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Abstract

We study the importance of group structure in grouped functional time series. Due to the
non-uniqueness of group structure, we investigate different disaggregation structures in grouped
functional time series. We address a practical question on whether or not the group structure
can affect forecast accuracy. Using a dynamic multivariate functional time series method, we
consider joint modeling and forecasting multiple series. Illustrated by Japanese sub-national
age-specific mortality rates from 1975 to 2016, we investigate one- to 15-step-ahead point and
interval forecast accuracies for the two group structures.
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1 Introduction
Because of the rapid advancements in medical technology and improvements in health services,
many countries worldwide have been observing a continuous reduction of human mortality rates
for decades. Developed OECD nations, such as Japan, consider the remarkable increase in pop-
ulation life expectancy as one of the greatest achievements of the last century (OECD, 2020).
The growing longevity risks in many countries put pressure on government policymakers and
planners to develop sustainable pension, health, and aged care systems (see, e.g., Coulmas,
2007). Traditional studies of human mortality focus on population data at the national level. In
recent years, academics and government stakeholders have shown increasing interest in regional
mortality improvements after realizing that sub-national forecasts of age-specific mortality rates
help inform social and economic policies within local regions. Thus, any improvement in the
forecast accuracy of mortality rates will be beneficial in determining the allocation of current
and future resources at the national and sub-national levels.

Numerous mortality modeling methods have been proposed since the first publication of
the Gompertz law in 1825 (see Booth and Tickle, 2008, for a comprehensive literature review
on mortality modeling and forecasting). Only a few approaches could simultaneously forecast
multiple regional mortality rates within a country (see, e.g., Jarner and Kryger, 2011; Cairns
et al., 2011; Dowd et al., 2011; Russolillo et al., 2011; Hatzopoulos and Haberman, 2013; Shang,
2016; Villegas et al., 2017; Gao et al., 2019; Perla et al., 2021). The main hypothesis for multi-
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population mortality models is that mortality rate differences for any two populations having
similar socio-economic status and close connections with each other do not diverge indefinitely
over time. This paper applies a dynamic multivariate functional time series method to produce
accurate sub-national age-specific mortality forecasts.

Applying functional time series forecasting methods to sub-national mortality disaggregated
by attributes such as sex and geographical regions independently does not ensure coherence in
the forecasts. The forecasts of all sub-populations will not add up to the forecasts obtained by
applying the technique to the national data. Hence, in practice, it is crucial to consider forecast
reconciliation approaches in forecasting sub-national mortality rates (e.g., see Stone et al., 1942;
Sefton and Weale, 2009).

We apply a dynamic multivariate functional time series method to simultaneously model
a group of sub-national mortality rates and make forecasts. In particular, we aim to answer
a practical issue: does the group structure matter in terms of forecast accuracy for a grouped
functional time series? We first arrange the national and sub-national Japanese male and female
age-specific mortality rates from 1975 to 2016 into two group structures. Then, we apply dy-
namic univariate and multivariate functional time series methods and compare their forecasting
performance on some holdout data for the two group structures considered.

The rest of this paper is structured as follows. In Section 2, we describe the motivating
dataset, which is the Japanese national and sub-national age-specific mortality rates. In Sec-
tion 3, we describe a dynamic multivariate functional time series method for producing point
and interval forecasts. Reconciled forecasts produced by the dynamic univariate and multivariate
functional time series forecasting methods are evaluated and compared in Section 4. Conclusions
are presented in Section 5, along with some reflections on ways to extend the techniques pre-
sented in this study.

2 Japanese Age-Specific Mortality Rates
The Japanese Mortality Database regularly recently publishes age-specific mortality rates over
the period 1975–2016 at the national level and various subnational levels (Japanese Mortality
Database, 2017). We consider ages from 0 to 99 in single years of age and include the last age
group, “100+”, as an aggregation of ages at and beyond 100. Figure 1 presents rainbow plots of
the age-specific mortality rates of females and males in the studied period. Rainbow plots are
designed to display the distant past in red curves and the more recent years in purple curves
(Hyndman and Shang, 2010). Typical “J shape” mortality patterns of developed countries can
be observed in both panels in Figure 1, which indicates a rapid decrease of mortality occurs for
the newborns, with slower reduction continuing into the adolescence age. There is an “accident
hump” in mortality for young adults around age 20, followed by a short “plateau” until the
early 30s, and then a steady increase in middle-to-old age groups. Figure 1 reveals an overall
reduction in the trend of total mortality rates over the considered period 1975–2016. However,
the rate of decline appears to vary across different age groups.

2.1 Nonparametric Smoothing

We implement a penalized regression spline smoothing method with a monotonic constraint to
smooth out excess noise at higher ages (see also Hyndman and Ullah, 2007; Shang, 2016).
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Figure 1: Functional time series graphical displays for the Japanese age-specific mortality rates
from 1975 to 2016. Using a rainbow color palette, the mortality rates in the distant past years
are shown in red, while the mortality rates in the most recent years are shown in purple.
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Following Hyndman and Ullah (2007), we then define weights w
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t (xi) = 1/

(̂
δ
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)2
(xi) and use

weighted penalized regression splines to obtain the smoothed functions f
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t (x) (see also Wood,

2003; Currie et al., 2004).
As a byproduct of the smoothing, we can potentially fill in any missing observations. In

Figure 2, we present the smoothed log mortality curves.
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Figure 2: Functional time series graphical displays for the smoothed series, where a penalized
regression spline smoothing with monotonic constraint is implemented.

To better understand the mortality patterns of Japan, we consider mortality time series
featuring various geographical factors (i.e., country, region, and prefecture) and sex factors (i.e.,
female and male) in this study. As highlighted by different colors in Figure 3, Japan can be
divided into eight geographical regions, namely, Hokkaido (red), Tohoku (yellow), Kanto (green),
Chubu (cyan), Kansai (purple), Chugoku (orange), Shikoku (magenta), and Kyushu (grey).
Regions vary not only in geography locations, sizes, climates, and terrains but also in histories,
traditions, and cultures (The Government of Japan, 2021). Apart from the eight regions, there
are 47 prefectures in Japan, forming the country’s base level of administrative division. Thus,
disaggregate the national and sub-national age-specific mortality rates by geographical location
and sex leading to in total 168 series (i.e., 47 × 2 = 94 Sex × Prefecture series, 16 Sex × Region
series, 2 Sex series at the national level, and further 1+8+47 = 56 total series at Japan, Region
and Prefecture levels, respectively). Because of the non-uniqueness of the group structure, the
middle-level series can be disaggregated differently. This, in turn, affects the form of a group
structure.

We split the Japanese data into geographical structures coupled with a sex grouping variable
by considering the difference in mortality between females and males. A three-level geographical
structure is used to disaggregate the national and sub-national total mortality rates, as shown
in Figure 4(a). We apply a dynamic multivariate functional time series method to eight region-
level series and 47 prefecture-level series, respectively, to obtain joint forecasts at each level.
Specifically, for each region, we consider all prefecture-level total series that belong to this region;
all eight region-level total series are jointly modeled for the national total. These forecasts of
multiple series at various levels are then used to perform forecast reconciliation according to the
specified group structure.

When forecasting mortality rates of females and males, two disaggregation structures focus-
ing on either geographical factors or sex are used. The first grouping structure (Hierarchy 1) in
Figure 4(b) initially disaggregates the top-level series by geographical location. It then further
splits sub-national totals into sex-specific series at the region and prefecture levels. Jointly mod-
eling the two sex-specific series at each node of the hierarchy incorporates the close connection
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Figure 3: Eight regions (represented in different colors) and 47 prefectures of Japan. In the
remaining sections, we mainly use notations R1, . . . , R8, and P1, . . . , P47 numbered geographically
from north to south when referring to regions and prefectures, respectively.

of females and males living in each region or prefecture. The second grouping structure (Hierar-
chy 2) in Figure 4(c) first splits the total series by sex and then further disaggregates the totals
for females and males according to geographical factors. Implementing a dynamic multivariate
functional time series method under this structure means jointly modeling the series of one
particular sex (female or male at a time) either for each region or for the national sex-specific
totals. This sub-national mortality forecasting considers the covariance between spatially closely
correlated sub-populations and respects the well-known fact that human females and males have
different mortality patterns.

3 Methodology
The mortality patterns of sub-populations in Japan are expected to be similar because of their
closely related biological backgrounds and similar lifestyles. Still, they are not expected to be
identical nationwide across all age groups. Traditional age-specific mortality forecasting methods
tend to result in divergent forecasts for sub-populations when independence is assumed. It is
desirable to model sub-national mortality rates simultaneously while considering the potential
heterogeneity between these. In this paper, we apply a dynamic multivariate functional time
series method and demonstrate its advantage over its univariate counterpart using the Japanese
sub-national data in Section 4.
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Figure 4: Hierarchy tree diagrams for the Japanese mortality rates. Dashed boxes show examples
of jointly modeling multiple series under various hierarchy structures.

3.1 Dynamic Multivariate Functional Time Series Method
The dynamic univariate functional time series method considers temporal dependence of data
by estimating its long-run covariance function. Let {f (l)(x)}l=1,...,ω be a set of random functions
(in total we have ω ∈ Z

+ functions with ω � 2) that comprise each observation in the considered
data set. Each f (l)(x) is defined in L2(I), a Hilbert space of square-integrable functions on an
interval I = [a, b], a < b. Write f (x) = [

f (1)(x), . . . , f (ω)(x)
]� as a vector in a Hilbert space,

consisting of ω number of functions. These multivariate functions may be defined on the same
domain I (see, e.g., Jacques and Preda, 2014; Chiou et al., 2014) or may be defined at different
domains I1, . . . , Iω (see, e.g., Happ and Greven, 2018). Given our application has the same
domain, we consider the former situation.

We define the mean function

μ(x) := [
μ(1)(x), . . . , μ(ω)(x)

] = {
E
[
f (1)(x)

]
, . . . , E

[
f (ω)(x)

]}
.

For x, s ∈ I, auto-covariance function at lag � is defined as

γ�(x, s) := Cov [f0(x), f�(s)] = E [(f0(x) − μ(x)) , (f�(s) − μ(x))] ,

with elements

γ
(lj)

� (s, t) := E
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� (s) − E
[
f (j)(s)

])]
.
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The long-run covariance is defined as

C(x, s) :=
∞∑

�=−∞
γ�(x, s), (1)

where f (j)(s) and f (l)(x) ∈ L2(I). The long-run covariance function C(x, s) C(x, s) consists of
the variance as well as the temporal cross-covariance at various positive and negative lags of a
functional time series, and is a wall-defined element of L2(I) under mild dependence and moment
conditions. Through right integration, C(x, s) defines a Hilbert-Schmidt integral operator on
L2(I) given by

(K(f ))(j)(s) =
ω∑

l=1

∫
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where K denotes a kernel operator L2(I) → L2(I) and Clj (x, s) is the (l, j)th element of C(x, s).
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{
φ

(l)
1 (x), . . . , φ

(l)
K (x)

}
is a set of

the first K functional principal components; β
(l)
1 =

(
β

(l)
1,1, . . . , β

(l)
n,1

)�
and

{
β

(l)
1 , . . . , β

(l)
K

}
denotes

a set of principal component scores for the lth sub-population in (1); e
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truncation error function with mean zero and finite variance for the lth sub-population; and
K < n is the number of retained principal components. Expansion (2) facilitates dimension
reduction as the first K terms often provide a good approximation to the infinite sums, and
thus the information contained in f (l)(x) can be adequately summarized by the K-dimensional
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The dynamic functional principal component analysis is an effective way of extracting a large
amount of long-run covariance. It summarizes the main features of an infinite-dimensional object
by its finite elements by minimizing the mean integrated squared error of the reconstruction error
function over the whole functional data set. The dynamic functional principal component analysis
has been applied in modeling human age-specific mortality (Shang, 2019) and foreign exchange
rates (Shang and Kearney, 2021). This work is the first that extends the technique to model
multivariate functional time series to the best of our knowledge. The dynamic multivariate
functional time series method could better capture the temporal dependency of age-specific
mortality rates compared to the commonly used Lee-Carter model or static functional time
series method (see, e.g., Hyndman and Ullah, 2007).

3.2 Long-Run Covariance Estimation

The long-run covariance function introduced in (1) in practice can be estimated from a finite
sample f (x) = {f1(x), . . . , fn(x)}. A natural estimator of C(x, s) in a bi-infinite sum is given
by

Ĉv,q(x, s) =
∞∑

�=−∞
Wq

(
�

v

)
γ̂�(x, s), (3)

where v is the bandwidth parameter, and

γ̂�(x, s) =
⎧⎨⎩

1
n

∑n−�
t=1 [ft (x) − μ̂(x)] [ft+�(s) − μ̂(s)] , � � 0;

1
n

∑n
t=1−� [ft (x) − μ̂(x)] [ft+�(s) − μ̂(s)] , � < 0,

with μ̂(x) = n−1
∑n

t=1 ft (x). The weight function Wq in (3) is a continuous and symmet-
ric function with bounded support of order q defined on [−m, m] for some m > 0 satisfy-
ing

Wq(0) = 1, Wq(u) � 1, Wq(u) = Wq(−u), Wq(u) = 0 if |u| > m,

and there exists an ω such that

0 < ω = lim
u→0

|u|−q(1 − Wq(u)) < ∞.

As with the kernel sandwich estimator in (3), the crucial part is the estimation of bandwidth
parameter v. We estimated v through a data-driven approach using the plug-in algorithm of Rice
and Shang (2017, Section 2). The plug-in algorithm selects the optimal bandwidth v that min-
imizes the asymptotic mean-squared normed error between the estimated and actual long-run
variance functions.

3.3 Selecting the Number of Retained Functional Principal Components

There are several methods for selecting the number of functional principal components K: (1) the
fraction of the variance explained by the first few functional principal components (Chiou,
2012); (2) pseudo-versions of the Akaike information criterion (AIC) and Bayesian information
criterion (Yao et al., 2005); (3) predictive cross-validation leaving one or more curves out (Rice
and Silverman, 1991); and (4) bootstrap methods (Hall and Vial, 2006). Here, the number of
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components is determined as the minimum that reaches 90% of total variance explained by the
leading components (the first method mentioned), such that

K = argmin
K:K�1

{
K∑

k=1

λ̂k

/ ∞∑
k=1

λ̂k1
{̂
λk>0

} � 0.9

}
,

where 1{̂λk>0} is to exclude possible zero eigenvalues, and 1{·} represents the binary indicator
function. Although the total variance explained level could be arbitrary, 0.9 is a common thresh-
old when using the total variance explained in principal component analysis to select the number
of components to retain (see also Kolkiewicz et al., 2021).

3.4 Forecasting Multivariate Functional Time Series

In the dynamic multivariate functional time series method, we first stack all series into a vector
of functions and obtain a set of dynamic functional principal components with associated scores
according to the method described in Section 3.1. Conditioning on the estimated mean function
and estimated dynamic functional principal components, these forecast scores are multiplied by
the estimated principal components to form forecast curves. A univariate time series forecasting
method, such as the ARIMA model, is considered to forecast dynamic functional principal
component scores. Through differencing, the ARIMA model can handle non-stationarity present
in the data. For details of forecasting dynamic principal component scores, consult Hyndman
and Shang (2009), Shang (2019) and Shang and Kearney (2021).

Denote the h-step-ahead prediction of dynamic principal component scores
{
β

(l)
1 , . . . , β

(l)
K

}
by
{
β̂

(l)
n+h,1, . . . , β̂

(l)
n+h,K

}
. We construct the h-step-ahead point forecast of fn+h(x) as

f̂
(l)
n+h(x) = E

[
f

(l)
n+h(x)|f (l)(x), B

]
= μ̂(l)(x) +

K∑
k=1

β̂
(l)
n+h,kφ̂

(l)(x),

where B =
{
φ̂

(l)
1 (x), . . . , φ̂

(l)
K (x)

}
are the estimated functional principal component functions.

3.5 Construction of Pointwise Prediction Intervals

As a supplement to point forecast evaluation, prediction intervals are constructed and evaluated
to gauge the uncertainty associated with point forecasts. Depending on statistical theory and
data on error distributions, prediction intervals explicitly estimate the probability that future
realizations lie within a given range. In implementing the proposed mortality forecasting method,
the errors accumulated in the estimated principal component scores and model residuals in (2)
are the primary sources of uncertainty. As emphasized by Chatfield (1993), it is crucial to
provide interval forecasts as well as point forecasts to be able to (1) assess future uncertainty
level; (2) enable different strategies to be planned for the range of possible outcomes; (3) compare
forecasts from different methods; and (4) explore different scenarios based on various underlying
assumptions.
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To construct uniform and pointwise prediction intervals, we adopt the method of Aue et al.
(2015). The method can be summarized in the following steps:
1) Using all observed data, compute the K-variate score vectors

(
β

(l)
1 , . . . , β

(l)
K

)
and the sam-

ple functional principal components
[
φ̂

(l)
1 (x), . . . , φ̂

(l)
K (x)

]
. Then, we can construct in-sample

forecasts
f̂

(l)
ξ+h(x) = β̂

(l)
ξ+h,1φ̂

(l)
1 (x) + · · · + β̂

(l)
ξ+h,Kφ̂

(l)
K (x),

where
(
β̂

(l)
ξ+h,1, . . . , β̂

(l)
ξ+h,K

)
are the elements of the h-step-ahead prediction obtained from(

β
(l)
1 , . . . , β

(l)
K

)
by a univariate time series forecasting method, for ξ ∈ {K, K + 1, . . . , n − h}.

2) With the in-sample point forecasts, we calculate the in-sample point forecast errors

ε̂
(l)
ζ (x) = f

(l)
ξ+h(x) − f̂

(l)
ξ+h(x),

where ζ ∈ {1, 2, . . . , M} and M = n − h − K + 1.
3) Based on these in-sample forecast errors, we can sample with replacement to obtain a series

of bootstrapped forecast errors, from which we obtain lower and upper bounds, denoted by
γ

(l)

lb (x) and γ
(l)

ub (x), respectively. We then seek a tuning parameter πα such that α × 100% of
the residuals satisfy

πα × γ
(l)

lb (xi) � ε̂
(l)
ζ (xi) � πα × γ

(l)

ub (xi), i = 1, . . . , p.

Then, the h-step-ahead pointwise prediction intervals are given as

πα × γ
(l)

lb (xi) � f
(l)
n+h(xi) − f̂

(l)
n+h(xi) � πα × γ

(l)

ub (xi),

where i symbolizes the discretized data points.
Note that Aue et al. (2015) calculate the standard deviation of

[̂
ε

(l)
1 (x), . . . , ε̂

(l)
M (x)

]
, which

leads to a parametric approach to constructing prediction intervals. Instead, we consider the
nonparametric bootstrap approach of Shang (2018), which allows us to reconcile bootstrapped
forecasts among different functional time series in a hierarchy.

3.6 Reconciliation of Grouped Forecasts

The disaggregated data can first be organized into groups for forecasting sub-national mor-
tality rates before applying the dynamic multivariate functional time series method. Hence,
an appropriate grouping structure is crucial for accurate forecasts. A natural strategy is ar-
ranging the sub-national functional time series into geographical structures, as in Figure 4.
State-of-the-art forecast reconciliation methods are applied to ensure that the point and interval
forecasts at the various disaggregation levels add up to the forecasts of the national mortal-
ity.

For all aforementioned hierarchies, we denote a particular disaggregated series using the
notation G ∗ S, meaning the geographical area G and the sex S. For instance, R1 ∗ F denotes
females in Region 1, P1 ∗ T denotes females and males in Prefecture 1 and Japan ∗ M denotes
males in Japan. Let EG∗S,t (x) denote the exposure to risk for series G ∗ S in year t and age x,
and let DG∗S,t (x) be the number of deaths for series G∗S in year t and age x. Then, age-specific
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mortality rate is given by RG∗S,t (x) = DG∗S,t (x)/EG∗S,t (x). Dropping the age argument (x) allows
us to express the national and sub-national mortality series in a matrix multiplication as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RJapan∗T,t

RJapan∗F,t

RJapan∗M,t

RR1∗T,t

RR2∗T,t

...

RR8∗T,t

RR1∗F,t

RR2∗F,t

...

RR8∗F,t

RR1∗M,t

RR2∗M,t

...

RR8∗M,t

RP1∗T,t

RP2∗T,t

...

RP47∗T,t

RP1∗F,t

RP1∗M,t

RP2∗F,t

RP2∗M,t

...

RP47∗F,t

RP47∗M,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
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︸ ︷︷ ︸

bt

or Rt = Stbt , where Rt is a vector containing all series at all levels of disaggregation, bt is
a vector of the most disaggregated series, and St shows how the two are related. The group
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structures illustrated in Figure 4 satisfy this relationship. In the two group structures, the main
difference is about how the (RR1×F,t , RR1×M,t , . . . , RR8×F,t , RR8×M,t ) and (RP 1×F,t , RP 1×M,t , . . . ,
RP 47×F,t , RP 47×M,t) are estimated. In Figure 4(b), we estimate the female and male series together
in a geographical location. In Figure 4(c), we estimate multiple series at various geographical
locations for females and males, respectively.

We present a brief review of three methods for forecast reconciliation based on this summing
matrix. The three forecast reconciliation methods are bottom-up, optimal combination method
with the ordinary least squares (OLS) estimator, and optimal combination method with gener-
alized least squares (GLS) estimator. The bottom-up method has the agreeable feature that it is
intuitive and straightforward and always results in forecasts that satisfy the same group structure
as the original data (e.g., see Dangerfield and Morris, 1992; Zellner and Tobias, 2000). Instead
of considering only time series in the bottom-level, Hyndman et al. (2011) proposed a method
in which base forecasts for all aggregated and disaggregated series are computed successively.
Then, the resulting forecasts are combined through linear regression. With the OLS estimator,
the reconciled forecasts are close to the base forecasts and aggregate consistently within the
group. Wickramasuriya et al. (2019) proposed an improved approach of finding coherent fore-
casts for the grouped functional time series. By minimizing the sum of variances of reconciliation
errors, essentially minimizing trace (MinT) of the variance matrix, this approach produces co-
herent forecasts across the entire collection of time series. Since the variance-covariance matrix
of out-of-sample reconciliation errors is often unknown and not identifiable in practice, the MinT
method attempts to approximate weights with the in-sample base forecast errors using the GLS
estimator.

4 Data Analysis Results
We apply the dynamic univariate and multivariate functional time series forecasting methods to
Japanese age-specific mortality rates to obtain base forecasts for the group structures in Figure 4.
Then, we conduct reconciliation via the bottom-up and the optimal combination methods. To
assess model and parameter stabilities over time, we consider an expanding window analysis of
considered time series models (see Zivot and Wang, 2006, Chapter 9 for details). We used the
observed mortality curves in 1975–2001 Japanese data to produce one- to 15-step-ahead point
and interval forecasts. Through an expanding window approach, we re-estimate the parameters
of considered models using the first 28 years of observations from 1975 to 2002 and estimate one-
to 14-step-ahead forecasts using re-estimated models. The process is iterated with the sample
size increased by one year each time until reaching the end of the data period in 2016. This
process produces 15 one-step-ahead forecasts, 14 two-step-ahead forecasts, and so on, up to one
15-step-ahead forecast. We evaluate the point and interval forecast accuracies and report our
study results in this section.

4.1 Point Forecast Evaluation and Comparison

To evaluate the point forecast accuracy, we compute the root mean squared forecast error
(RMSFE), which measures how close the forecasts are compared to the actual values. For each
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series, the RMSFE is given by

RMSFE(h) =
√√√√ 1

101 × (16 − h)

15∑
ς=h

101∑
i=1

[
fn+ς (xi) − f̂n+ς (xi)

]2
,

where fn+ς (xi) represents the actual holdout sample for the ith age and ς th curve of the fore-
casting period, and f̂n+ς (xi) is the corresponding point forecasts. We obtain measures of point
forecast accuracies for all all national and sub-national mortality series, averaging over 15 fore-
cast horizons, as

Mean (RMSFE) = 1

15

15∑
h=1

RMSFE(h).

Averaging all series at each disaggregation level of Hierarchy 1, we show RMSFEs (×100) for
the forecasts before and after reconciliations in Figure 5. In the figure, we denote the independent
forecasts as Base. We denote the reconciled forecasts obtained by the bottom-up method and the
optimal combination method as BU and OP, respectively (see, e.g., Hyndman et al., 2011; Shang,
2017, for more details). This figure compares forecasts obtained by the dynamic multivariate
functional time series method with forecasts produced by its univariate counterpart method.
The dynamic multivariate functional time series method is expected to give more accurate point
forecasts at disaggregation levels where multiple mortality series have highly consistent patterns.
The correlations among multiple series can be captured and used in producing forecasts. This
advantage of our method is shown in “Region + Sex series” and “Prefecture + Sex series” panels
of Figure 5. However, due to its construction, the dynamic multivariate functional time series
method implicitly assumes the same number of retained functional principal components for
all series, consequently resulting in diminishing forecast accuracy for a particular series. This
disadvantage of our method is revealed when only the Japan ∗ F and Japan ∗ M series are
considered, as shown in the “Sex series” panel of Figure 5.

At the national level, where only one mortality time series exists, the dynamic univari-
ate functional time series method, a special case of dynamic multivariate functional time series
method, is implemented based on an estimated long-run covariance function. Hence, both meth-
ods have the same forecasts for the total Japanese series.

The advantage of dynamic multivariate functional time series method is that it could ex-
tract common features among strongly related sub-populations. Another prominent character
of the dynamic multivariate functional time series method shown in Figure 5 is the method’s
robustness to outliers in the training sample. At least three prefectures in Japan that were
severely affected by earthquakes and tsunamis have inflated mortality curves. One reason for
the dynamic multivariate functional time series forecasts being immune to outliers is that the
computation of long-run covariance function over a period mitigates the influence of abrupt
and temporal movements of observations. The autocovariance function, a part of the long-run
covariance function, can smooth out the observational noise. Another reason for the robust
forecast is that collectively, the consideration of related sub-populations enables the informa-
tion pooling and thus improves the extraction of human mortality features. By contrast, many
large values exist in the dynamic univariate functional time series forecasts even after reconcil-
iation.

Figure 5 also shows that pairing all three reconciliation methods with either dynamic multi-
variate or univariate functional time series method improves the point forecast accuracy. Among
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Figure 5: Point forecasting performance of the independent (Base) and reconciled forecasts (BU,
OP, and MinT) for univariate and multivariate functional time series methods. DFTS denotes
the dynamic univariate functional time series method, while DMFTS denotes the dynamic mul-
tivariate functional time series method.

the reconciliation methods considered, the bottom-up method yields the most accurate over-
all point forecasts when used with dynamic multivariate functional time series, owing to the
high signal-to-noise ratio of the prefecture-level sex-specific mortality series. Our results confirm
Shang and Hyndman’s (2017) early finding regarding the superiority of the bottom-up method
for the Japanese sub-national age-specific mortality rates.

Applying the dynamic multivariate functional time series method to various disaggregation
structures leads to different RMSFEs (×100), as shown in Figure 6. The geographical hierarchies
described in Figure 4 are blended into Hierarchy 1 and Hierarchy 2 in the reconciliation of the
total series at the country, region, and prefecture levels. Hierarchy 2 produces the most accurate
point forecasts, given the outliers in the data. Collectively modeling the curves that represent
all females (males) in the prefectures can better ease the influence of the few outlying curves
than jointly modeling the series for females and males in each prefecture. This finding is because
natural disasters are likely to affect females and males in an area equally. Comparing RMSFEs
across all sub-national levels, we recommend grouping age-specific mortality rates of the same sex
for each region and prefecture, applying the dynamic multivariate functional time series method
to obtain base forecasts, and then reconciling the forecasts using the bottom-up method.



Importance of Group Structure 317

Figure 6: RMSFEs (×100) for the base and reconciled multivariate functional time series fore-
casts obtained from different group structures.

4.2 Interval Forecast Evaluation and Comparison

In addition to point forecasts, we also evaluate the pointwise interval forecast accuracy using the
interval score of Gneiting and Raftery (2007) (see also Gneiting and Katzfuss, 2014). For each
year in the forecasting period, the h-step-ahead prediction intervals are calculated at the 100(1−
α)% nominal coverage probability. We consider the common case of a symmetric 100(1 − α)%
prediction interval whose lower and upper bounds are predictive quantiles at α/2 and 1 − α/2,
denoted by f̂ lb

n+ς (xi) and f̂ ub
n+ς (xi), respectively. As defined by Gneiting and Raftery (2007), a

scoring rule for the pointwise interval forecast at time point xi is

Pα

[
f̂ lb

n+ς (xi), f̂
ub
n+ς (xi); fn+ς (xi)

] = [f̂ ub
n+ς (xi) − f̂ lb

n+ς (xi)
]

+ 2

α

[
f̂ lb

n+ς (xi) − fn+ς (xi)
]
1
{
fn+ς (xi) < f̂ lb

n+ς (xi)
}

+ 2

α

[
fn+ς (xi) − f̂ ub

n+ς (xi)
]
1
{
fn+ς (xi) > f̂ ub

n+ς (xi)
}
,

where α denotes the level of significance; typically α = 0.2. It can be easily seen that the optimal
interval score is achieved when fn+ς (xi) lies between f̂ lb

n+ς (xi) and f̂ ub
n+ς (xi), with the distance

between the upper bound and the lower bound being minimal.
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The scoring rule of Gneiting and Raftery (2007) is considered in this study since it com-
bines the coverage rate and halfwidth of the prediction interval. We aim to construct predic-
tion intervals where the empirical coverage rate is close to the nominal one, with a minimum
width of the prediction interval. When the empirical coverage rate is less than the nominal
one, the constructed prediction interval is narrower than the oracle. This indicates that we are
under-estimating the forecast uncertainty. Conversely, if the empirical coverage rate is more
than the nominal one, our prediction interval is wider than the oracle. This indicates we are
over-estimating the forecast uncertainty, and our prediction intervals are not that informative.

Averaging over different points in a curve and different years in the forecasting period, the
mean interval score is defined as

P α(h) = 1

101 × (16 − h)

15∑
ς=h

101∑
i=1

Pα

[
f̂ lb

n+ς (xi), f̂
ub
n+ς (xi); fn+ς (xi)

]
,

where Pα

[
f̂ lb

n+ς (xi), f̂
ub
n+ς (xi); fn+ς (xi)

]
denotes the interval score at the ςth curve of the forecast-

ing period. For 15 different forecast horizons, we use a mean statistic given by

Mean(P α) = 1

15

15∑
h=1

P α(h)

to evaluate the pointwise interval forecast accuracy.
Figure 7 summarizes the mean interval scores of the univariate and multivariate functional

time series applied to the Japanese age-specific mortality rates under Hierarchy 1. Considering
multiple mortality curves allows for borrowing information of related populations but at the
expense of sacrificing specific information for each sub-population to a certain extent. Hence, the
multivariate forecasting method may not always outperform the univariate forecasting method
because of the relatively large heterogeneity of the considered mortality series. In our study,
pointwise interval forecasts obtained by the dynamic multivariate functional time series method
are generally more accurate than those produced by the dynamic univariate functional time
series method; the superior forecast accuracy of the dynamic multivariate functional time series
method becomes more evident if used in combination with the bottom-up method.

The second and third panels in Figure 7 depict interval forecast accuracies for the total series
(i.e., the aggregate mortality of females and males) at region and prefecture levels, respectively.
The DMFTS method collectively models all the considered total series to estimate the long-run
covariance of the entire population of Japan before producing forecasts. Significant heterogeneity
exists in the total series at the Prefecture or Region levels since earthquakes and tsunamis
influenced mortality at several prefectures during the considered period. Hence, natural disaster-
related deaths as outliers tend to inflate the estimation variance of every series used in the
DMFTS modeling process. In contrast, the base method considers one total series, either for a
region or a prefecture, at a time. Only those prefectures or regions with outlying death counts
would see additional estimation variance. Moreover, the dynamic modeling method may not
accurately recover the long-run covariance of mortality series of all Japanese residents based on
a finite sample. Due to these reasons, the DMFTS method sometimes performs inferiorly to the
independent method. Applying any of the considered reconciliation methods improves interval
forecast accuracies of the total series at region and prefecture levels, as shown in Figure 7.
The forecast accuracy improvement is because Japan’s population hierarchy helps stabilize the
abnormal forecasts inflated by excess uncertainty in estimation.
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Figure 7: Interval forecasting performance of the base and reconciled forecasts for the univariate
and multivariate functional time series methods.

Figure 8 compares the mean interval scores for the base and reconciled multivariate func-
tional time series forecasts obtained using two disaggregation hierarchies. The result of Hierar-
chy 1 dominating Hierarchy 2, shown in the figure, can be explained as follows. By applying the
dynamic multivariate functional time series method under the Hierarchy 2 structure, it focuses
on common features of female (male) mortality, leading to inaccurate pointwise prediction in-
tervals for outlying series due to losing specific information for the sub-population. Given that
interval scores will be inflated by every holdout value outside the calculated prediction interval,
outlier curves cause a greater penalty to Hierarchy 2 than to Hierarchy 1. Hence, jointly model-
ing the mortality series for females (males) of each prefecture and region is better for improving
pointwise interval forecast accuracy.

5 Conclusion
When applied to the functional time series formed by disaggregated series, such as sub-national
age-specific mortality rates, the dynamic multivariate functional time series method can be
combined with reconciliation methods to obtain improved point and interval forecasts.

The dynamic multivariate functional time series method is applied to data on Japanese
age-specific mortality rates from 1975 to 2016. The dynamic multivariate functional time series
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Figure 8: Mean interval scores for the base and reconciled multivariate functional time series
forecasts obtained from different group structures.

method produces the most accurate point and interval forecasts of Japanese mortality rates
combined with the bottom-up reconciliation method. Different group structures involving ge-
ographical factors and sex are considered and compared in forecasting and reconciliation. For
point forecasting, we recommend that, first, the national mortality data are disaggregated by
sex, and further, each series is split according to a geographical area. Because of the bias-variance
trade-off, reversing the disaggregation order, that is, first, according to the geographical area, and
then, by sex, yields more accurate pointwise interval forecasts, evaluated by the mean interval
scores.

There are some ways in which this paper can be further extended. Here, we briefly mention
three:
1) We have considered two factors, namely sex and geographical locations, to disaggregate

age-specific mortality rates. It is possible to enrich the information contained in the group
structure by differentiating these rates according to other factors, such as the cause of death
(Murray and Lopez, 1997; Gaille and Sherris, 2015), social and economic aspects (Bassuk
et al., 2002; Singh et al., 2013) and native-born or immigrant status (Singh and Siahpush,
2001). If appropriate data are available, we may attempt to extend the proposed grouped
multivariate functional time series forecasting method to cause-specific mortality rates and
occupation-specific mortality rates.

2) We expect the mortality functions at the prefecture-level to be homogeneous so that the
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empirical long-run covariance function can be accurately estimated. When there are major
natural disasters such as earthquakes and tsunamis in some prefectures, the observed mor-
tality functions may have different shapes. Such functions of strange shapes can be viewed as
outliers. Functional depth-based outlier detection methods of Hyndman and Shang (2010),
and the recently developed novel multivariate functional outlier detection methods of Dai
and Genton (2018) and Dai et al. (2020) can be adopted to check if a particular curve is
an outlying observation. Among other methods, the robust functional principal component
analysis method and the robust regularized singular value decomposition method of Shang
et al. (2019) can be applied to mitigate influences of functional outliers in modeling and
forecasting age-specific morality rates (see also Zhang et al., 2013; Bali et al., 2011).

3) We evaluate and compare the pointwise interval forecast accuracy. To our best knowledge,
uniform prediction intervals are still rarely used in the context of functional time series
models, owing to the difficulty in computing an appropriate semi-metric distance. A future
extension can consider the uniform prediction intervals of grouped functional time series and
study the interval forecast accuracy in function space.

Supplementary Material
For reproducibility, all R codes are collated in a Github repository at https://github.com/
hanshang/GMFTS. This repository contains the following files:
• README: Describe the functionality of each R file.
• R files with indices 1 to 29: Functions used to compute numerical results presented in

the paper.
• Example: Contains a quick example of forecasting prefecture-level age-specific mortality

rates using the DMFTS method.
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