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Abstract

The complexity of energy infrastructure at large institutions increasingly calls for data-driven
monitoring of energy usage. This article presents a hybrid monitoring algorithm for detecting
consumption surges using statistical hypothesis testing, leveraging the posterior distribution and
its information about uncertainty to introduce randomness in the parameter estimates, while
retaining the frequentist testing framework. This hybrid approach is designed to be asymptoti-
cally equivalent to the Neyman-Pearson test. We show via extensive simulation studies that the
hybrid approach enjoys control over type-1 error rate even with finite sample sizes whereas the
naive plug-in method tends to exceed the specified level, resulting in overpowered tests. The
proposed method is applied to the natural gas usage data at the University of Connecticut.

Keywords Bayesian; computationally-intensive method; frequentist; hypothesis testing

1 Introduction
Large academic institutions face challenges in energy management due to complex energy in-
frastructure (University of Michigan, 2011; Worcester Polytechnic Institute, 2007). The number
of buildings is just one factor that makes energy management difficult. In most institutions,
energy management envelops energy auditing, energy bills, life cycle costing, electrical distribu-
tion systems, boilers and fired systems, steam distribution, cogeneration, energy management
control systems, insulation, compressed air, renewable energy sources and water management,
distributed generation, and codes standards and legislation (Doty and Turner, 2004; Capehart
et al., 2020). The sheer complexity of energy management calls for a screening process to iden-
tify anomalous energy usage with the goal of reducing the number of accounts that have to be
inspected manually. Manual inspection is time-consuming and labor-intensive, and facilities pro-
fessionals’ time is wasted if an inspection turns out to have been unnecessary. A screening process
to detect energy usage anomalies in buildings ultimately depends on what defines an anomalous
behavior. In general, anomalies are observations in energy usage that substantially deviate from
what is expected. Statistical monitoring learns normal behaviors from data to locate atypical
behaviors. Zhang and Paschalidis (2018) derive a Hoeffding test statistic for network systems,
leveraging large deviation theory and assuming that observations follow a finite-state Markov
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chain. They use the relative entropy between the empirical and theoretical probability laws to
define what is anomalous. Likewise, in Fu and Jeske (2014), anomaly detection in network traffic
is formulated as a hypothesis test of H0 : μ = β0 versus H1 : μ = cβ0, where β0 indicates a
coefficient vector of fixed effects (the daily or weekly mean network traffic counts) and c is a
percentage increment tuning parameter that represents the maximum acceptable multiplicative
increase. The true parameter β0 is often unknown in anomaly detection problems, whereas it
should usually be prespecified under a conventional hypothesis testing setting. The main contri-
bution of Fu and Jeske (2014) is that their proposed method resolves the problem of unknown
β0 and potential nuisance parameters in a model. However, they essentially take an estimate
for β0 as truth, which inherently harbors unaddressed randomness by virtue of being estimated.
Their confidence in using plug-in estimates stems from the large amount of network traffic data
readily available due to its high-frequency nature.

Existing literature on “anomaly detection” methods for energy consumption proposes var-
ious ways to quantify “what is expected” and how severely the observed data depart from it.
Seem (2007) proposes a modified z-score after identifying outliers using the generalized studen-
tized deviates. Zhao (2014) assumes that the difference between adjacent observations should
approximately be the same, which works as a measure of large discontinuity. Rashid and Singh
(2018) propose distance-based abnormality scores. To the best of our knowledge, these papers
on anomaly detection are mainly focused on high-frequency demand or usage data, which do
not use properties available for coarser-grained monthly data. In the time series data framework,
anomaly detection is formulated as a change point detection problem. For instance, Ross et al.
(2011) and Ross et al. (2013) develop change point detection models based on hypothesis tests
where p-values govern statistical decision-making, while Raftery and Akman (1986) model the
data as a stream of Poisson random variables whose parameter changes from λ1 to λ2 after an
unknown break point.

Our paper was primarily motivated by Fu and Jeske (2014) where the data set is partitioned
into historical data and monitored data (see Section 2 for a detailed description of the data)
and the historical data set is used to learn normal behavior, which is then used to test the mon-
itored data. This framework inevitably involves estimating parameters to be used in hypothesis
testing, which requires large data. However, unlike network traffic systems, the amount of data
available to train the model is usually smaller for energy usage data, yielding estimates with
higher uncertainty. To overcome this shortcoming, multiple buildings a priori believed to behave
similarly are grouped together to borrow strength from each other. This alone cannot remedy
the uncertainty incurred by replacing truth with an estimate. In that direction, the posterior
distribution is a powerful object that encodes uncertainty in its own way and can be used to
reintroduce randomness that was ignored in the plug-in scheme. Unfortunately, the posterior
predictive distribution of the test statistic is not available in closed form, and a computationally
intensive method is required to construct it via Monte Carlo sampling.

2 A Motivating Case: UConn Energy Data
Facilities Operations at the University of Connecticut (UConn) collects and monitors data on
utility consumption. UConn’s main campus in Storrs, Connecticut, has 120 buildings with over
400 separate external utility accounts for natural gas and electricity provided by local utility
service companies, CNG and Eversource. The main campus has an additional 150 buildings
with over 240 internal meter accounts for utilities produced by UConn’s Central Utility Plant
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providing the campus with electricity, steam, and chilled water. We mainly focus on UConn’s
natural gas consumption measured monthly by UConn Facilities Operations. The raw data
consist of monthly measurements of natural gas consumption collected by UConn Facilities
Operations. A total of 259 separate utility accounts are available across 120 buildings, each
building having a varying number of meters. On a monthly basis, CNG, the local utility service
provider for natural gas, provides UConn with a spreadsheet that contains all the account
information including natural gas usage. In what follows, the building names and meter codes
have been masked due to privacy considerations. UConn CNG data span 14 years from February
2007 to December 2020. Out of 245 CNG meters, we select 71 meters installed in residential
buildings on UConn Storrs campus. Residential buildings have been grouped together a priori
due to their similar energy consumption profiles. Energy meters have been installed and activated
in university buildings at different times, making data availability different for each account. All
70 accounts for UConn’s residential buildings were available from January 2008 and December
2016. One account was removed due to at least one unavailable measurement between Jan. 2008
and Dec. 2016. Each observation corresponds to a single utility bill for the associated meter
in one billing period, measured as the difference between two readings in hundred cubic feet
(abbreviated to CCF). The billing start and end dates do not align uniformly across accounts,
and therefore, the meter readings are adjusted for the differing number of days within each
billing cycle to amount to 30-day use. Furthermore, the building size must be accounted for,
since larger buildings tend to use more gas. Each measurement is adjusted to represent gas usage
for 100 sqft. The final normalization becomes as follows:

30 × 100 × y

(#days)(sqft)(degree-days)
, (1)

where y is the observation, sqft indicates the square footage and degree-days is the number
of degree days of the corresponding month (see Section 6). A set of 12 months forms a “cycle”
regardless of the month the cycle starts with. For example, Feb. 2012 to Jan. 2013 can form a
cycle. For practical purposes, most interesting cycles are based on calendar years, fiscal years,
or academic years. We represent the measurement for the ith year, jth month, and kth account
as yh

ijk, where i = 1, . . . , T , j = 1, . . . , J , and k = 1, . . . , K. A batch of observations within
a cycle need not be 12, and therefore, we let j take on numbers up to an arbitrary J smaller
than (or equal to) 12—i.e., j = 1, . . . , J (see Section 4.2). The batch that we are interested in
regarding the existence of anomalous activities is in the last cycle, which we call monitored or
test data, denoted by (yT +1,1, . . . , yT +1,K), where yT +1,k = (yT +1,1,k, . . . , yT +1,J,k)

�. This naturally
gives rise to T cycles of historical data, which we write (yh

i1, . . . , y
h
iK) for i = 1, . . . , T , where

yh
ik = (yh

ijk, . . . , y
h
iJk)

� and the superscript h indicates historical data. Figure 1 contains two heat
maps, showing the standard deviations of the normalized natural gas use data for 70 residential
buildings on UConn’s main campus, with higher standard deviations colored darker. The left
panel illustrates the standard deviations across years given a month and an account. Except
for the first account (leftmost column), cells in each row are colored similarly. This suggests
that the normalization removed various sources of variation and allowed years to be assumed
as exhibiting similar variability. The same observation is possible for the right panel, containing
standard deviations across accounts given a month and a year. Account variability is noticeably
consistent within a month across years.
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Figure 1: Heat maps of standard deviations. Left panel shows standard deviations across years
for a given month and an account. Right panel shows standard deviations across accounts while
month and account are held fixed.

3 Testing Parameters Under Uncertainty
In energy monitoring, there is no one-size-fits-all number representing the energy use that is
considered normal for all buildings. This very lack of reference point complicates the formula-
tion of hypothesis testing. An intuitive solution would be to check whether observations have
significantly changed relative to the historical data, assuming observations were stable and con-
sistent for several years (Fu and Jeske, 2014). Unfortunately, this involves replacing truth with
an estimate, which leaves the uncertainty unresolved. Assume yT +1,k independently follows a
J -dimensional multivariate normal distribution, N(μk, �), where μk is a mean vector and � is
an unknown covariance matrix for k = 1, . . . , K. Consider the following hypotheses:

H0 : μk = β0k versus H1 : μk = cβ0k, (2)

where c is a prespecified scalar greater than one, indicating multiplicative excess energy use
beyond a tolerable level, and β0k is a J -dimensional vector that reflects acceptable energy usage,
prespecified using historical data. Note that � also needs to be specified using historical data.
In essence, this hypothesis test compares the mean energy consumption represented by μk to an
acceptable level, β0k. The only truly known, or user-specified, component in our setting is the
percentage increment tuning parameter c. Provided that β0k’s and � are given, a traditional test
would proceed to find the most powerful rejection region given by the Neyman-Pearson lemma
(Neyman and Pearson, 1933; Casella and Berger, 2002). Estimated β0k’s in a classical testing
procedure may yield biased statistical inference due to the variability in the estimate. In the
most general case, repeatedly splitting the data at random provides a way to reintroduce some
randomness in the estimate by employing one data set for parameter estimation and the rest for
testing—known as the train-test split. This bootstrapping scheme extracts information about
uncertainty from subsetting the data to inject missing randomness into the test statistic (Efron
and Tibshirani, 1994). When data are more structured than the general case, random splits no
longer work. For example, the motivating UConn CNG data (see Section 2) are observed one
batch per cycle, with a set of historical data {yh

i1, . . . , y
h
iK} for i = 1, . . . , T and a set of test data

{yT +1,1, . . . , yT +1,K} corresponding to the last cycle. The subscript T +1 in test data is henceforth
omitted. We are only interested in testing the last cycle, where the historical data are assumed
to have been generated from the null model, H0 : μk = β0k. The specific interest in testing only
the last cycle restricts our ability to generate random splits. Although it is technically possible
to bootstrap estimates from the historical data, it is challenged by prohibitively small bootstrap
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sample sizes, and will produce an overpowered procedure similar to the naive plug-in procedures.
Instead, we turn to an alternative object that contains the uncertainty information: the posterior
distribution.

A Motivating Special Case We illustrate the single-account setting where only one utility
account is of interest (i.e., k is given) and lay out the proposed algorithm as a motivating example.
Let y be a random vector from a J -dimensional multivariate normal distribution N(μ, σ 2I J ).
This is a special case of N(μ, �) where the covariance matrix � = σ 2I J . This assumption
implies that the energy consumption is independent across different months and shares a common
variance σ 2, allowing the estimation of σ 2 without borrowing information from other accounts.
Under this simple setting, the historical data are expressed as {yh

1, . . . , y
h
T } (or {yh

ik} for a given
k and i = 1, . . . , T for notational consistency), and the test data are y. We drop the subscript k

henceforth. The procedure is twofold: (1) the historical data are used to estimate the parameters;
and (2) the test data are used to derive the rejection region and compute the test statistic. The
hypotheses remain identical to those in Equation (2). The historical data yh

i for i = 1, . . . , T

are used to estimate the parameters β0 and σ 2. This model can be recast into the following
matrix-vector form, yh = Xβ0 + ε, where yh = vec([yh

1 yh
2 · · · yh

T ]�) for which vec(·) denotes
vectorization stacking the column vectors, X = ⊕J

j=11T for which ⊕ indicates direct sum and 1T

is the T -dimensional vector of ones, and ε ∼ N(0, σ 2I T J ). Then the least-squares estimator of
β0 is β̂0 = (X�X)−1X�yh where (X�X)−1 = I J /T . Therefore, β̂0 = (yh

·1, yh
·2, . . . , yh

·J )�, where

yh
·j = 1

T

T∑
i=1

yh
ij .

It is well-known that the least-squares estimator follows a normal distribution, i.e., β̂0 ∼
N(β0,

σ 2

T
I J ). Also, the unbiased estimator of σ 2 and its sampling distribution are given as follows:

σ̂ 2 = ‖yh − Xβ̂0‖2

J (T − 1)
,

J (T − 1)̂σ 2

σ 2
∼ χ2

J (T −1),

where χ2
ν indicates a chi-squared distribution with ν degrees of freedom. This ultimately gives

the posterior distributions under a uniform prior, π(β0, σ
2) ∝ 1, as follows:

β0 | σ 2, yh ∼ N

(
β̂0,

σ 2

T
I J

)
, σ 2 | yh ∼ IG

(
J (T − 1)

2
,
J (T − 1)̂σ 2

2

)
,

where X ∼ IG(a, b) denotes the inverse-gamma distribution whose density function is propor-
tional to x−(a+1)e−b/x . Subsequently, the test data is used to derive the test statistic and rejection
region corresponding to the most powerful test through the Neyman-Pearson lemma. Writing
the likelihood ratio of the alternative hypothesis to the null hypothesis as � (i.e., � = L(cβ0,σ

2)

L(β0,σ
2)

),
log � follows a normal distribution under H0 (see Appendix B), which upon standardization
yields

W := log � − EH0(log �)√
VarH0(log �)

=
∑J

j=1(yj − β0j )β0j

σ

√∑J
j=1 β2

0j

∼ N(0, 1).

The posterior distributions of the parameters capture the variability introduced in the estimation
step. The main idea of our procedure lies in using the posterior distribution to calibrate the
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Algorithm 1 Single-account testing procedure.
1: procedure singleTesting(yh, y, α, B1, B2, B3)
2: β̂0 ← (yh

·1, yh
·2, . . . , yh

·J )� and σ̂ 2 ← [J (T − 1)]−1
∑T

i=1

∑J
j=1(y

h
ij − yh

·j )2

3: for b2 = 1 : B2 do
4: Generate σ 2

f ∼ IG(J (T − 1)/2, J (T − 1)̂σ 2/2) and βf ∼ N(β̂0,
σ 2

T
IJ )

5: Generate yf ∼ N(βf , σ 2
f I12)

6: for b1 = 1 : B1 do
7: Generate σ 2 ∼ IG(J (T − 1)/2, J (T − 1)̂σ 2/2) and β ∼ N(β̂0,

σ 2

T
IJ )

8: δb1 ← I
(

β ′(yf −β)

σ
√

β ′β
> z1−α

)
9: p̂b2 ← 1

B1

∑B1
b1=1 δb1

10: γα ← (1 − α)th-quantile(̂p)

11: for b = 1 : B3 do
12: Generate σ 2 ∼ IG(J (T − 1)/2, J (T − 1)̂σ 2/2) and β ∼ N(β̂0,

σ 2

T
IJ )

13: δb ← I
(

β ′(y−β)

σ
√

β ′β
> z1−α

)
14: p̂obs ← 1

B3

∑B3
b=1 δb

15: return H1 if p̂obs � γα and H0 otherwise

frequentist testing procedure. The step-by-step description of our hybrid procedure is given in
Algorithm 1. In our procedure, the test statistic is computed repeatedly using the parameter
values generated from the posterior distribution, and the corresponding simulated data. This
simulated data set is written as yf where the superscript f indicates future values. Then, the
same calibration is performed on the test data to compute the calibrated p-value p̂obs, which is
ultimately compared to p, the sample of posterior predictive p-values. If the observed p-value
p̂obs associated with y exceeds the upper α-th quantile of p, the null hypothesis is rejected.

4 Hybrid Monitoring for Multiple Accounts
The common variance assumption and independence of energy usage across months in Section 2
are too restrictive. Estimating an unstructured � typically requires a large amount of historical
data (i.e., a sufficiently large T ) if we are using data from a single account. There are two
key motivations: (1) estimating � by pooling information; and (2) monitoring energy usage
of all accounts. However, this approach requires that all accounts share the same covariance
matrix, which is well-supported by Figure 1. Assume yk follows a J -dimensional multivariate
normal distribution N(μk, �) with a mean vector μk and an unknown covariance matrix � for
k = 1, . . . , K. The data are now modeled as being correlated within a cycle but independent
between cycles. Now consider the following hypotheses:

H0 : μk = β0k versus H1 : μk = Cβ0k for all k, (3)

where C is the percentage increment matrix. An example of C is diag(c1, . . . , cJ ) with cj > 1 for
all j . The historical data can be expressed as yh

ik = β0k + εik for i = 1, . . . , T and k = 1, . . . , K,
where β0k = (β1,0k, . . . , βJ,0k)

� is a mean vector for the kth account, εik

IID∼ N(0, �), and � is
an unknown J × J symmetric positive-definite matrix. Unbiased estimators for β0 and � are
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well-known, computed using the historical data:

β̂0k = yh
·k = 1

T

T∑
i=1

yh
ik, �̂ = 1

K(T − 1)

T∑
i=1

K∑
k=1

(yh
ik − β̂0k)(y

h
ik − β̂0k)

�.

The hypothesis testing expressed in Equation (3) is inherently a multiple testing problem. De-
noting the test data by yk = (y1k, . . . , yJk)

�, the logarithm of the likelihood ratio follows a
normal distribution under H0 by the same logic as in the motivating special case, where assum-
ing c = c1 = · · · = cJ yields under H0

Wk := log �k − EH0(log �k)√
VarH0(log �k)

= β�
0k�

−1(yk − β0k)√
β�

0k�
−1β0k

∼ N(0, 1). (4)

The sum-of-squares matrix S := K(T −1)�̂ = ∑T
i=1

∑K
k=1(y

h
ik−β̂0k)(y

h
ik−β̂0k)

� follows a Wishart
distribution, W(K(T − 1), �), where WJ (ν, �) is the Wishart distribution with ν degrees of
freedom and a J × J scale matrix � whose density function is

fW(X | ν, �) = |X|(ν−J−1)/2etr(−�−1X/2)

2νJ/2|�|ν/2J (ν/2)
I (X ∈ SJ

++),

J is the multivariate gamma function defined by

J (z) = πJ(J−1)/4
J∏

j=1

[z + (1 − j)/2],

and SJ++ is the space of J ×J symmetric positive-definite matrices. This in turn yields a posterior
distribution � | yh ∼ IW(K(T −1)−J −1, S) under a noninformative prior, π(β01, . . . , β0K, �) ∝
1, where IWJ (ν, �) is the Inverse-Wishart distribution with ν degrees of freedom and a J × J

scale matrix � whose density function is

fIW(X | ν, �) = |�|ν/2etr
(−�X−1/2

)
2JνJ (ν/2)|X|(ν+J+1)/2

I (X ∈ SJ
++).

Likewise, the (conditional) posterior distribution of β0k is given by β0k | �, yh IND∼ N(β̂0k, �/T ).
For every k, the observed value of Wk = wk will produce a p-value uk = 1 − �(wk). There is
extensive research on how to adjust K p-values to control the familywise error rate or the false
discovery rate. In multiple-testing literature, the null hypothesis, H0 : μk = β0k for all k, is
referred to as the grand null, and H1 : μk �= β0k for at least one k is equivalently the grand alter-
native hypothesis. For our procedure (see Algorithm 2), we consider five multiplicity corrections
including the Bonferroni correction (Dunn, 1961; Holm, 1979; Hochberg, 1988; Hommel, 1988;
Simes, 1986; Šidák, 1967; Benjamini and Hochberg, 1995). The adjusted p-value (Wright, 1992)
for each method is computed as follows:
• Bonferroni: p̃k = Kuk

• Holm: p̃(k) = maxj�k{(K + 1 − j)u(j)}1, where {x}1 = min(x, 1)

• Hochberg: p̃(k) = minj�k{(K + 1 − j)u(j)}1

• Hommel: no one-line expression for adjusting p-values
• Benjamini-Hochberg: p̃(k) = minj�k{K/(K + 1 − j)u(j)}1
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Algorithm 2 Multiple-account testing procedure.
1: procedure multipleTesting(yh, y, α, B1, B2, B3, h)
2: β̂0k ← yh

·k for k = 1, . . . , K and S ← ∑T
i=1

∑K
k=1(y

h
ik − yh

·k)(y
h
ik − yh

·k)�
3: for b2 = 1 : B2 do
4: Generate �f ∼ IW(K(T − 1) − J − 1, S) and β

f

k

IID∼ N(y ·k, �f /T ) for k = 1, . . . , K

5: Generate y
f

k ∼ N(β
f

k , �f )

6: for b1 = 1 : B1 do
7: Generate � ∼ IW(K(T − 1) − J − 1, S)

8: Generate βk

IID∼ N(y ·k, �/T ) for k = 1, . . . , K

9: uk ← 1 − �

(
β�

k �−1(y
f
k −βk)√

β�
k �−1βk

)
for k = 1, . . . , K

10: Compute (p̃1, . . . , p̃K) ← h(u1, . . . , uK)

11: δb1 ← any(p̃1 < α, . . . , p̃K < α)

12: p̂b2 ← 1
B1

∑B1
b1=1 δb1

13: γα ← (1 − α)th-quantile(̂p)

14: for b = 1 : B3 do
15: Generate � ∼ IW(K(T − 1) − J − 1, S) and βk

IID∼ N(y ·k, �/T ) for k = 1, . . . , K

16: uk ← 1 − �

(
β�

k �−1(yk−βk)√
β�

k �−1βk

)
for k = 1, . . . , K

17: Compute (p̃1, . . . , p̃K) ← h(u1, . . . , uK)

18: δb ← any(p̃1 < α, . . . , p̃K < α)

19: p̂obs ← 1
B3

∑B3
b=1 δb

20: return H1 if p̂obs � γα and H0 otherwise

Holm’s procedure is replaced with the Holm-Šidák method in our simulation studies to increase
power. The corresponding adjusted p-value becomes p̃(k) = maxj�k{1 − (1 − u(j))

K+1−j }1.
Algorithm 2 describes the proposed multiple-account procedure, where h(u1, . . . , uK) is

the chosen algorithm for computing the adjusted p-values. The multiple-account procedure
follows the same logic as that of Algorithm 1. However, unlike Algorithm 1, this multiple-
account procedure defies an analytical expression of its statistical power for a given multiplicity
correction. We therefore provide a Monte Carlo scheme for computing the statistical power once
we have full knowledge of the data generation process. See Section 5 for detail.

4.1 Complexity Analysis

The computationally intensive nature of Algorithm 2 merits a brief discussion about its com-
putational cost. Since it is well-known that nested for loops are costly, we focus our discussion
on the innermost for loop that repeats a sequence of test statistic calculation B1 times. The
most computational overhead comes from either line 7 or line 9 in Algorithm 2. Generating a
J ×J inverse-Wishart random matrix � produces its inverse �−1 as a byproduct. The inversion
here is of O(J 3), where O(f (n)) indicates a class of algorithms whose order is f (n)—i.e., an
algorithm g(n) is an element of O(f (n)) if there exist a positive integer N and a positive real
number c such that 0 � g(n) � cf (n) for all n � N (Cormen et al., 2022). In line 9, �−1(y

f

k −βk)

can be done in one step for all k = 1, . . . , K by stacking {yf

k − βk}Kk=1 into a J × K matrix D
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whose k-th column is y
f

k −βk. Then, using the fact that the computational complexity of matrix
multiplication between an m × n matrix and an n × p matrix is O(mnp), calculating �−1D is of
O(J 2K). In theory, the computational complexity of one iteration of the innermost for loop is
therefore O(J 2 max(K, J )). In practice, however, J is the number of months in a cycle, bounded
above by 12. This makes it highly probable that K is greater than J . All in all, the complexity
of Algorithm 2 is therefore O(B1B2J

2 max(K, J )). As daunting as it may seem, there is a source
of significant computational gains in the proposed method: parellelization. The posterior dis-
tribution π(β1, . . . , βK, �) does not require Markov chain Monte Carlo sampling, which lends
itself to parallelization. There are various ways to parallelize a program (see Section 5 for our
settings). Although parallelizing Algorithm 2 considerably speeds up computation, a high value
of B1B2 can easily cancel out the acceleration. We recommend that both B1 and B2 be smaller
than 2,000 for a good balance between performance and computational feasibility.

4.2 Testing Before a Full Cycle

Testing the last full cycle of data was initially proposed in Fu and Jeske (2014) for high-frequency
data collection. However, testing full-cycle may be too prohibitive for practical use. For instance,
we may want to test energy usage before having observed a full 12 months. The aggregate nature
of the UConn CNG data lends itself well to the central limit theorem, allowing the use of the
multivariate normal distribution as our sampling distribution. Fortunately, the affine property of
the multivariate normal distribution (Rao, 1973; Ravishanker et al., 2022) allows the restriction
to be relaxed to any subset of the observations. The index j = 1, . . . , J has been kept arbitrary
on purpose to accommodate this relaxation. That is,

ỹk := E�yk ∼ N(E�μk, E
��E),

where E is a J × a selection matrix whose columns are standard unit vectors ej = (0, 0, . . . ,

1, . . . , 0)� whose jth element is one and zeros elsewhere, and ỹk indicates an a-dimensional
subvector of yk of selected elements to be tested, for which a is the number of selected elements.
Redefining J := a and yk := ỹk brings us back to the original formulation—Equation (3)—with
a mild abuse of notation.

4.3 Bayesian Interpretation

Our proposed procedures permit a straightforward Bayesian interpretation under noninformative
priors. The posterior distribution of � | y and the conditional posterior distribution β | �, y

are given in Sun and Berger (2007). In our case, the distribution β0k | �, y is easily obtained
as N(y ·k, �/T ). As for the marginal posterior of �, assume the Jeffreys-type prior: π(β, �) ∝
|�|−d/2 (Jeffreys, 1998; Geisser and Cornfield, 1963; Sun and Berger, 2007). Then the marginal
posterior density becomes

π(� | y) ∝ |�|− K(T −1)+d
2 etr(−�−1S/2) ∼ IW(K(T − 1) + d − J − 1, S). (5)

If we choose d to be the dimension of �, that is let π(β, �) to be Jeffreys’ prior, then � | y ∼
IW(K(T − 1) − 1, S). The first nested for loops in Algorithm 2 correspond to a Monte Carlo
sampling scheme to construct the distribution of the random variables defined as an expectation
as follows. Writing Uk = 1 − �(Wk(y

f , βk, �)) with � being the distribution function of the
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standard normal distribution,

Eπ(β,�|y)

{
h(U1(y

f , β1, �), . . . , UK(yf , βK, �))
}

=
∫∫

h(U1(y
f , β1, �), . . . , UK(yf , βK, �)) π(β | �, y)π(� | y) dβ d�,

(6)

where yf follows the posterior predictive distribution. This expectation is a random variable
whose randomness stems from yf . By sequentially sampling from �(b) ∼ [� | y] and β(b) ∼ [β |
�(b), y] for b = 1, . . . , B, the expectation in Equation 6 is approximated by

1

B

B∑
b=1

h(U1(y
f , β

(b)
1 , �(b)), . . . , UK(yf , β

(b)
K , �(b)))

→ Eπ(β,�|y)

{
h(U1(y

f , β1, �), . . . , UK(yf , βK, �))
}
,

(7)

as B → ∞. The entire procedure is asymptotically equivalent to the frequentist Neyman-Pearson
test due to posterior consistency (see Proposition 1 in Appendix A).

5 Simulation Studies
In this section, we conduct extensive simulation studies to investigate the performance of the
proposed algorithms relative to the naive plug-in method. The size, or equivalently the type-1
error, and the power are the quantities of interest. Both the size analysis and the power analysis
consist of a simulation study for the motivating special case with � = σ 2I J for a given k and
another for the multiple-account case. We detail the data generation setting here; note that
the historical data are assumed to follow the null hypothesis whereas the test data follow the
null hypothesis and alternative hypothesis, respectively, in size analysis and power analysis.
The related data sets are generated accordingly using R (R Core Team, 2021). All algorithms
are implemented in C++ using Rcpp (Eddelbuettel and Balamuta, 2018) and RcppArmadillo
(Eddelbuettel and Sanderson, 2014) for linear algebra, and OpenMP (OpenMP Architecture
Review Board, 2018) for parallel programming. For the single-account case, we generate 10,000
data sets each for T = 3, T = 5, T = 10, and T = 15 from the model specification, where
true β is set to (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)� and σ 2 = 2.5. Recall that T indicates the
number of cycles in the historical data used to estimate the parameters. We run the algorithm for
α = 0.01, α = 0.025, and α = 0.05. There are three tuning parameters: B1, B2, and B3 indicating
the numbers of Monte Carlo iterations within Algorithm 1 and Algorithm 2. The single-account
case involves relatively few computational intensive matrix operations like matrix inversion or the
Cholesky decomposition—the tuning parameters were chosen to be large numbers (B1 = 4000,
B2 = 5000, B3 = 4000). The seed number was set to 2797542 for data generation and 18007
for running the algorithms, respectively. For simulations related to the multiple-account case
illustrated in Section 4, we generate 1,000 data sets each for T = 3, T = 5, T = 10, T = 15 from
the appropriate model. That is, all historical data were generated from the model yk

IND∼ N(βk, �)

for k = 1, . . . , 70, while the test data for power analysis were generated from yk

IND∼ N(cβk, �)

for k = 10, 11, 12 where c = 1.2. Note that yk for k �∈ {10, 11, 12} still follow N(βk, �) even in
power analysis. The specific values of the true parameters, βk and � were selected to mirror the
UConn CNG data, in which case J = 12, and c = 1.2 to indicate 20% increase in natural gas
usage, a threshold beyond which utility engineers at the Facilities Operations deem excessive.
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Figure 2: The coefficients of variation between βk and the diagonal entries of � across 70 CNG
meters installed in residential buildings at UConn.

5.1 Size Analysis

The three panels on the left column of Figure 3 visualize the comparison between Algorithm 1 and
the naive plug-in method in the single-account case. It is clearly observed that the type-1 error
is not controlled when plug-in estimates are used. Meanwhile, the proposed method effectively
contains the type-1 error below the desired level. The discrepancy between the methods is the
most pronounced when T = 3 since the number of samples used to estimate the (plug-in)
unbiased estimator falls well short of that required for the law of large numbers to be at play,
leaving much of the randomness in the estimator unaccounted for.

Similarly, the comparison between Algorithm 2 and the naive plug-in methods in the
multiple-account case is summarized in Figure 3. The proposed methods, as well as the naive
plug-in methods, depend on the multiple testing corrections denoted by h(·) in Algorithm 2. Four
multiplicity corrections are considered—Holm, Hochberg, Hommel, and Benjamini-Hochberg.
The familywise error rate, the multivariate equivalent of the type-1 error rate, is slightly ele-
vated to avoid too low a probability of anomaly detection (α ∈ {0.025, 0.05, 0.1}).

The bar plots show that the inflated type-1 error issue that plagued the plug-in methods in
the single-account case carries over to the multiple-account case regarding the FWER. All three
panels in the right column of Figure 3 have bars labeled with the letter “N”, indicating that
the corresponding values were computed using “naive” (plug-in) methods, exceeding the desired
FWERs marked as red lines. Note that the inflated FWERs of the plug-in estimates subside
as more data become available, i.e., T increases. On the other hand, the proposed methods
exhibit a rather conservative behavior. We observe that the proposed algorithms “play it safe”
with scarce data, or equivalently with large randomness, and grow more confident to reject
the grand null hypothesis as more data come in. Little difference in the performances exists
across multiplicity corrections. It has been observed that the proposed method exhibits type-1
error rate that approaches the desired FWER from below, whereas the plug-in method does
so from above. In theory, both methods should converge in the presence of sufficient data, due
to frequentist consistency. To confirm this, an additional set of simulations with 4,629 data
sets has been conducted for T = 100. Note that 100 years of historical data are unrealistic in
practice. As evidenced in Figure 4, the two methods return indistinguishable size estimates with
a wealth of data. This finding supports our method’s control over size in circumstances with
small-to-moderate data.
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Figure 3: (Left column) Simulation results for the size analysis in the single-account case. The
red dashed lines are the desired α-level. (Right column) Simulation results from 1,000 data sets
in the multiple-account case. The letters “P” and “N” are short for “Proposed” and “Naive”
respectively, indicating the proposed methods and naive plug-in methods. Multiple testing cor-
rections are distinguished by colors, as shown in the legend. The red dashed lines are the desired
FWER.

Figure 4: Simulation results for size convergence from 4,629 data sets in the multiple-account
case for T = 100. The letters “P” and “N” are short for “Proposed” and “Naive”, respectively,
indicating the proposed methods and naive plug-in methods. Multiplicity corrections are distin-
guished by colors, as shown in the legend. The red dashed lines are the desired FWER.
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Figure 5: (Left column) Simulation results in the single-account case for power analysis. The red
dashed lines indicate the corresponding theoretical power when the true β and σ 2 were used,
computed by Equation (11). (Right column) Simulation results in the multiple-account case for
power analysis. The letters “P” and “N” are short for “Proposed” and “Naive”, respectively,
indicating the proposed methods and naive plug-in methods. The multiple testing corrections
are distinguished by colors, as shown in the legend. True power is marked as a dashed line for
each method, computed through Monte Carlo simulations of 10,000 iterations.

5.2 Power Analysis

The left column of Figure 5 contains three bar plots comparing the estimated statistical power
using the proposed method to that of plug-in estimates. The red lines indicate the theoretical
power for the corresponding configuration, computed by 1 − �(z1−α − (c − 1)‖β0‖/σ), where zα

is the α-th quantile of the standard normal distribution. The statistical power is by and large
comparable except when T is low where the plug-in estimate yields moderately higher statistical
power than the proposed method. However, this comes at the expense of allowing exceedingly
high type-1 error as demonstrated in Figure 3. The gains in statistical power are not worth
relinquishing control over type-1 error, considering the differences in type-1 error and statistical
power.

In the multiple-account case, the right column of Figure 5 shows the statistical power of
the proposed methods and plug-in methods labeled as “P” and “N”, respectively. Each multiple
testing correction is distinguished by a different color. Despite the lack of a closed-form expression
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of the true power, it can be computed with Monte Carlo simulations, i.e.,

1

S

S∑
s=1

any (h(U1, . . . , UK−3, V10, V11, V12) < α) → 1 − β, (8)

as S → ∞, where Uk

IID∼ U(0, 1), Vk = 1 − �

(
Zk + (c − 1)

√
β�

k �−1βk

)
and Zk

IID∼ N(0, 1) for

k = 10, 11, 12, β is the type-2 error with respect to the grand hypotheses, and h is the multiple
testing correction chosen from {Holm, Hochberg, Hommel, BH} which yields the adjusted p-
values. Considering the true power computed through Monte Carlo simulations is marked as
dashed lines in all three panels, it is easily observed that the naive plug-in methods outperform
the Neyman-Pearson test which is supposed to be the most powerful. Despite its ostensible—
yet misleading—outperformance, this is in fact due to the uncontrolled FWER, as shown in
Figure 3. In the context of energy use monitoring, this indicates that the plug-in methods set off
false alarms twice as many times as the acceptable rate specified by the type-1 error, incurring
wasteful human inspection. Even with 15 cycles of historical data, the plug-in methods are still
overpowered. On the other hand, the proposed procedure produces statistical power that falls
short of that of the Neyman-Pearson test; however, it catches up reasonably quickly with 10
cycles of historical data, with which the naive plug-in procedures are still overpowered.

6 Real Data Analysis
In this section, we apply the proposed hybrid energy monitoring algorithm detailed in Section 4
to UConn CNG data described in Section 2. As briefly mentioned in Section 2, it is not optimal
to flag an already expected surge in natural gas use as abnormal in cases where the building
itself is large or the temperature for a particular month drops unusually. To that end, prior to
analysis, we normalize each observation into consumption for a 100 square-foot building for a
30-day month per degree day (as in Equation (1)). For buildings with more than one meter, the
square footage is divided by the number of meters.

Facilities Operations collects daily weather data from the National Oceanic and Atmospheric
Administration (NOAA) through the web application programming interface (API) provided
by the Applied Climate Information System. Of all available weather information, the heating
degree days and cooling degree days defined as HDD = max(0, 65− ū) and CDD = max(0, ū−65)

are used to encapsulate the weather on a given day, where ū is the average of the maximum and
minimum temperatures of a day, and 65 degrees Fahrenheit is the neutral balance point. Thus,
the observations are further divided by the sum of degree days to carve out the uneven impact
of the weather on the natural gas usage. We set the tuning parameters to B1 = 1000, B2 = 2000,
and B3 = 2000, and run our procedure for the first four months of a calendar year (January,
February, March, and April) of 2008 through 2016. Figure 7 contains the histograms of p of the
proposed procedure for four multiplicity corrections: Holm, Hochberg, Hommel, and BH. The
solid vertical line in each panel indicates the upper α-th quantile of the empirical distribution
p, the exact value of which is written by the line with the Greek letter γα. And the dashed line
is the corresponding observed p-value of the test data, next to which the corresponding value
is written as p̂obs. All four multiplicity-correction methods agree that there exists an anomalous
account in the first four months of 2017.

Upon the grand null hypothesis being rejected, individual adjusted p-values have been ex-
amined to locate the possible anomalous surge in natural gas usage. It is beneficial to check each
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Figure 6: A line plot of the degree-day-adjusted data from UConn residential buildings.

Figure 7: The histograms of constructed distributions of p-values regarding the grand null. Only
the first four months were selected to be tested—January, February, March, and April.

adjusted p-value as the algorithm tends to drive up the critical value for the grand hypothesis
test, which makes it more difficult to reject than in each individual case. This is because it
requires just one p̃k smaller than α (line 11 of Algorithm 2) for δb1 to be counted as one, whereas
the account-specific equivalent of δb1 may remain zero. All four correction methods agreed on
k = 45, Apartment Building 45. All methods agreed upon k = 41, Apartment Building 41, being
anomalous as well. Figure 8 contains the time plots for Apartment Building 41 and Apartment
Building 45. The top two panels display the unadjusted native use recorded in CCF whereas
the bottom two panels show the adjusted usage for 30 days and 100 square feet after each
observation is divided by the number of degree days. Observations for each year’s first four
months (Jan–Apr) are colored red. Focusing on the last four red points that were monitored for
anomalous behavior, the unadjusted native use in the top two panels do not particularly deviate
from historical patterns. However, once adjusted, it becomes visible that the last cycle stands
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Figure 8: Two buildings detected as anomalous according to the proposed procedure. The top
two panels show the (unadjusted) native use in CCF whereas the bottom two panels are adjusted
for the number of days in a billing cycle, the square footage of each building, and the degree
days. Points marked red are the first four months (Jan–Apr) in each year. The last four red dots
were monitored. Orange lines indicate the average monthly temperature in Fahrenheit, whose
axis is on the right side of each plot.

out from the other cycles. For Apartment Building 45, in particular, the average native use of
the four months in 2016 was 27.5 percent higher than that of the previous year. The monthly
average temperature, colored orange in the plots, indicates that the first four months of 2016
were warmer than previous years’ months, which defies the expectation that gas usage would
go down with warm weather. There are no cut-and-dried explanations for the anomalies discov-
ered. However, there are a few common scenarios that could have led to such increases in gas
usage. First, utilities managers from UConn Facilities Operations have reported that everyone
has a different “temperature comfort zone.” The residents in 2016 may have had higher-than-
normal temperature preferences. Second, utilities managers have also recounted that residents in
these buildings frequently forget to shut their windows, especially when they leave their rooms.
If these behaviors happened unusually frequently between January and April of 2016 in the
two apartment buildings, it could have caused the gas consumption to balloon beyond what
is considered normal as defined by the historical data. However, that only two buildings—out
of 70—were flagged as anomalous increases in gas usage suggests that the gas usage within
UConn’s residential buildings is consistent and well-synchronized with the average temperature
each month.

To further compare the performance of our proposed algorithm to that of the plug-in scheme,
we derive prediction intervals using both methods. For the naive approach, the 100(1 − α)%
prediction interval is given by β̂+z1−ασ̂ , whereas for our proposed method, we obtain γα following
Algorithm 1 and compute the upper γα-th quantile of the realizations of {β(s)+z1−ασ

(s)}Ss=1, where
β(s) and σ (s) are the s-th realized values from their posterior distribution. We have obtained
these prediction intervals for Apartment Building 41 and Apartment Building 45. The results
for 1 − α = 0.95 are shown in Figure 9, where blue lines indicate the upper bounds of the
95% posterior predictive interval under the proposed model, and the long-dashed lines mark the
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Figure 9: Prediction bands of natural gas consumption in Apartments 41 and 45 from Jan. to
Apr., 2016. Blue solid lines indicate the upper bounds of the 95% Bayesian posterior predictive
band under the proposed model, and the long-dashed lines mark the upper 95% prediction bound
using the naive plug-in approach.

upper 95% prediction bounds using the naive plug-in approach. We see from this figure that our
proposed method produces a markedly wider interval than the plug-in scheme as anticipated,
since the estimation randomness accounted for in our method guards against overconfidence.
These results are consistent with the simulation results in Section 5 where the proposed method
was noticeably more conservative in rejecting the null hypothesis.

7 Discussions and Conclusion
We proposed a hybrid monitoring algorithm that takes advantage of the posterior distributions
of the parameters to inject randomness in order to account for unaddressed uncertainty in
statistical anomaly detection. To the best of our knowledge, the proposed algorithm is the first
of its kind. From uncertainty calibration’s perspective, our general idea in this application bears a
resemblance to the posterior or prior predictive p-values (Meng, 1994; Hjort et al., 2006; Gelman
et al., 1996). The proposed algorithm estimates the unknown parameters using historical data
and tests the last cycle by computationally constructing the predictive distribution of the p-
values, to which the observed p-value is compared. We have shown that our method adjusts for
the estimation uncertainty and properly controls type-1 error rate.

There are several possible extensions for future research. As more data become available,
both incorporating new information and phasing out old information affect the performance of
the algorithm. The former can be handled efficiently through an online updating scheme, which
significantly alleviates computational burden. This online updating scheme will be useful for
high-frequency data where repeated parameter estimation with an increasing amount of data
can quickly strain computational resources. The latter can be addressed by retiring old data,
which goes back to the question of what the minimum amount of data to achieve a desired level
of statistical power is. Furthermore, it is crucial that all past anomalous data points be handled
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in a way that they do not undermine subsequent monitoring. Moreover, these fields are by
nature highly collaborative, and domain experts play a substantial role in modeling the system
correctly. We emphasize the importance of domain expert opinions in handling the detected
anomalies. Methodologically, the hypothesis tests can be extended to composite hypotheses such
as H0 : μ � cβ0k versus H1 : μk < cβ0k or H0 : μk � cβ0k versus H1 : μk > cβ0k with inequalities
applied elementwise. By picking arbitrary c0 and c1 for null hypothesis and alternative hypothesis
respectively such that either c0 > c1 or c1 > c0, the likelihood ratio becomes a monotone function
of the data due to the fixed sign of c1 − c0, which gives a uniformly most powerful test. In this
setting, the test statistic is easily generalized as

Wk := log �k − EH0(log �k)√
VarH0(log �k)

= sign(c1 − c0)β
�
0k�

−1(yk − c0β0k)√
β�

0k�
−1β0k

. (9)

For future research, combining anomalous past data and online updating is currently under
investigation. One potential useful method of handling flagged data is assigning weights. The
online updating scheme will also need to be adjusted accordingly since deleting past data will
disrupt updates. Gradually downweighting past data will automatically address retiring old data.

Supplementary Material
An R package for our method can be found at https://github.com/daeyounglim/energystuff.
This repository contains R functions running our proposed method, an R program for generating
simulation data sets, and another R wrapper function simplifying user interface for when running
simulations over a large number of data sets.

Appendix A Posterior Consistency
Proposition 1. Recall that

β̂k = yh
·k = 1

T

T∑
i=1

yh
ik, �̂ = 1

K(T − 1)

T∑
i=1

K∑
k=1

(yh
ik − β̂k)(y

h
ik − β̂k)

�.

Let the estimators of β0k and �0 be indexed by T , the number of data points. We omit the
subscript k since β̂k’s are conditionally independent given �0. Denote the posterior probability
measure associated with N(β | β̂T , �/T ) × IW(� | K(T − 1) + d∗, K(T − 1)�̂T ) by �(·, ·). Then
for any compactly supported function f , as T → ∞,∫

f (β, �)�(dβ, d�) →
∫

f (β, �)δβ0,�0(dβ, d�) = f (β0, �0). (10)

This implies that, as T → ∞, the posterior probability measure weakly converges to the degen-
erate point mass around the true parameter values, or equivalently posterior consistency.

Appendix B Derivation of Test Statistics
By the Neyman-Pearson lemma in the single-account case,

log � = log
φ(y | cβ0, σ

2I J )

φ(y | β0, σ
2I J )

=
J∑

j=1

yj (c − 1)β0j − (c2 − 1)β2
0j /2

σ 2
,

https://github.com/daeyounglim/energystuff
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where φ(· | μ, �) is the density of a multivariate normal distribution with mean vector μ and
covariance matrix �. Under H0, log � follows the following normal distribution:

log � ∼ N

⎛⎝−
J∑

j=1

(c − 1)2β2
0j

2σ 2
,

J∑
j=1

(c − 1)2β2
0j

σ 2

⎞⎠ ,

yielding

W := log � − EH0(log �)√
VarH0(log �)

=
∑J

j=1(yj − β0j )β0j

σ

√∑J
j=1 β2

0j

.

Although the rejection region does not depend on c, the increment parameter c plays a role in
the power function, given by

Q(c, β0) = PH1

⎛⎜⎝β�
0 y − cβ�

0 β0

σ

√
β�

0 β0

� z1−α + 1 − c

σ

√
β�

0 β0

⎞⎟⎠ = 1 − �

(
z1−α − c − 1

σ
‖β0‖

)
, (11)

where �(·) is the distribution function of the standard normal distribution, and z1−α is the
(1−α)-th quantile of the standard normal distribution, i.e., �(z1−α) = 1−α. In the multivariate
case, the logarithm of the likelihood ratio follows a normal distribution under H0, i.e.,

log �k = log
φ(yk | Cβ0k, �)

φ(yk | β0k, �)
= −1

2

{
β�

0k(C�−1C − �−1)β0k − 2β�
0k(C − I J )�−1yk

}
∼ N

(
−1

2
β�

0k

{
C�−1C − �−1 − 2(C − I J )�−1

}
β0k, β

�
0k(C − I J )�−1(C − I J )β0k

)
,

which gives

log �k − EH0(log �k)√
VarH0(log �k)

= β�
0k(C − I J )�−1(yk − β0k)√

β�
0k(C − I J )�−1(C − I J )β0k

∼ N(0, 1). (12)

Assuming c = c1 = · · · = cJ , C − I J is reduced to a scalar, c − 1, and disappears from
Equation (12), yielding

Wk := log �k − EH0(log �k)√
VarH0(log �k)

= β�
0k�

−1(yk − β0k)√
β�

0k�
−1β0k

∼ N(0, 1) under H0.
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