on average than did MCV. The 
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RCSG and LOH classifiers performed about as well as the LDF throughout. The average 

regularization parameter remained very small for both classifiers. 

As well, SDLDA reduced its average regularization for the larger sample sizes, and suffered 

in performance. On the other hand, the other diagonal classifier SmDLDA handily beat every 

other classifier across all total sample sizes. This may have been due to the true mean difference 

𝜇2 − 𝜇1 being concentrated in the lower variance subspace. As with Tibshirani et al.’s (2003) 

Shrunken Centroids Classifier, the less important feature elements for class separation are 

shrunk toward the overall centroid. This would apply to the pth feature (with zero difference 

between class means), reducing its sample influence on the classification rule, ultimately 

helping classification. 

With the exceptions of SmDLDA, SDLDA, NLDA, and MDLDA, as the total sample size rose, 

the classifiers approached one another in performance. The benefits seen for MLDA and NLDA 

for the small training size did not carry over to the large size. As N increases, 𝑆 may better 

estimate 𝛴, which does not have equal eigenvalues. Therefore, NLDA may err too much by 

substituting all eigenvalues less than their mean with the mean, especially when the true mean 

differences are in the low variance subspace (smaller eigenvalues). This may also explain why 

MLDA loses classification ability as N increases. If we shrink the sample eigenvalues toward 

their grand mean, the smaller eigenvalues (with greater class mean difference) will increase, 

reducing detection of differences. In Configuration C in subsection 7.3, where the class mean 

differences are in the high variance subspace, MLDA does not lose classification ability as N 

increases because detection of differences increases when the larger eigenvalues are shrunk 

downward. As well, in Configuration D, where the class means differ again in the low-variance 

subspace, MLDA does not lose classification ability as N increases because in that configuration, 

the class mean differences increase with the eigenvalues of 𝛴. So, shrinking sample eigenvalues 

may help detect differences. 

SmDLDA continued to outperform the other classifiers as the total sample size rose. The 

diagonal classifier, SDLDA, however did not perform well in this scenario, as the sample size 

increased. SDLDA may not perform well when class means differ in the lower variance 

subspace because the feature variances are shrunk toward a pooled value (potentially increasing 

them, and thereby diluting some differences). Indeed in Configuration D in subsection 7.4, 

SDLDA also performs relatively poorly. 

7.3. Configuration C: Means differ in last 𝒑 − 𝟏 features; elliptical covariance matrix 

For the next configuration, the means differed in the high-variance subspace, and therefore, 

regularization should improve classification performance because of reduced variance in those 

subspaces with differing means. The estimated EERs and average regularization parameters and 

associated standard deviations for this configuration appear in Table 4. 

We saw large improvements over the LDF for the SmDLDA, SDLDA, SM2, MCV, MLDA 

and NLDA classifiers for the case 𝑁 = 52. MLDA, SM2, and MCV all chose relatively high 

regularization parameter values. SM1’s average regularization was lower than SM2’s, and 

appeared to suffer in performance for the smaller sample sizes. The stabilization aspect of SM2 
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apparently helped it choose a better value for r, in particular one that is larger to offset a 

small �̂�𝑝. SM1 chooses r to minimize the cross-validation (CV) error rate of the training set, but 

the minimum CV rate may not necessarily be low. 

The diagonal classifiers (SDLDA and SmDLDA) performed exceptionally well for all sample 

sizes. SDLDA performed very well despite similarly low average regularization as for 

Configuration B. As the mean differences were in the high variance subspace, shrinking the 

feature variances toward a pooled value should increase detection of class differences in higher 

variance subspaces. For SmDLDA, the shrunken centroids aspect reduces influence of features 

with zero differences between class means on the classification rule. This helped for 

Configuration B, and we will see that it also helps in Configuration D. 

For 𝑁 = 70, the regularized classifiers with higher average regularization (e.g., SM2 and 

MLDA) performed much better than the LDF. The RSCG classifier had very small mean 

regularization parameters of near 0 so that it was almost identical to the LDF in all cases. For 

𝑁 = 100, many of the classifiers performed at the level of the LDF. We had expected 

regularizetion to be beneficial because the population means differed in a high variance 

subspace, and much more beneficial for the smaller training sample size where eigenvalue 

estimation is harder. This appeared to be true in general. 

 

Table 4: Configuration C: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.184 (0.041) 0.108 (0.021)  None None None 

𝑆𝑀 1 0.332 (0.096) 0.172 (0.042) 0.105 (0.022) �̅�𝑆𝑀 1 0.103 (0.505) 0.407 (1.381) 0.893 (2.120) 

𝑆𝑀 2 0.122 (0.040) 0.097 (0.029) 0.079 (0.023) �̅�𝑆𝑀 2 7.028 (3.284) 7.937 (2.381) 7.728 (2.503) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.108 (0.021) λ̅ 6e-8 (7e-8) 0.001 (0.0006) 0.010 (0.004) 

LOH 0.381 (0.074) 0.170 (0.041) 0.099 (0.020) Υ̅𝐿𝑂𝐻 3e-5 (0.0002) 0.004 (0.005) 0.011 (0.012) 

MCV 0.175 (0.147) 0.183 (0.041) 0.108 (0.021) Υ̅𝑀𝐶 0.706 (0.455) 0.135 (0.223) 0.097 (0.191) 

MGD 0.247 (0.162) 0.184 (0.041) 0.108 (0.021) Υ̅𝑀𝐺 0.460 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.082 (0.039) 0.077 (0.035) 0.071 (0.031) �̅�1 31.678 (3.523) 28.221 (3.249) 23.792 (2.607) 

    �̅�2 0.149 (0.097) 0.242 (0.090) 0.361 (0.072) 

NLDA 0.091 (0.039) 0.085 (0.036) 0.077 (0.034)  None None None 
SDLDA 0.109 (0.045) 0.104 (0.042) 0.099 (0.040) �̅� 0.106 (0.009) 0.084 (0.007) 0.063 (0.006) 
SmDLDA 0.101 (0.057) 0.091 (0.052) 0.081 (0.047)  None None None 

7.4. Configuration D: First [𝒑/𝟐] directions are informative; elliptical covariance matrix 

Here, the eigenvalues of the covariance matrix were the same as in configurations B and C, 

but the means differed in the first ⌊𝑝/2⌋features (corresponding to the lower half of the 

eigenvalues) so that only the first 25 directions in the measurement space were informative for 

classification. In addition, the mean differences increased with the eigenvalues, as they were 

equal to the eigenvalues. Because half of the features were essentially noise, this configuration 

should benefit from regularization (and likely additional feature selection). The estimated EERs, 

estimated average regularization parameter estimates, and associated standard deviations for this 
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configuration appear in Table 5. As with other configurations, for Configuration D, more 

regularization appeared to help classification for the poorly-posed scenario. 

 

Not surprisingly, SmDLDA outperformed other classifiers for all sample sizes. As we have 

noted in other configurations where some features do not inform class separation, reducing the 

influence of these noise features helped classification accuracy. In this configuration with half 

of the features as noise, it helps substantially. SmDLDA readily beat SDLDA, which is a 

diagonal classifier with regularization. As in Configuration B, when class means differ in the 

lower variance subspace, shrinking feature variances toward a pooled value (SDLDA) may 

increase the variance associated with the differences, reducing the ”signal-to-noise” ratio. 

 

Table 5: Configuration D: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.184 (0.041) 0.108 (0.021)  None None None 

𝑆𝑀 1 0.332 (0.096) 0.172 (0.042) 0.103 (0.021) �̅�𝑆𝑀 1 0.105 (0.517) 0.319 (1.185) 0.696 (1.834) 

𝑆𝑀 2 0.131 (0.033) 0.101 (0.022) 0.080 (0.016) �̅�𝑆𝑀 2 7.052 (3.287) 8.018 (2.345) 7.582 (2.534) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.107 (0.021) λ̅ 4e-8 (6e-8) 0.002 (0.001) 0.022 (0.019) 

LOH 0.382 (0.074) 0.169 (0.041) 0.099 (0.020) Υ̅𝐿𝑂𝐻 3e-5 (0.0002) 0.004 (0.005) 0.012 (0.012) 

MCV 0.197 (0.099) 0.183 (0.041) 0.108 (0.021) Υ̅𝑀𝐶 0.820 (0.384) 0.196 (0.290) 0.140 (0.251) 

MGD 0.280 (0.129) 0.184 (0.041) 0.108 (0.021) Υ̅𝑀𝐺 0.461 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.122 (0.028) 0.100 (0.024) 0.081 (0.019) �̅�1 24.84 (1.383) 22.127 (1.110) 18.611 (0.825) 

    �̅�2 0.333 (0.038) 0.406 (0.031) 0.501 (0.024) 

NLDA 0.124 (0.029) 0.105 (0.025) 0.089 (0.022)  None None None 
SDLDA 0.294 (0.046) 0.272 (0.046) 0.245 (0.044) �̅� 0.116 (0.010) 0.092 (0.008) 0.069 (0.007) 
SmDLDA 0.084 (0.029) 0.073 (0.026) 0.063 (0.022)  None None None 

MLDA also performed well across all sample sizes, along with NLDA and SM2, likely due to 

higher regularization, similar to Configuration B. MCV and MGD performed much better than 

LDF when 𝑁 = 52, but were equal to LDF when the training-sample size increased and the 

mean regularization parameters decreased to zero. As N increases, the constant a increases, and 

b decreases in (13), putting more weight on 𝑆−1 and less on 𝐼𝑝 even before 𝛶𝑜𝑝 is determined. 

As these constants do not depend on the respective optimizations in MCV and MGD, their 

values may not be optimal when 𝑝/𝑁 > 1/2, as in the second sample size case. According to 

Mkhadri (1995), while 𝑎 ≡ (𝑛 − 𝑝 − 3)/𝑛 was defined to make 𝑎𝑆−1 an unbiased estimate 

of 𝛴−1, 𝑏 ≡ 𝑝/𝑛 was defined for convenience. 

Incidentally, we did examine the performance of Guo et al.’s (2007) SCRDA classifier, 

which includes feature selection, in this configuration (results not shown). It performed 

relatively well, but not as well as MLDA or NLDA (or SmDLDA). The diagonal covariance 

matrix estimator in SmDLDA may have given it an advantage over SCRDA by sharpening 

weaker mean differences. See the Appendix for results using SCRDA when 𝑁 = 𝑝. 
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8 Colon Cancer Example 

We applied all regularized linear classification methods and Anderson’s LDF to the colon 

cancer data from Alon et al. (1999), and analyzed in Soukup and Lee (2004) and Klaus (2013). 

The data set consists of 2000 genes from 62 tissue samples (40 positive samples and 22 normal 

samples). Soukup and Lee (2004) eliminated five supposedly contaminated samples, leaving 57 

samples (37 tumor and 20 normal). We also eliminated these samples. In addition, in the 

absence of an explicit test set, we divided the data set into ”training” and ”test” sets using the 

same split percentages that Soukup and Lee (2004) used. Of 500 random splits of the data set, 

each set had 38 training samples (25 tumor samples, 13 normal) and 19 test samples (12 tumor 

and 7 normal). For each of the 500 training sets, prior to estimating the classifiers, we applied a 

variable selection procedure with the goal of choosing the most discriminating 36 genes out of 

the 2000 available. We chose 36 to be just shy of the total training sample size of 38, and 

therefore putting us in a poorly-posed situation. We used the variable selection method 

implemented in the CMA R package, with a ”shrinkcat” criterion which is the 

correlationadjusted t-score from Zuber and Strimmer (2009), and the score used in Klaus’ (2013) 

misclassification rate based variable thresholding. 

Table 6 displays the misclassification proportions averaged over the 500 training/test 

combinations using equation (2), for each of the classification methods discussed above. We see 

that regularization generally improved classification performance over the non-regularized LDF; 

however, only when regularization was moderate (about midway between the identity matrix 

and sample covariance matrix). MLDA performed the best. Based on its average regularization 

parameters, it took a middle-of-the-road approach to regularization, with perhaps a bit more 

weight toward the identity matrix. Similarly, NLDA performed well, as it appeared to do well in 

simulations when the ratio 𝑝/𝑁 was closer to 1.0. However, with too much regularization 

toward the identity matrix, misclassification increased (e.g., SDLDA regularized a bit more on 

average than in the simulations). Despite not regularizing much on average, MCV and MGD 

were not as good as MLDA or the diagonal covariance estimators (SDLDA and SmDLDA). Also, 

this is the first time that the average regularization parameter for MGD exceeded that for MCV. 

Inconsistent with our simulations, the SM2 classifier, using the shrinkage parameter that 

stabilizes successive ratios of the discriminant coefficients, performed almost as poorly as the 

LDF. However, its average regularization parameter definitely appeared more moderate than in 

the simulations (see the Discussion section for a possible reason why. The remaining classifiers 

were on par with the LDF. The estimated rates in Table 6 reflect the relative magnitudes of the 

rates in Table 4 for the smallest total training sample size. In fact, an examination of the some 

training sets showed that larger magnitude class mean differences were often associated with 

smaller feature variances. However, it was not apparent that mean differences increased with 

feature variances (as in Configuration D). 
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Table 6: Colon Cancer Data Summary of Estimated EER Rates 

Discriminant 
Function 

LDF SM1 SM2 RSCG LOH MCV MGD MLDA NLDA SDLDA SmDLDA SCRDA MRTRDA 

EER 0.305 0.304 0.26 0.305 0.3 0.154 0.217 0.098 0.098 0.119 0.118 0.108 0.111 

Average        0.552 
(0.074) 

  0.084 
(0.114) 

  

Regularization 

Parameter 
(SD) 

NA 
0.019 

(0.088) 

3.981 

(1.607) 

7e-6 

(9e-6) 

0.0002 

(0.0008) 

0.455 

(0.498) 

0.814 

(0.386) 

0.360 

(0.119) 
NA 

0.731 

(0.072) 
NA 

0.504 

(0.229) 

0.403 

(0.099) 

 

8.1. Guo, Hastie, and Tibshirani’s (2007) SCRDA and Klaus’ (2013) MRTRDA 

We compared the performance of the above classifiers to Guo et al.’s (2007) Shrunken 

Centroids regularized classifier (SCRDA) and Klaus’ (2013) Misclassification rate based 

variable thresholding (MRTRDA) on the colon cancer data. The SCRDA classifier estimates the 

common class covariance matrix using a convex combination of the pooled sample covariance 

matrix S and the identity matrix 𝐼𝑝, similar to estimators in Section 5.1. The regularization 

parameter α controls the extent of regularizing toward 𝐼𝑝. Then, to accomplish a variable 

selection, elements of the sample class centroids are shrunk toward their overall centroid 

elements to the extent that the features corresponding to the elements may become unimportant 

for separating classes. The extent by which features are ”reduced” is controlled by a 

thresholding parameter, ∆. The shrunken class centroids become 

�̅�𝑘
∗′ = 𝑠𝑔𝑛(�̅�𝑘

∗)(|�̅�𝑘
∗| − ∆)+ (16) 

Where �̅�𝑘
∗ = (𝛼𝑆 + (1 − 𝛼)𝐼𝑝)

−1
�̅�𝑘, 0 ≤ 𝛼 ≤ 1, ∆> 0, and 𝑡+ is the positive part of 𝑡. 

Guo et al. (2007) describe how to choose the optimal tuning parameters (𝛼, ∆)  by 

minimizing the cross-validated misclassification error rate using a ”min-min” rule that selects 

the tuning parameters from a pre-specified grid so that the minimum cross-validated error is 

achieved using the smallest number of features (i.e., highest ∆ value). For the colon cancer 

data set, ties were broken by selecting the smallest 𝛼  value (this corresponds to more 

regularization). Choosing the smallest 𝛼 value ultimately gave a lower test set error rate than 

choosing the largest 𝛼 value. 

Klaus’ (2013) misclassification rate based variable thresholding selects features using their 

effect sizes or ”feature weights”, and then uses these weights within an expression for the 

misclassification rate. The rate depends on the number of features selected. He recommends 

choosing the number so that the estimated probability of error is small (around 5%) but also 

controlling the number of features to be as small as possible (the error rate will decrease with 

added features, but the reduction may be very small or zero as the effect size of the feature 

diminishes). For predicting the class of a test sample, Klaus (2013) uses regularized 

discriminant analysis via the methods in the R package sda. We follow his approach, including 
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his helpful flowchart for obtaining the selected features. See Klaus (2013) for details regarding 

the feature weights and prediction error, as well as simulation results and application to several 

publicly available data sets. We refer to his classifier as MRTRDA. 

Table 6 also shows the results for both SCRDA and MRTRDA, for the same three-fold 

cross-validation described earlier where the training sets had 38 observations. After 500 random 

splits of the colon cancer data into training and test sets, the average error rates for SCRDA and 

MRTRDA were 0.108 and 0.111, respectively. Based on their respective average regularization 

parameters, a middle-of-the-road approach seemed to perform well. For SCRDA, the average 

regularization (𝛼) was 0.084, which means that the identity matrix was preferred over the 

pooled sample covariance matrix, on average. In addition, an average ∆ of 0.504 is not large 

compared to a grid of values from 0 to 3. Therefore, more features tended to be chosen. 

Similarly, for MRTRDA, more than half of the 500 sets (53%) chose all 2000 genes for the 

feature set based on Klaus’ criterion of a 0.05 probability of misclassification. The expected 

error rates for these classifiers were quite acceptable compared to the other rates in Table 6. For 

a 10-fold cross-validation using a somewhat larger data set of 62 samples and some 2300 genes, 

Klaus obtained an expected error rate of 0.129. However, it is not clear whether his variable 

selection was performed for each training sample. If we perform variable selection once on the 

full data set, MRTRDA retains 21 features as relevant, with a misclassification error rate of 

0.125 using a similar CV-fold and number of repetitions. 

8.2. Yang and Wu’s Regularized Complete Linear Discriminant Classifier 

The rule defined in (2) can also be derived by maximizing Fisher’s criterion, the ratio of the 

between-class to within-class (generalized) variances when the training data are transformed 

using a linear transformation matrix, say 𝐴, which is a vector 𝑎 when there are only two 

classes (see, for example, Johnson and Wichern, 2002). The vector 𝑎 is equal to the first 

eigenvector of 𝑆−1𝑆𝑏 , corresponding to its only non-zero eigenvalue. Here, 𝑆𝑏  is the 

between-class covariance matrix of the training data, and 𝑆 is defined in Section 2. Several 

authors (e.g., Yang and Yang, 2003, Lu et al., 2005, and Yang et al., 2005) have pointed out that 

for ill-posed problems, the maximum (or supremum) of Fisher criterion is technically obtained 

using eigenvectors from the null space of 𝑆 (that are not simultaneously in the null space of 𝑆𝑏) 

because the denominator of the ratio would be zero while the numerator would be positive. 

Therefore, one should use not only ”regular” discriminant vectors from the range space of 𝑆 for 

classification, but also these ”irregular” discriminant vectors from the null space, as they have 

been found to contain important discriminatory information (Yang and Yang, 2003). 

Yang and Yang (2003) proposed ”complete LDA” (CLDA) to determine all discriminatory 

information. CLDA finds ”irregular” discriminant vectors in the null space of 𝑆, and ”regular” 

discriminant vectors in the range space of 𝑆. Yang et al. (2005) then combine (”fuse”) these 

two kinds of vectors to make a classification decision. The ”fusion coefficient” determines how 

much weight is placed on the regular discriminant vectors. The combination is a summed 

normalized distance between the test sample vector and the sample class mean vector. For two 
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classes, the test sample vector is classified into the class with the smaller distance. In a 

handwriting recognition example, Yang et al., (2005) show that for two classes, using the 

complete discriminant information results in better classification performance over LDA, 

sometimes as much as 27% better. 

Yang and Wu (2014) later proposed regularized complete LDA (RCLDA). They use a 

regularized criterion to derive both the regular and irregular discriminant vectors. The same 

regularization parameter (σ > 0) is used for both criteria. In our implementation of RCLDA for 

the colon cancer data, the regularization parameter 𝜎 gives a larger weight to the regular 

discriminant vectors when it is smaller, and alternatively increases the weight put on irregular 

vectors when it increases. Similar to Yang and Wu (2014), we use the summed normalized 

distance between a test vector and a class mean vector to make a classification decision. 

Because our paper deals with poorly-posed problems, theoretically there are only regular 

discriminant vectors. However, we have found that even poorly-posed problems can benefit 

from taking advantage of irregular discriminant vectors, where a zero-valued eigenvalue can be 

defined as less than a threshold such as  1. 𝑒−06 . In fact, with such a threshold, the 

misclassification error rate for the colon cancer data was as small as that for MLDA and NLDA 

provided that the regularization parameter (𝜎) was between about 0.5 and 1.0. Putting a large 

amount of weight on the regular discriminant vector (by setting 𝜎 closer to zero) increased the 

error rate. Putting most of the weight on the ”regular” discriminant vector (e.g., setting σ equal 

to the threshold above) reproduced the error rate of the LDF, as expected. 

9 Discussion 

We have compared the classification performance of ten regularized LDFs, along with 

Anderson’s LDF. Our simulation results indicate that when regularization was expected to 

improve classification performance, it often did so. No single regularization classifier uniformly 

outperformed the others, although the classifiers developed and tested for ill-posed problems 

(i.e., when 𝑝 ≥ 𝑁 ) such as MLDA and NLDA, performed consistently well across all 

configurations, especially with the smaller sample sizes. We did not get an opportunity to test 

Yang and Wu’s (2014) RCLDA on simulated data. However, based on its results on the colon 

cancer data, we suspect it would perform well. The diagonal covariance classifiers (SDLDA and 

SmDLDA) both performed well in Configuration C where class means differed in the high 

variance subspace, and SmDLDA performed well in Configuration B, where means differed in 

the low-variance subspace. Recall that SmDLDA adjusted the class mean estimates using a 

James-Stein estimator. SDLDA did not adjust the class means, and did not perform well in 

Configurations B and D, where means differed in the low-variance subspace. 

SM2 performed consistently well across configurations, despite the shape of the true 

covariance matrix, even beating MLDA and NLDA in Configuration B. In that Configuration, 

MLDA and NLDA suffered in the largest total sample size, performing worse than LDF (as did 

SDLDA). SM2 did not suffer in the configurations we tested where 𝑝 < 𝑁 SM1, on the other 

hand, rarely performed well in the smaller total sample size scenarios. Also, the 
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asymptotic-based regularization classifiers (LOH and RSCG) never performed much better than 

the LDF, and are thus not recommended. 

In the Appendix, we test all classifiers (including SCRDA) using an ill-posed problem where 

𝑁 = 𝑝 = 50 . In these cases, MLDA performed consistently well, but was only the best 

performer in Configuration C. In the examples in Xu et al. (2009), MLDA often beat NLDA and 

SCRDA. That was true in our configurations except for Configuration A where SCRDA 

outperformed all regularizers. Also, as with the main text, when 𝑁 = 𝑝, SmDLDA had the best 

performance by far in Configurations B and D, when class mean differences were in the lower 

variance subspace. However, the good performance of SM2 waned when 𝑁 = 𝑝. We suspect it 

was due to the way we assessed stability of the ratios of sample discriminants by starting at the 

lower end of R and proceeding until a stable 𝑟𝑗 was found. This caused the chosen 𝑟 to be too 

small. 

Because of the method for breaking ties, the SM1 and MCV were influenced to choose lower 

regularization values when the cross-validated risk was tied. This phenomenon did affect their 

performance in most configurations, more so for SM1 than MCV. In the Appendix, we present 

the same results but choose the highest level of regularization to break ties. In this case, we 

notice improved performance for Configurations A and C for SM1 and MCV mostly in the 

smaller sample sizes. We might prudently choose to break ties in the direction of expected 

benefit of more or less regularization if it can be anticipated. 

We cannot ignore that perhaps one reason for the good performance of the diagonal 

classifiers is that the true covariance matrix was diagonal. However, the diagonal classifiers did 

not always outperform the other classifiers, and were among the worst performers in 

Configurations A (SmDLDA), B, and D (SDLDA). Also, when 𝑁 < 𝑝 or 𝑁~𝑝, 𝑆 may not 

resemble 𝛴. We intend to examine more general covariance structures in future research. 

With regard to the shrunken covariance matrix, the convex combination of S and the identity 

matrix, and the diagonal regularizers in Sections 4, 5, and 6, respectively, no consistent pattern 

of one group notably outperformed the other for a given configuration, though the diagonal 

regularizers did very well in Configuration C. In general, overall, the newer developed methods 

performed better than the older methods, but SM2 (Smidt, 1976b) was quite competitive with 

the newer methods. 

Finally, despite using 100,000 training samples, we noticed considerable variability in the 

choice of regularization parameters for almost every precision matrix estimator. However, for 

large ranges of the regularization parameter, we might expect the classification rule to remain 

the same so that the misclassification rate does not vary substantially. 

For the colon cancer data, Soukup and Lee’s classifier was a stepwise cross-validated 

disciminant analysis where two genes were found to be most discriminatory while also defining 

a parsimonious model. They correctly classified all 19 test samples using a classifier built from 

the remaining 38 samples. While 100% classification is quite remarkable, it occurred on a 
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particular data set. They did not perform simulations to see how their classifier performed under 

specific configurations. We also note that they allowed different covariance matrices across 

classes (i.e., quadratic discriminant analysis). We assumed a common covariance matrix, and 

our results may have suffered. However, several authors have noted the advantage of the LDF 

even without distinct covariance matrices because of the reduced number of parameters to 

estimate (see, for example, Dudoit, Fridyland, and Speed (2002) and Marks and Dunn (1974)). 

9.1. General Guidelines 

Based on the results from our simulation study, we can offer the following general 

guidelines for choosing a regularized classifier under the conditions we studied. 

1. Configurations B, C, and D all had the same true covariance matrix;they differed only in 

terms of class mean differences, whether there were mean differences in the lower variance 

subspace or higher variance subspace. Regularization seemed to have the greatest gain 

compared to LDF when class means differed in the high variance subspace. This is not 

surprising because if the largest sample eigenvalues are adjusted lower, the detection of 

differences could increase. On the other hand, when means differ in a low variance 

subspace, it might be best to regularize the means and not the eigenvalues (e.g., SmDLDA) 

in order to not dilute mean differences. 

2. In Configuration A, all true eigenvalues were the same. However, this configuration had 

only a single feature differ between classes. With only a few features differing between 

classes, mean adjustment plus covariance regularization (e.g., SCRDA) may be most 

appropriate in order to detect the differences. Although SmDLDA shrinks all feature means 

toward their overall means, it does not perform further regularization of the covariance 

matrix, whereas SCRDA chooses the amount of mean shrinkage based on cross-validation 

misclassification error, in addition to regularizing the covariance. 

3. Many of the less computationally demanding methods performed very well. A diagonal 

regularized classifier can potentially offer a big improvement in classification accuracy 

without much effort. Also, merely replacing the smallest sample eigenvalues with their 

mean (NLDA) can achieve very good classification results without even thinking about 

estimating a regularization parameter. A cross-validation approach may not be necessary, 

especially if the number of training samples is large requiring more time for a 

leave-one-out technique. 
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4. Whereas in the main text, we broke ties between potential parameter values by choosing 

the value that offered less regularization, it is clear from the Appendix that breaking ties 

toward more regularization would have been better. Consequently, we recommend 

breaking ties toward more regularization. 

5. When 𝑝 = 𝑁, many of the methods we examined can also be applied, as many were 

developed for an ill-posed situation. However, some methods would have to use a 

pseudo-inverse estimate for S−1 (e.g., MCV and MGD). 

6. Asymptotically derived regularization parameters may not have a placein poorly-posed 

problems when 𝑝～𝑁. The regularization parameter estimates appear to have been derived 

under an asymptotic assumption of N increasing with a fixed p. Therefore, their usefulness 

in the types of poorly-posed problems we examined may be limited. 

9.2. Other Types of Regularization 

Almost all of the methods we have discussed still have to choose the regularization 

parameter or fusion coefficient, often by iteration. Sharma and Paliwal (2015) choose the 

regularization parameter ”deterministically” by maximizing a modified Fisher’s criterion. The 

criterion is modified by replacing 𝑆 with 𝑆 + 𝛼𝐼𝑝  such that 𝑆 + 𝛼𝐼𝑝  is non-singular. Using 

Lagrange’s multiplier method, and setting the Lagrange multiplier (λ) equal to the largest 

eigenvalue of 𝑆+𝑆𝑏  where 𝑆+ is a pseudoinverse of 𝑆, and 𝑆𝑏  is the between-class covariance 

matrix, they solve for α as the largest eigenvalue of (1/𝜆)𝑆𝑏 − 𝑆. It is easy to see that when 𝑆 

is technically invertible, the method is equivalent to LDF because (1/𝜆)𝑆𝑏 = 𝑆, and so α = 0. 

Therefore, we did not examine this method with poorly-posed problems. 

Aerts and Wilms (2017) regularize the pooled sample covariance matrix and sample class 

means by using ”robust” estimates of each. That is, they use robust moment estimators for the 

standard deviations of the features, correlation coefficients of each pair of features, and the class 

centers. Presumably one could use any robust estimators, but the particular ones used by the 

authors are common choices. These robust estimates are then used in several regularized 

classifiers such as the graphical lasso (Friedman, et al., 2008), the joint graphical lasso (Price, et 

al., 2015), and RDA (Friedman, 1989). In their ”contaminated” schemes, where a small 

percentage of outlying values are added to components of a set of normally distributed training 

vectors, the robust versions of each method show considerably better classification performance 

than the non-robust versions, especially as the percentage of contamination increases. In their 

uncontaminated schemes, the robust versions were mostly on par with the non-robust versions. 

Further research may examine whether this method could work well when class means differ in 

a high variance subspace, such as our Configuration C. 
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10 Appendix 

In this Appendix we explore the sensitivity of classification results under two conditions. In 

the first condition, we examine classification results when the method for breaking ties for 

choosing the regularization parameter is toward higher regularization values instead of lower 

values. In the second condition, we compare the classifiers under an ill-posed problem. 

10.1. Breaking ties in regularization parameters using the maximum instead of the minimum 

For this sensitivity analysis, we re-estimated classification performance for the two 

estimators that needed to break ties among regularization parameters that achieved the 

minimum cross-validated risk (i.e., SM1 and MCV ). The results will be identical to the tables in 

the main text, except for the SM1 and MCV classifiers. 

10.1.1. Configuration A: Means differ in one orthogonal direction; equal eigenvalues 

For this configuration, because more regularization is preferred, SM1 and MCV improved 

classification performance. The estimated EERs, average regularization parameter estimates, and 

associated standard deviations for this configuration appear in Table A1. 

Table A1: Configuration A: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.453 

(0.045) 

0.350 

(0.035) 

0.290 (0.026)  
None None None 

𝑆𝑀 1 
0.353 

(0.091) 
0.279 
(0.045) 

0.254 (0.031) 
�̅�𝑆𝑀 1 

0.910 (2.082) 1.278 (2.300) 0.990 (2.041) 

𝑆𝑀 2 
0.253 

(0.021) 
0.235 
(0.016) 

0.218 (0.012) 
�̅�𝑆𝑀 2 7.129 (3.279) 8.814 (1.868) 8.958 (1.732) 

RSCG 
0.453 

(0.045) 
0.348 
(0.035) 

0.285 (0.024) 
λ̅ 

1e-8 (1e-8) 0.001 (0.0003) 0.017 (0.004) 

LOH 
0.451 

(0.046) 
0.335 
(0.039) 

0.268 (0.027) 
Υ̅𝐿𝑂𝐻 

0.0001 (0.001) 0.021 (0.023) 0.105 (0.073) 

MCV 
0.270 

(0.065) 
0.344 
(0.038) 

0.290 (0.025) 
Υ̅𝑀𝐶 0.901 (0.299) 0.411 (0.328) 0.332 (0.294) 

MGD 
0.370 

(0.106) 
0.350 
(0.035) 

0.290 (0.026) 
Υ̅𝑀𝐺 0.408 (0.492) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 
0.250 

(0.020) 
0.234 
(0.016) 

0.218 (0.012) 
�̅�1 

0.991 (0.032) 0.995 (0.027) 0.997 (0.022) 

    �̅�2 0.009 (0.018) 0.005 (0.013) 0.003 (0.009) 

NLDA 
0.259 

(0.021) 
0.242 
(0.017) 

0.225 (0.013) 
 None None None 

SDLDA 
0.220 

(0.022) 
0.207 
(0.016) 

0.195 (0.011) 
�̅� 

0.456 (0.049) 0.438 (0.048) 0.412 (0.046) 

SmDLDA 
0.331 

(0.018) 
0.312 
(0.017) 

0.288 (0.016) 
 

None None None 
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10.1.2. Configuration B: Means differ in last 𝒑 − 𝟏 features; elliptical covariance matrix 

Configuration B also tended to favor regularization in the main text. Breaking ties based on 

larger values of the regularization parameter estimates helped the classification performance of 

SM1 and MCV. The estimated EERs, estimated average regularization parameter estimates, and 

associated standard deviations for this configuration appear in Table A2. 

Table A2: Configuration B: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.185 (0.041) 0.108 (0.021)  None None None 

𝑆𝑀 1 0.318 (0.101) 0.155 (0.036) 0.105 (0.019) �̅�𝑆𝑀 1 0.285 (1.020) 1.968 (3.190) 4.454 (4.231) 

𝑆𝑀 2 0.171 (0.033) 0.136 (0.024) 0.106 (0.018) �̅�𝑆𝑀 2 7.079 (3.282) 8.267 (2.208) 7.713 (2.424) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.108 (0.021) λ̅ 4e-8 (6e-8) 0.002 (0.001) 0.020 (0.016) 

LOH 0.382 (0.074) 0.174 (0.040) 0.104 (0.020) Υ̅𝐿𝑂𝐻 3e-5 (0.0002) 0.003 (0.004) 0.006 (0.006) 

MCV 0.235 (0.059) 0.183 (0.041) 0.108 (0.021) Υ̅𝑀𝐶 0.918 (0.274) 0.372 (0.332) 0.315 (0.317) 

MGD 0.311 (0.101) 0.186 (0.041) 0.108 (0.021) Υ̅𝑀𝐺 0.457 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.182 (0.030) 0.156 (0.025) 0.127 (0.021) �̅�1 24.077 (1.351) 21.441 (1.069) 18.046 (0.788) 

    �̅�2 0.354 (0.037) 0.424 (0.030) 0.516 (0.022) 

NLDA 0.189 (0.031) 0.169 (0.026) 0.148 (0.023)  None None None 
SDLDA 0.341 (0.034) 0.325 (0.033) 0.306 (0.031) �̅� 0.119 (0.009) 0.095 (0.008) 0.071 (0.006) 
SmDLDA 0.088 (0.028) 0.078 (0.025) 0.069 (0.021)  None None None 

10.1.3. Configuration C: Means differ in last 𝒑 − 𝟏 features; elliptical covariance matrix 

For Configuration C, regularization was expected to help classification. When we broke ties 

using the maximum regularization, SM1 and MCV improved, but for MCV, improvement was 

only for the smallest sample size. The estimated EERs, estimated average regularization 

parameter estimates, and associated standard deviations for this configuration appear in Table A3.  

Table A3: Configuration C: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 
Function 

𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.184 (0.041) 0.108 (0.021)  None None None 

𝑆𝑀 1 0.312 (0.107) 0.150 (0.041) 0.096 (0.022) �̅�𝑆𝑀 1 0.281 (0.997) 1.283 (2.498) 2.413 (3.426) 

𝑆𝑀 2 0.122 (0.040) 0.097 (0.029) 0.079 (0.023) �̅�𝑆𝑀 2 7.028 (3.284) 7.937 (2.381) 7.728 (2.503) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.108 (0.021) λ̅ 6e-8 (7e-8) 0.001 (0.0006) 0.010 (0.004) 

LOH 0.381 (0.074) 0.170 (0.041) 0.099 (0.020) Υ̅𝐿𝑂𝐻 3e-5 (0.0002) 0.004 (0.005) 0.011 (0.012) 

MCV 0.141 (0.126) 0.182 (0.041) 0.108 (0.021) Υ̅𝑀𝐶 0.820 (0.384) 0.235 (0.263) 0.191 (0.240) 

MGD 0.247 (0.162) 0.184 (0.041) 0.108 (0.021) Υ̅𝑀𝐺 0.460 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.082 (0.039) 0.077 (0.035) 0.071 (0.031) �̅�1 31.678 (3.523) 28.221 (3.249) 23.792 (2.607) 

    �̅�2 0.149 (0.097) 0.242 (0.090) 0.361 (0.072) 

NLDA 0.091 (0.039) 0.085 (0.036) 0.077 (0.034)  None None None 
SDLDA 0.109 (0.045) 0.104 (0.042) 0.099 (0.040) �̅� 0.106 (0.009) 0.084 (0.007) 0.063 (0.006) 
SmDLDA 0.101 (0.057) 0.091 (0.052) 0.081 (0.047)  None None None 
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10.1.4. Configuration D: First [𝒑/𝟐] directions are informative; elliptical covariance matrix 

For Configuration D, regularization generally helped classification. For SM1, more 

regularization helped all training-sample sizes, but as with Configuration C, for MCV, it only 

helped the smallest sample size. The estimated EERs, estimated average regularization parameter 

estimates, and associated standard deviations for this configuration appear in Table A4. 

Table A4: Configuration D: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 Estimated EERs and SDs (·)  Regularization Parameter Estimates and SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50  𝑛1 = 𝑛2 = 26 𝑛1 = 𝑛2 = 35 𝑛1 = 𝑛2 = 50 

LDF 0.387 (0.072) 0.184 (0.041) 0.108 (0.021)  None None None 

𝑆𝑀 1 0.312 (0.107) 0.149 (0.040) 0.094 (0.020) �̅�𝑆𝑀 1 0.286 (1.013) 1.162 (2.315) 2.256 (3.296) 

𝑆𝑀 2 0.131 (0.033) 0.101 (0.022) 0.080 (0.016) �̅�𝑆𝑀 2 7.052 (3.287) 8.018 (2.345) 7.582 (2.534) 

RSCG 0.387 (0.072) 0.184 (0.041) 0.107 (0.021) λ̅ 4e-8 (6e-8) 0.002 (0.001) 0.022 (0.019) 

LOH 0.382 (0.074) 0.169 (0.041) 0.099 (0.020) Υ̅𝐿𝑂𝐻 3e-5 (0.0002) 0.004 (0.005) 0.012 (0.012) 

MCV 0.177 (0.077) 0.182 (0.041) 0.108 (0.021) Υ̅𝑀𝐶 0.911 (0.284) 0.343 (0.317) 0.287 (0.302) 

MGD 0.280 (0.129) 0.184 (0.041) 0.108 (0.021) Υ̅𝑀𝐺 0.461 (0.498) 0.0003 (0.003) 0.0001 (0.001) 

MLDA 0.122 (0.028) 0.100 (0.024) 0.081 (0.019) �̅�1 24.84 (1.383) 22.127 (1.110) 18.611 (0.825) 

    �̅�2 0.333 (0.038) 0.406 (0.031) 0.501 (0.024) 

NLDA 0.124 (0.029) 0.105 (0.025) 0.089 (0.022)  None None None 
SDLDA 0.294 (0.046) 0.272 (0.046) 0.245 (0.044) �̅� 0.116 (0.010) 0.092 (0.008) 0.069 (0.007) 
SmDLDA 0.084 (0.029) 0.073 (0.026) 0.063 (0.022)  None None None 

 

10.2. Ill-posed Problem where 𝑵 = 𝒑 

For this sensitivity analysis, we estimated classification performance for all classifiers, 

including those specifically developed and tested for ill-posed problems (i.e., MLDA, NLDA and 

SCRDA), for the case with 𝑁 = 50 and 𝑝 = 50. The results are shown in the following tables. 

For classifiers that needed to invert the sample covariance matrix (including LDF), we 

substituted the Moore-Penrose pseudo-inverse. For SCRDA we used the default options in the 

authors’ R function mentioned in their paper. That is, we used the ”min-min” rule that selects 

the (𝛼, ∆) pair with the smallest number of features, when there were ties for the minimum 

cross-validation error. We again used a grid of values between 0 and 3 for candidate ∆ values. 

10.2.1. Configuration A: Means differ in one orthogonal direction; equal eigenvalues 

The estimated EERs, average regularization parameter estimates, and associated standard 

deviations for this configuration appear in Table B1. SCRDA outperforms the other classifiers. 

The average 𝛼 is not especially small, suggesting that despite the true covariance matrix being 

the identity, the observed covariance matrix may be much different, reducing regularization 

toward 𝐼𝑝 . Based on its average ∆ value, SCRDA retained fewer features on average in 

Configuration A than B. Note that for Configuration A, all but one feature is noise. Table B1 

shows that estimators that chose relatively larger amounts of regularization on average, 

specifically SM1max, MCVmax and MLDA, obtained good classification results. The two 
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estimators that chose regularization parameters using asymptotic considerations (LOH and 

RSCG) did not perform well, choosing little regularization. 

Many results in Table B1 are similar to those in Table 2 for the 𝑁 = 52 case. However, 

SM2 performed much worse due to its small amount of regularization on average. The algorithm 

for choosing r in SM2 works through the grid R, starting with the smallest value of 0, and 

stopping when it finds an r that stabilizes the successive ratios of (6). With an ill-posed problem, 

the smallest eigenvalue of 𝑆 is essentially zero. Therefore, stabilization could have occurred 

more quickly, leading to smaller values of r on average. In fact, all four configurations result in 

smaller average r values for SM2 in the ill-posed problem than in the poorly-posed problems. 

Table B1: Configuration A: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 

Estimated 

EERs and SDs 
(·) 

 

Regularization 
Parameter 

Estimates and 

SDs (·) 
Discriminant 

Function 
𝑛1 = 𝑛2 = 25  𝑛1 = 𝑛2 = 25 

LDF 0.432 (0.044)  None 

𝑆𝑀 1min 0.305 (0.092) �̅�𝑆𝑀 1 2.475 (2.655) 

𝑆𝑀 1max 0.265 (0.031) �̅�𝑆𝑀 1 4.014 (3.405) 

𝑆𝑀 2 0.494 (0.065) �̅�𝑆𝑀 2 0.024 (0.304) 

RSCG 0.432 (0.044) λ̅ 0.000 (0.000) 

LOH 0.440 (0.046) Υ̅𝐿𝑂𝐻 0.001 (0.003) 

MCVmin 0.286 (0.074) Υ̅𝑀𝐶 0.812 (0.391) 

MCVmax 0.270 (0.058) Υ̅𝑀𝐶 0.901 (0.298) 

MGD 0.348 (0.096) Υ̅𝑀𝐺 0.467 (0.499) 

MLDA 0.252 (0.020) �̅�1 0.990 (0.033) 

  �̅�2 0.010 (0.019) 

NLDA 0.262 (0.022)  None 

SCRDA 0.200 (0.087) �̅� 0.218 (0.302) 

  ∆ 0.605 (0.446) 
SDLDA 0.222 (0.023) �̅� 0.458 (0.050) 
SmDLDA 0.334 (0.018)  None 

 

10.2.2. Configuration B: Means differ in last 𝒑 − 𝟏 features; elliptical covariance matrix 

We did not expect this configuration to favor regularization because dispersion regularizing 

matrices tend to equalize the unequal eigenvalues, making the regularized covariance matrix 

more spherical. However, as in the poorly-posed problems, when 𝑝 = 𝑁, some classifiers with 

high amounts of regularization performed quite well. We provide the estimated EERs, the 

corresponding average regularization parameters, and their respective standard deviations in 

Table B2. SmDLDA performed the best by far using the mean-adjusted diagonal covariance 

estimator, as it did in Table 3 in the main text. NLDA and MLDA also performed well, as might 

be expected due to the ill-posed problem. SM2 improved over Configuration A, with a higher 

amount of regularization, though still lower on average than in Table 3, in the main text. SM1 

improved over its performance in Table 3 for the poorly-posed problems. With an ill-posed 

situation, where the smallest sample eigenvalue is essentially zero, the value of r that minimizes 

the cross-validation error rate may be much higher than in a poorly-posed situation. This applies 

to Configurations C and D, as well. 
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SCRDA did not do as well (relatively) in this configuration. It chose to retain a larger 

number of features on average than in other configurations. Configurations B and C have the 

fewest features that are pure noise with no discriminatory ability. However, in Configuration C, 

the average ∆ is much higher at 0.667 (relatively smaller number of features). In Configuration 

B, class mean differences are in the lower variance subspace. Therefore, less shrinkage of 

features toward their overall mean may be needed, leading to a lower average value of ∆. 

Table B2: Configuration B: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 

Estimated 

EERs and SDs 
(·) 

 

Regularization 
Parameter 

Estimates and 

SDs (·) 
Discriminant 

Function 
𝑛1 = 𝑛2 = 25  𝑛1 = 𝑛2 = 25 

LDF 0.348 (0.067)  None 

𝑆𝑀 1min 0.210 (0.077) 𝑟𝑆𝑀 1 2.665 (2.597) 

𝑆𝑀 1max 0.198 (0.062) 𝑟𝑆𝑀 1 3.707 (3.245) 

𝑆𝑀 2 0.254 (0.145) 𝑟𝑆𝑀 2 5.112 (4.305) 

RSCG 0.348 (0.067) 𝜆 0.000 (0.000) 

LOH 0.358 (0.070) �̅�𝐿𝑂𝐻 0.0002(0.001) 

MCVmin 0.244 (0.061) �̅�𝑀𝐶 0.834 (0.368) 

MCVmax 0.235 (0.050) �̅�𝑀𝐶 0.919 (0.273) 

MGD 0.288 (0.081) �̅�𝑀𝐺 0.486 (0.500) 

MLDA 0.187 (0.030) �̅�1 24.372(1.377) 

  �̅�2 0.346 (0.038) 

NLDA 0.193 (0.031)  None 

SCRDA 0.230 (0.083) 𝛼 0.228 (0.220) 

  ∆ 0.382 (0.412) 

SDLDA 0.342 (0.034) 𝛼 0.122 (0.010) 

SmDLDA 0.089 (0.029)  None 
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10.2.3. Configuration C: Means differ in last p−1 features; elliptical covariance matrix 

With this configuration, high regularization from MLDA provided the lowest EER of 0.084, 

similar to Table 4 in the main text. Table B3 gives the results from this configuration. 

Classifiers that used higher amounts of regularization performed better than those that did not. 

SCRDA regularized quite a bit toward the identity covariance matrix (smaller 𝛼), and chose a 

lower number of features on average than in Configuration B (higher ∆̅). LOH suffered from a 

very small average amount of regularization, performing worse than the LDF unlike in the 

poorly-posed problems in the main text. The diagonal classifiers performed well, similar to 

Table 4 in the main text. 

Table B3: Configuration C: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 

Estimated 
EERs and SDs 

(·) 
 

Regularization 

Parameter 

Estimates and 
SDs (·) 

Discriminant 

Function 
𝑛1 = 𝑛2 = 25  𝑛1 = 𝑛2 = 25 

LDF 0.340 (0.069)  None 

𝑆𝑀 1min 0.179 (0.089) 𝑟𝑆𝑀 1 2.652 (2.594) 

𝑆𝑀 1max 0.162 (0.075) 𝑟𝑆𝑀 1 3.707 (3.245) 

𝑆𝑀 2 0.218 (0.167) 𝑟𝑆𝑀 2 5.099 (4.295) 

RSCG 0.340 (0.067) 𝜆 0.000 (0.000) 

LOH 0.355 (0.071) �̅�𝐿𝑂𝐻 0.0002 (0.001) 

MCVmin 0.161 (0.126) �̅�𝑀𝐶 0.708 (0.455) 

MCVmax 0.132 (0.108) �̅�𝑀𝐶 0.821 (0.383) 

MGD 0.216 (0.139) �̅�𝑀𝐺 0.488 (0.500) 

MLDA 0.084 (0.040) �̅�1 32.069 (3.563) 

  �̅�2 0.139 (0.097) 

NLDA 0.091 (0.040)  None 

SCRDA 0.125 (0.085) 𝛼 0.053 (0.136) 

  ∆ 0.667 (0.645) 

SDLDA 0.107 (0.042) 𝛼 0.109 (0.009) 

SmDLDA 0.100 (0.054)  None 
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10.2.4. Configuration D: First [p/2] directions are informative; elliptical covariance matrix 

In this configuration, higher regularization tended to perform better than lower 

regularization. As with Table 5, SmDLDA performed the best, with MLDA and NLDA also 

performing well. The average regularization parameter for SCRDA was small in magnitude, 

regularizing more toward the identity matrix. Its average shrinkage threshold was somewhat 

higher than in the other configurations (0.760), leading to fewer features retained for 

classification. This makes sense as only 25 of the 50 features had non-zero true mean 

differences between classes. These choices resulted in more regularization, and thus a lower 

EER than some of the other classifiers. Table B4 gives the results from this configuration. 

Table B3: Configuration C: Estimated EERs, Average Regularization Parameter Estimates, and 

Corresponding Standard Deviations 

 

Estimated 

EERs and SDs 
(·) 

 

Regularization 
Parameter 

Estimates and 

SDs (·) 
Discriminant 

Function 
𝑛1 = 𝑛2 = 25  𝑛1 = 𝑛2 = 25 

LDF 0.340 (0.069)  None 

𝑆𝑀 1min 0.182 (0.085) 𝑟𝑆𝑀 1 2.658 (2.585) 

𝑆𝑀 1max 0.167 (0.070) 𝑟𝑆𝑀 1 3.700 (3.231) 

𝑆𝑀 2 0.224 (0.161) 𝑟𝑆𝑀 2 5.114 (4.293) 

RSCG 0.340 (0.068) 𝜆 0.000 (0.000) 

LOH 0.355 (0.072) �̅�𝐿𝑂𝐻 0.0002 (0.001) 

MCVmin 0.192 (0.082) �̅�𝑀𝐶 0.822 (0.382) 

MCVmax 0.175 (0.065) �̅�𝑀𝐶 0.911 (0.285) 

MGD 0.252 (0.106) �̅�𝑀𝐺 0.487 (0.500) 

MLDA 0.126 (0.030) �̅�1 25.161 (1.421) 

  �̅�2 0.325 (0.039) 

NLDA 0.128 (0.031)  None 

SCRDA 0.178 (0.063) 𝛼 0.122 (0.149) 

  ∆ 0.760 (0.608) 

SDLDA 0.297 (0.044) 𝛼 0.119 (0.010) 

SmDLDA 0.085 (0.029)  None 
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