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Abstract

We propose a method of spatial prediction using count data that can be reasonably modeled as-
suming the Conway-Maxwell Poisson distribution (COM-Poisson). The COM-Poisson model is a
two parameter generalization of the Poisson distribution that allows for the flexibility needed to
model count data that are either over or under-dispersed. The computationally limiting factor of
the COM-Poisson distribution is that the likelihood function contains multiple intractable nor-
malizing constants and is not always feasible when using Markov Chain Monte Carlo (MCMC)
techniques. Thus, we develop a prior distribution of the parameters associated with the COM-
Poisson that avoids the intractable normalizing constant. Also, allowing for spatial random
effects induces additional variability that makes it unclear if a spatially correlated Conway-
Maxwell Poisson random variable is over or under-dispersed. We propose a computationally
efficient hierarchical Bayesian model that addresses these issues. In particular, in our model, the
parameters associated with the COM-Poisson do not include spatial random effects (leading to
additional variability that changes the dispersion properties of the data), and are then spatially
smoothed in subsequent levels of the Bayesian hierarchical model. Furthermore, the spatially
smoothed parameters have a simple regression interpretation that facilitates computation. We
demonstrate the applicability of our approach using simulated examples, and a motivating ap-
plication using 2016 US presidential election voting data in the state of Florida obtained from
the Florida Division of Elections.
Keywords Bayesian inference; Conway-Maxwell; count data; dispersion; Poisson
distribution; spatial statistics

1 Introduction
In United States presidential elections there are many states that historically vote for the same
political party. For example, from recent past electoral results, Republican candidates tend to
win most of the mountain states and Great Plains, and most of the South. Similarly, Democratic
candidates often win the Mid-Atlantic states along with New England and the West Coast states.
There are also so-called swing states, which refers to any state that could reasonably be won by
either the Democratic or Republican presidential candidates. For example, Texas is the key to
outcome of the 1960 election, Florida and New Hampshire are key in deciding the 2000 election,
and Ohio was important during the 2004 election (Duquette et al., 2017). Thus, there is reason
to suggest under-dispersion for some regions and over-dispersion in others, where under (over)
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dispersion refers to when the mean is larger (smaller) than the variance of the data. That is,
historically consistent voters suggest that variance within certain regions might be very small
and vice versa.

In the context of modeling spatial count data, such as US voting data, the Poisson dis-
tribution has gained widespread popularity (Cressie, 1993; Banerjee et al., 2014). In general,
spatial statistical models for spatial count data have become a common choice in a large num-
ber of scientific disciplines. For example, spatial count data have been modeled in areas as
diverse as small-area samples from surveys, meteorological observations, epidemiological data,
transportation data, and relative abundance of various species in ecological monitoring studies,
among others (Guikema and Goffelt, 2008; Gupta et al., 2014; Sellers and Raim, 2016). Pois-
son regression is a standard framework for modeling covariate dependent count data through a
log-linear link function. Nevertheless, the distributional assumption of having the mean equal to
the variance over the entire spatial domain (i.e., equi-dispersion) is rarely satisfied for the types
of processes that typically are observed in practice. Count data can exhibit over-dispersion and
under-dispersion causing traditional count data regression models to violate this property of
the data. Several approaches for addressing over-dispersion have been developed such as quasi-
likelihood methods, Poisson regression with random effects, and models based on the negative
binomial distribution (Manton et al., 1981; Cameron and Trivedi, 2013; Ver Hoef and Boveng,
2007; Hilbe, 2011). Models based on the negative binomial distribution fit reasonably well for
over-dispersed data, but often under perform in under-dispersion settings (Lindén and Män-
tyniemi, 2011). Hence, methods that allow for both under-dispersion and over-dispersion are
important contributions to the analysis of count-valued data.

There are several recent proposed flexible models that use the Conway-Maxwell Poisson
distribution (COM-Poisson) (Conway and Maxwell, 1962), and have the potential to overcome
the limitations of traditional count models. The COM-Poisson distribution was introduced into
the statistics literature by (Shmueli et al., 2005) with several follow-up papers (e.g., see Daly and
Gaunt, 2016; Chakraborty and Imoto, 2016; Sellers et al., 2016) Shmueli et al. (2005) demon-
strate the probabilistic and statistical properties of the COM-Poisson distribution and describe
several methods of parameter estimation. In particular, the COM-Poisson distribution is a mem-
ber of the exponential family and can be seen as an extension to the Poisson distribution, with
an extra parameter that flexibly controls the level of dispersion. Additionally, this distribution
has the Poisson and geometric distributions as special cases and the Bernoulli distribution as a
limiting case. The COM-Poisson provides a promising and flexible approach for performing count
data regression. This distribution has become widely utilized in a variety of applications and
has great practical interest. However, the statistical performance of this model has not yet been
fully characterized. A comprehensive overview regarding the COM-Poisson model is provided by
Sellers et al. (2012). The COM-Poisson distribution has since been used in more sophisticated
Bayesian hierarchical models formulated to dynamically accommodate varying levels of spatial
dispersion (Wu et al., 2013).

The application of hierarchical Bayesian models for spatial and spatio-temporal count data
has become increasingly popular over the past decades. For example, Wikle and Hooten (2006)
and Hooten et al. (2007) proposed spatio-temporal Poisson models. Bradley et al. (2018) also
develops multivariate spatio-temporal models for high-dimensional count data. Moreover, there
are many examples in the epidemiological field (see, e.g. Waller et al., 1997; Carlin and Banerjee,
2003, and beyond). Wu et al. (2013) developed a space-time COM-Poisson model. However,
the overdispersion from the spatial random effects obfuscate the dispersion of the data. In this
article, we propose a computationally efficient hierarchical Bayesian spatial COM-Poisson model
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that preserves the dispersion properties of the data and simultaneously include spatial random
effects. To do this, we assume conditional independence between the data and the spatial process
conditioned on a set of parameters. We refer to this model as Over or Underdispersed Regression
for Spatial (OURS) count data.

We consider a modified version of the conjugate prior distribution for the COM-Poisson in
Kadane et al. (2006). This modification completely avoids the need to compute the normalizing
constant in the COM-Poisson. Furthermore, we show that our modified prior distribution leads
to a well defined posterior distribution for the parameters in a COM-Poisson.

Another contribution of our method is that it is matrix free, which is a growing area in
computational statistics (Dai et al., 2020; Yang and Bradley, 2021). To achieve a computationally
efficient approach in the Bayesian setting we introduce latent random variables that allow one
to model the dependency completely in the mean term. The first step of our procedure is using
slice sampling (Neal, 2003) to sample from the aforementioned modified conjugate posterior
from Kadane et al. (2006). The next step uses a posterior predictive distribution to a model
with functional spatial dependencies defined in the mean. This two step procedure shows that
we do not need to store a large matrix and nor do we need to compute the intractable normalizing
constant in a COM-Poisson, which aids in computational efficiency.

The remaining sections of this article are organized as follows. We first review the COM-
Poisson distribution then propose the methodology and our model framework in Section 2. In
Section 3, we present simulated examples for over/under-dispersed counts. In Section 4, we
implement our model using 2016 US presidential voting data in the state of Florida. Finally,
Section 5 contains a discussion.

2 Methodology

2.1 Review of Bayesian Analysis of COM-Poisson Distributed Data

In this section, we review the COM-Poisson distribution. The COM-Poisson distribution gen-
eralizes the Poisson distribution to model over-dispersion or under-dispersion. Define an n-
dimensional data vector Z = (z1 . . . zn)

′, where zi∈{0, 1, 2, . . .} is the count-valued outcome asso-
ciated with the i-th region for every i = 1 . . . n. For example, zi could represent the number of
votes for a Republican candidate in county i. The probability mass function (p.m.f) is

f (zi | λi, νi) = λ
zi

i

(zi !)νi

1

Q(λi, νi)
, (1)

Q(λi, νi) =
∞∑

j=0

λ
j

i

(j !)νi
; λi > 0, νi � 0, i = 1 . . . n, (2)

where Q(λi, νi) serves as a normalization constant and νi is called the dispersion parameter.
The level of dispersion can be conveniently characterized with νi = 1, νi < 1, and νi > 1

corresponding to equal-dispersion, over-dispersion, and under-dispersion, respectively. COM-
Poisson is a member of the exponential family and it has the Poisson distribution (when νi = 1)
and geometric distribution (when νi = 0 and λi < 1) as special cases and the Bernoulli distri-
bution (when νi → ∞) as a limiting case. When νi = 0 and λi � 1, Q(λi, νi) does not converge,
and the distribution is undefined.
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Kadane et al. (2006) used the exponential family structure of the COM-Poisson to establish
a conjugate prior density of the form

f (λi, νi) = λa−1
i exp(−νib)Q(λi, νi)

−cκ(a, b, c), (3)

for λi > 0 and νi � 0, where κ(a, b, c) is the integration constant. The posterior has the same
form as (3), with a′ = a + zi , b′ = b + log(zi !) and c′ = c + 1. The values of a, b, and c are
restricted so that κ−1(a, b, c)< ∞. Using Jensen’s inequality and the convexity of the log-gamma
function, a necessary and sufficient condition for a finite κ−1(a, b, c) is

b

c
> log

(⌊a

c

⌋
!
)

+
(a

c
−

⌊a

c

⌋)
log

(⌊a

c

⌋
+ 1

)
, (4)

where �m� denotes the floor of m (see, Kadane et al., 2006, for a complete proof).
A spatial(-time) alternative to the Kadane et al. (2006)’s prior was introduced in Wu et al.

(2013). Here, they assume the vector λ = (λ1, . . . , λn)
′ has a basis function representation:

log(λ) = μ+�α+ε, where Gaussian priors are given to the n-dimensional vector μ, r-dimensional
vector α, and n-dimensional vector ε. Here � represents a n×r matrix of spatial basis functions.
Specification of basis functions is a key tool used for spatial and spatio-temporal models (Wikle,
2010). Basis functions imply dependence, since cov (log(λ)) = � cov(α)� ′, which is not equal to
a zero matrix.

2.2 A Modified Kadane et al. (2006) Prior Distribution
One can avoid the normalizing constant in the posterior distribution by setting c = −1. However,
the implied posterior distribution is not proper (i.e., does not integrate to one). We gain flexibility
in specifying c = −1 by truncating the support of λi . Namely consider the following prior
distribution for (λi, νi):

h(λi, νi) = λa−1
i exp(−νib)Q(λi, νi)I (0 < λi < w), (5)

where I (·) is an indicator function, νi � 0, 0 < w < ∞. Then the posterior distribution for
(λi, νi) is

h(λi, νi |Zi, a, b, w) = (Zi + a) {b + log(Zi !)} λ
Zi+a−1
i

wZi+a
exp

[−{b + log(Zi !)}νi

]
I (0 < λi < w), (6)

where νi � 0. The posterior means of λi and νi are given by ( w
Zi+a+1)Zi + a( w

Zi+a+1) and
1/

[
b + log(Zi !)

]
, respectively. Thus, the choice of w, a, and b are important from the perspective

of point estimation. For example, if w ≈ Zi + a + 1 and a ≈ 0 we see that the posterior mean
is roughly an unbiased estimator for λi . When b < 1 and Zi is equal to zero or one, we obtain
a poster mean of νi greater than one suggesting under-dispersion. We note that in later stages
in our Bayesian hierarchical models we effectively smooth values from this posterior predictive
distribution (see Section 2.4), and hence, these smoothed parameter estimates have different
properties.

2.3 Over or Underdispersed Regression for Spatial Data
In order to incorporate dependence in an efficient manner, we introduce latent random effects
into a hierarchical model. The joint distribution is given by

n∏
i=1

f (zi |λi, νi)h(λi, νi |a, b, w)f (βλ, βν |λ, ν, θ), (7)
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where λ = (λ1, . . . , λn)
′, ν = (ν1, . . . , νn)

′, f (zi |λi, νi) is the p.m.f of the Conway-Maxwell Poisson
distribution in Equation (1), h(λi, νi |a, b, w) is the prior distribution in Equation (5), and we
specify f (βλ, βν |λ, ν, θ) to be a multivariate normal distribution. The parameter λi and νi are
the location and dispersion parameters in a COM-Poisson distribution, and βλ and βν will be
defined as smoothed version of these parameters that take into accounts covariates and spatial
dependence. We let

f (βλ, βν |λ, ν, θ) = f (βλ|λ, σ 2
λ )f (βν |ν, σ 2

ν ), (8)

so that θ = (σ 2
λ , σ 2

ν )′, where σ 2
λ > 0, σ 2

ν > 0, and the n-dimensional random vectors

βλ|λ, σ 2
λ ∼ Normal(μλ, σ

2
λ In),

μλ = X(X′X)−1X′ log(λ) + �(� ′�)−1� ′(log(λ) − X(X′X)−1X′ log(λ)),

βν |ν, σ 2
ν ∼ Normal(μν, σ

2
ν In),

μν = X(X′X)−1X′ log(ν) + �(� ′�)−1� ′(log(ν) − X(X′X)−1X′ log(ν)), (9)

where the n-dimensional vectors λ = (λ1, . . . λn)
′ and ν = (ν1, . . . νn)

′ and “Normal(μ, 	)” is a
shorthand for a multivariate normal distribution with mean μ and positive definite covariance
matrix 	. Let xi be a known p-dimensional vector of covariates, X = {x1 . . .xn}′, � ∈ R

n × R
r

is defined to be a matrix of basis functions which is of dimension n × r (r � n). We also
assume σ 2

λ ∼ IG(1, 1) and σ 2
ν ∼ IG(1, 1) where “IG(α, κ)” is a shorthand for the inverse gamma

distribution with shape α > 0 and scale κ > 0. Notice that the means of βλ and βν are a
series of projections of log(λ) and log(ν) onto the column space of X and �, respectively. In
Equation (9), we see that the mean of βλ is a smoothed (i.e., projection) version of the location
parameter λ. Consequently, we interpret βλ as a location parameter that accounts for covariate
(i.e., X) and spatial behavior (i.e., �). Similarly, one can interpret βν as a dispersion parameter
that incorporates covariates and spatial behavior. Consequently, we are interested in inference on
βλ and βν to adjust for covariate and spatial effects when learning about location and dispersion
of the data.

Sellers and Shmueli (2013) and Wu et al. (2013) introduced extensions of COM-Poisson
regression that allows for different group and spatial levels of dispersion by modeling ν with
additional spatial random effects. However the random effects in these models compete with the
over-dispersion parameter ν. We remove this competition by assuming conditional independence
between {λ, ν} and {βλ, βν}, where βλ and βν include spatial dependence.

2.4 Posterior Predictive Distribution

The posterior predictive distribution for {βλ, βν} is given by

f (βλ, βν |Z) =
∫ ∫

f (βλ, βν|λ, ν,Z)f (λ, ν|Z)dλdν =
∫ ∫

f (βλ, βν|λ, ν)f (λ, ν|Z)dλdν, (10)

Although this integral does not have a closed form, Equation (10) leads to straightforward
implementation via a Gibbs sampler. See Algorithm 1 for an outline.
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Algorithm 1 Implementation.
1: Initialize all the parameters.
2: For b=1. . . B, sample λ[b], ν[b] from f (λ, ν|Z) (using a slice sampler (Neal, 2003))
3: Set b = b + 1.
4: Sample βλ

[b] from Normal(μλ, σ
2
λ

[b−1]In), where recall μλ is defined in (9).
5: Sample βν

[b] from Normal(μν, σ
2
ν

[b−1]In), where recall μν is defined in (9).
6: Simulate σ 2

λ

[b] from f (σ 2
λ |βλ

[b]), which is the probability density function for a
IG

(
1 + n

2 , 1 + (βλ
[b]−μλ)′(βλ

[b]−μλ)

2

)
.

7: Simulate σ 2
ν

[b] from f (σ 2
ν |βν

[b]), which is the probability density function for a
IG

(
1 + n

2 , 1 + (βν
[b]−μν )′(βν

[b]−μν )

2

)
.

8: Generate a new replicate of Z[b] from
∏n

i=1 f
(
zi | λi = exp

(
β

[b]
λi

)
, νi = exp

(
β [b]

νi

))
, where f

is defined in Equation (1) and β [b]
λ =

(
β

[b]
λ1

, . . . , β
[b]
λn

)′
and β [b]

ν = (
β [b]

ν1
, . . . , β[b]

νn

)′

9: Repeat steps 3 through 8 until b=B.

Thus, our implementation involves generating values from two easy to sample from con-
ditional distributions. That is, first generate λ[b] and ν[b] from f (λ, ν|Z) and then generate
the value from f (βλ, βν|λ[b], ν[b]). It is important to emphasize that Step 3-8 in Algorithm 1
does not require computationally difficult covariance matrices to store and invert. However, this
does not imply that we do not model spatial dependence. That is, let Px = X(X′X)−1X′ and
P� = �(� ′�)−1� ′ so that

E (μλ) = PxE{log(λ)} + P�(I − Px)E{log(λ)},
Cov(μλ) = Px V ar{log(λ)}Px + P�(I − Px) V ar{log(λ)}(I − Px)P�,

E(μν) = PxE{log(ν)} + P�(I − Px)E{log(ν)},
Cov(μν) = Px V ar{log(ν)}Px + P�(I − Px) V ar{log(ν)}(I − Px)P�,

imply non-zero means and non-diagonal convariance matrices, where the expectations are taken
with respect to (7). Thus, predictions from our incorporate spatial dependence, and are computed
from Algorithm 1 with

Ẑ = 1

B − b0

B∑
b=b0

Z[b],

where b0 is a burn-in, and in Step 8 we have generated from posterior predictive distribution
based βλ and βν instead of λ and ν. The use of βλ and βν is preferable because, again, these
parameters incorporate spatial and covariate information into the prediction of the mean of Z.

3 Illustrations Using Simulated Examples
In this section, we present two different simulation scenarios. The first specifies νi so that zi is
under-dispersed and the other specifies zi to be over-dispersed. We simulate zi from a COM-
Poisson distribution, and our main goal is to assess whether or not βλ can be used to accurately
estimate the true location parameter. We fix the dispersion parameter νi as constant (e.g., νi = 2
for all i) in both simulation settings. Values of ν > 1 indicate under-dispersion relative to the
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Figure 1: Credible intervals for βλ and the true value of log(λ) for the one-dimensional region
with under-dispersion setting. In the left panel data is generated with ν = (2, . . . , 2)′ and in the
right panel the data is generated with ν = (0.95, . . . , 0.95)′.

Poisson, while ν < 1 indicates over-dispersion. Also, there are many possible choices for basis
functions (see Section 2.1). In this paper, we use the thin plates basis function (Wahba, 1990).
The thin plates basis function are defined as

ψ(s) ≡ (
ϕ

(∥∥s − c1j

∥∥)
, . . . , ϕ

(∥∥s − cij

∥∥))′
, j = 1, 2, 3,

ϕ
(∥∥s − cij

∥∥) =
(‖s − cij‖

αj

)2

log

(‖s − cij‖
αj

)
, j = 1, 2, 3, (11)

where s is a centroid of one of the n study regions (e.g., counties in Florida) and {cij : i =
1, . . . r, j = 1, 2, 3} represent the knot locations defined over resolutions j = 1, 2, 3. Specifically,
for j = 1, 2, 3 let {cij : i = 1, . . . , ωj } be equally spaced centroids over the n regions. This implies
r = ω1 +ω2 +ω3 and αi > 0 is called a bandwidth so that � = {ψ(c11), . . . , ψ(cω33)}′. Specifying
{cij } in this way is referred to as a multi-resolutional choice of knots, and is a common choice in
spatial statistics (e.g., see Cressie and Johannesson, 2008). Let ‖·‖ denote the usual Euclidean
norm. Also, the choice of hyperparameters (i.e., a, b, w, and r) are set constant across simulated
replicates. For each simulation, we implement with Algorithm 1 with B = 5000 and treated the
first 2000 iterations as a burn-in.

Consider generating data in the following way. Generate 3,000 observations over a one-
dimensional spatial domain (i.e., n = 3,000), such that zi is distributed according to a COM-
Poisson with location λi and dispersion parameter νi . Define the true λi = 2.1 sin(2πsi) + 4.7
and where the centroid of region i is denoted as si ∈ {s1 . . . s3000} ⊂ [0, 1] and are equally spaced.
We fix the true dispersion parameter as a constant. When generating under-dispersed data we
set ν = (2, . . . , 2)′, and when generating over-dispersed data we set ν = (0.95, . . . , 0.95)′. Then
to generate from a COM-Poisson the infinite sum in (2) is truncated, and we truncate at 100-th
term. This is done using the R-package CompGLM. In (4), we set a = 2, b = 2, and w = 30. We
implement the model in (7) with xi = (1, sin(2πsi))

′ and set ω1 = 4, ω2 = 5, and ω3 = 6 so that
we have a total of r = 15 thin plate splines over the three resolutions α1 = 3.01, α2 = 3.97, and
α3 = 5.02. In Figure 1, we plot the true log(λ) and 95% pointwise credible intervals associated
with βλ using replicates from Algorithm 1. Here we see that the credible intervals display the
pattern of the truth in both dispersion settings, and tend to contain log(λ). This pattern is
consistent when simulating 50 replications. We provide the average performance of parameter
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Table 1: Performance of parameter estimates under 50 replicates.

Dispersion Type MMAE MSD MMSE

λ̂ Under 0.2181 0.0821 0.0697
Over 0.1171 0.0232 0.0201

ν̂ Under 0.0375 0.0039 0.0027
Over 0.0183 0.0008 0.0006

estimates under 50 replicate data vectors in Table 1 by simulation set-up (i.e., over or under
dispersion data). We use different metrics to evaluate the posterior performance. Those metrics
including the mean (over 50 simulated data vectors) of mean (over elements of our data vector)
absolute error (MMAE), the mean standard deviation (MSD), the mean of mean squared error
(MMSE). The estimation performance is stable, in the sense that the metrics also small for both
parameters. In general, we tend to perform better in the over-dispersion setting.

4 Real Data Application
4.1 Data Description
As an illustration, we analyze voting data from the 2016 United States presidential election. We
focus on data in the state of Florida at the county-level. In this application, we ignore the third
parties and only focus on two main political parties, the Republican and Democratic parties. The
candidate for the Republican party was Donald J. Trump and the candidate for the Democratic
party was Hillary Clinton. In 2016, there were 67 counties in Florida. A transformation of the
voting results can be seen of Figure 2. This dataset is made publically available on the Florida
Division of Elections (https://results.elections.myflorida.com).

4.2 Analysis
We present an analysis of the election dataset using our method. In this analysis, we run 30,000
iterations and treated the first 20,000 iterations as a burn-in. We informally check trace plots
for convergence, and no lack of convergence was detected. The main goals of our analysis is to
compare the predictive performance of OURS relative to competing methods, and to infer values
of over and under-dispersion. Recall, this is not immediately possible to do for our competitors.
The response in this analysis is a transformation of the difference in the number of votes between
Trump and Clinton. We shift this difference so the smallest value is zero, we rescale (12) by 1

30,000
for a numeric reason, and we take ceiling so that the response in integer-valued.

zi =
⌈

(Vi,1 − Vi,2) − min(Vi,1 − Vi,2)

30, 000

⌉
, i = 1 . . . 67, (12)

where Vi,1 is the number of votes for Trump over each county, Vi,2 is the number of votes for
Clinton over each county, “min” is the minimum, and �·� represent the ceiling function. For
illustration, we specify an intercept only model (i.e., xi = 1). In our model, we set r = 67 vector
ψ(s) was chosen to consist of thin plates basis functions (see, Equation (11)) associated with
the centroids of each county. The bandwidth is set to 0.75 which is chosen based on minimizing
a criterion over a range of choices of the bandwidth.

https://results.elections.myflorida.com
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Figure 2: Transformed difference in the number of votes. See Equation (12).

Table 2: The pointwise 95% credible interval for eight counties.

County 95% Credible Interval County 95% Credible Interval

Clay (1.001, 1.134) Indian River (1.007, 1.142)
Collier (1.007, 1.139) Lee (1.009, 1.146)

Franklin (1.023, 1.159) Putnam (1.003, 1.137)
Holmes (1.017, 1.158) Wakulla (1.001, 1.135)

We compare our model to a Poisson model with latent multivariate log gamma random
effects (Bradley et al., 2018) and a Poisson model with latent Gaussian random effects (Hadfield
et al., 2010). The multivariate log-gamma distribution is a type of conjugate multivariate (CM)
distribution (Bradley et al., 2020). The Poisson model with latent Gaussian random effects
is sometimes called a Latent Gaussian Process (LGP) (Gelfand and Schliep, 2016). The same
covariates and basis functions were used in both of the competing models, and public-use code
for both methods were used. We use the Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002) and the logarithm pseudo marginal likelihood (LPML) (Chen et al., 2008) as an
overall model fit measure. These two criteria involve a tradeoff between the goodness of fit
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Figure 3: Left top: Original data; Right top: posterior mean of OURS; Left bottom: posterior
mean of Poisson CM model; Right bottom: posterior mean of Poisson LGP model.

and model complexity. Both criteria can be easily obtained from a Markov chain Monte Carlo
(MCMC) output. Here, the largest LPML value and the smallest DIC values are preferable.

In Figure 3, we plot predictions of Z using OUR (Algorithm 1), predictions from a Poisson
CM model, and a Poisson LGP model. All predictions look similar, except the Poisson CM
appears to overfit. This is verified by the value of DIC and LPML, see Table 3. Our model has the
smallest DIC and largest LPML marginally. This gives motivation for our method because OURS
not only gives competitive predictions, but also allows us to assess over-and-under dispersion
more readily (i.e., through estimates of λ).

For this dataset, we find that eight counties appear to be under-dispersed (i.e., the pointwise
95% credible interval of βν,i is greater than 1). The eight counties are Clay, Collier, Franklin,
Holmes, Indian River, Lee, Putnam, and Wakulla counties. Considering the past four presidential
elections from 2000 to 2012, these counties consistently favored the Republican party in each
election. Four of these counties are rural areas and the remaining four are adjacent to rural
areas.
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Table 3: Comparison Results.

Model DIC LPML

OURS 319.58 −156.32
CM 395.95 −212.87
LGP 334.76 −161.11

5 Discussion
The COM-Poisson model has received a great deal of attention in recent years in many fields
of application. This because COM-Poisson regression is a popular model for count data due to
its ability to capture both under-dispersion and over-dispersion. In practice, modeling spatial
count data using COM-Poisson is challenging, since spatial random effects compete with the
dispersion parameter.

We have proposed a new “matrix free” Bayesian approach for modeling dependent count
data. The first contribution is that we modify the prior distribution from Kadane et al. (2006) so
that one can avoid computing/approximating the normalizing constant. Additionally, we impose
a conditional independence assumption between the COM-Poisson parameters, and a spatially
smoothed version of these parameters to avoid inflating variance of the data with spatial random
effects changing the dispersion properties of the data. Thus, our approach can model both
over-dispersed and under-dispersed count data (unlike negative binomial and many other count
models). We refer to this model as Over or Under-dispersed Regression for Spatial (OURS)
count data. Another contribution is that our approach is “matrix free” and computationally
efficient. To achieve computationally efficient implementation of OURS, in the Bayesian setting,
we model spatial dependency through latent random variables and two step procedure. We first
sample from posterior distribution of the COM-Poisson parameters based on the modified prior
distribution then use a posterior predictive distribution to model functional spatial dependence
in the mean of latent processes. Consequently, there is no inversion or storage of a large matrix
in our approach.

In Section 3, we present different simulation scenarios. It includes one-dimensional spatial
locations with both under-dispersed and over-dispersed data and two-dimensional spatial loca-
tions for under-dispersed data. In each scenario, we find that we can accurately estimate the
true location and dispersion parameters. We see that the credible interval displays the pattern
of the truth in each scenario. In Section 4, we present a real data application of Florida voting
data in the 2016 US presidential election. OURS produces better measures of out-of-sample
error than Poisson CM model and Poisson LGP model. Furthermore, OURS allow us to assess
over-and-under dispersion while the Poisson CM and Poisson LGP only allow for overdispersion.

There are several possibilities of interesting future work. For example, the COM-Poisson
distribution’s structure allows for a variety of generalizations such as zero-inflated data. Its
appeal from a practical point of view is even stronger: it is easy to use, flexible for fitting over-
dispersed and under-dispersed data, and the second step of Algorithm 1 could easily be adapted
to other setting such as time series or the spatio-temporal settings.
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Supplementary Material
The real data and R code needed to reproduce the results in this paper can be found on the
supplementary materials.
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