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Abstract

There is a great deal of prior knowledge about gene function and regulation in the form of anno-
tations or prior results that, if directly integrated into individual prognostic or diagnostic studies,
could improve predictive performance. For example, in a study to develop a predictive model
for cancer survival based on gene expression, effect sizes from previous studies or the grouping
of genes based on pathways constitute such prior knowledge. However, this external information
is typically only used post-analysis to aid in the interpretation of any findings. We propose a
new hierarchical two-level ridge regression model that can integrate external information in the
form of “meta features” to predict an outcome. We show that the model can be fit efficiently
using cyclic coordinate descent by recasting the problem as a single-level regression model. In
a simulation-based evaluation we show that the proposed method outperforms standard ridge
regression and competing methods that integrate prior information, in terms of prediction per-
formance when the meta features are informative on the mean of the features, and that there is
no loss in performance when the meta features are uninformative. We demonstrate our approach
with applications to the prediction of chronological age based on methylation features and breast
cancer mortality based on gene expression features.

Keywords high-dimensional regression; meta-features; penalization; prediction; regularization

1 Introduction
In genomic studies, there is often a great deal of prior knowledge about the genomic features
that are being modeled. These “meta features” (or features-of-features) may be comprised of
gene annotations (e.g., an indicator to denote whether a gene belongs to a particular pathway),
natural groupings of the genomic features (e.g., methylation probes mapping to genes), or infor-
mation from previous studies (e.g., scores or effect estimates of a SNP on the outcome) that the
researcher considers relevant to the outcome of interest. For example, the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) study includes cDNA microarray pro-
filing of close to two thousand breast cancer patients and patients’ survival information within
the study follow-up (Curtis et al., 2012). In this example, which we later use to illustrate our
approach, we are interested in predicting patient mortality based on their gene expression pro-
files. As potentially informative meta features we consider the attractor metagenes identified
by Cheng et al. (2013). These are groups of genes that capture molecular events known to be
associated with clinical outcomes in many cancers. We expect improved prediction performance
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when incorporating these metagenes into the model building process.
Genomic data are often high-dimensional i.e., has more features per observation than ob-

servations in the study. But classical regression methods such as linear and logistic regression
breakdown in high-dimensional settings. High-dimensional regression methods require regular-
ization, a technique that modifies the loss function by adding a penalty term that shrinks the
regression coefficients toward zero. Among the best known examples of regularized/penalized re-
gression are ridge regression (Hoerl and Kennard, 1976), LASSO (Tibshirani, 1996), and elastic
net (Zou and Hastie, 2005), though many other approaches have been developed to encour-
age additional structure or desirable properties of the regression estimates (e.g., Fan and Li,
2001; Yuan and Lin, 2006; Zou, 2006; Zhang, 2010; Dai et al., 2018). The amount of shrinkage
induced by the penalty dictates the balance between model complexity (bias) and model stabil-
ity (variance). It is controlled by a penalty parameter that requires tuning, which is typically
accomplished via cross-validation.

While most regularization methods penalize all regression coefficients equally, feature-spe-
cific weighting can be performed to allow for differential shrinkage. In particular, several ap-
proaches have been recently proposed to improve the prediction performance of regularized
regression models through the integration of prior information. Using the LASSO (Tibshirani,
1996) framework, Bergersen et al. (2011) incorporates relevant meta features by developing
feature-specific penalties. This modification provided more stable model selection and improved
prediction over the standard LASSO. Similarly, Van De Wiel et al. (2016) proposed an adaptive
group-regularized version of ridge (Hoerl and Kennard, 1976) regression which derives empirical
Bayes estimates for group-specific penalties by utilizing meta features such as gene annotations
or external p-values. Recently, Tay et al. (2021) proposed the feature-weighted elastic net that
uses meta features to adapt the feature-specific penalties for elastic net (Zou and Hastie, 2005)
regularization and Zeng et al. (2020) proposed an alternative approach that models the magni-
tude of the subject-specific tuning parameters as a log-linear function of the meta features.

Some of these approaches fix the weights in advance (e.g. Bergersen et al., 2011), which
requires unavailable knowledge about the relative importance of the features. Others, adaptively
(re)-estimate these weights (see e.g., Van De Wiel et al., 2016; Tay et al., 2021; Zeng et al.,
2020), but this requires tuning a potentially large number of parameters, which in turn limits
the number of meta features that can be integrated at any given time. In addition, by modifying
the penalties, these methods assume that the meta features are explaining variations in the
features. Instead of using the meta features to determine weights, we propose a hierarchical �2-
regularized (two-level ridge regression) model that jointly models the subject-level features and
meta features, which enables the integration of any type and number of meta features. At the
first level, the outcome is regressed on the subject-level features, as in standard regularization
methods. Rather than assuming the meta features affect the variance of the subject-level features,
the second level models the effect of the meta features on the mean of the subject-level features.
L2-regularization is applied to the subject-level features and the meta features as both sets
(features and meta features) have the potential to be highly correlated and high dimensional.
We show that the two-level ridge regression model can be rewritten as a single ridge regression
with a modified design matrix and parameter vector, which allows us to use efficient optimization
techniques to estimate the model parameters. We also derive closed-form solutions under specific
scenarios that sheds light on how the external information impacts estimation of the first-level
regression coefficients.

The rest of the paper is organized as follows. The two-level ridge regression model is
described in Section 2. In Section 3, we provide a simulation study that compares our pro-
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posed method to competing methods. Real data applications for predicting chronological age
and breast cancer mortality are given in Section 4. Discussions of our findings and parting
comments are provided in Section 5. The two-level ridge regression model is implemented
in the R package xrnet (Weaver and Lewinger, 2019, 2021), which can be found at https:
//CRAN.R-project.org/package=xrnet.

2 Methods
2.1 Setup
Consider the linear regression model

y = Xβ + ε, (1)
where y ∈ R

n is a vector of quantitative measurements collected on n subjects, X = (xT
1 , . . . , xT

n )

is an n × p matrix of genomic features (e.g., expression levels, genotypes, methylation probes),
β = (β1, . . . , βp)T is the vector of regression coefficients, and ε ∼ Np(0, σ 2Ip) for some σ 2 > 0.
We assume, for notational convenience, that the observations are standardized with sample mean
0 (which removes the intercept term) and sample variance 1. The genomic features are assumed
to be high-dimensional, i.e., the number of features p exceeds the sample size n.

We also assume that there is a set of q meta features (e.g., gene annotations, natural
groupings, information from previous studies) collected for each of the p features that can be
represented as a p × q matrix Z. The number of meta-features can be larger than p and/or
n. Our goal is to improve the prediction performance by integrating the meta features into the
following modeling framework.

2.2 The Model
In a high-dimensional setting, unique ordinary least squares estimates for model 1 do not exist.
Essentially, the linear regression model with more features than observations is too complex for
the amount of data available. As mentioned in the introduction, regularization methods (see e.g.,
Hoerl and Kennard, 1976; Tibshirani, 1996; Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006;
Zhang, 2010; Dai et al., 2018) address this issue by balancing model complexity/parsimony and
goodness of fit. Initially developed for handling multicollineairity, ridge regression (Hoerl and
Kennard, 1976) is an effective approach for analyzing high-dimensional data. Ridge regression
is the solution to an optimization problem with a modified objective function that adds an
�2-penalty to the standard squared loss function:

β̂ridge = arg min
β

1

2
‖y − Xβ‖2

2 + λ

2
‖β‖2

2 , (2)

where ‖β‖2
2 = ∑p

j=1 β2
j and λ � 0. The �2 penalty encourages shrinkage of the coefficient

estimates toward zero and the degree of shrinkage is controlled by the choice of the tuning
parameter λ (see Section 2.4). A common approach to tune λ is to select the value that minimizes
some criterion (e.g., mean squared error) from a grid of possible values of λ using k-fold cross
validation.

To incorporate meta features into high-dimensional linear regression, we propose a two-level
�2-regularization approach based on minimizing the following objective function

arg min
β,γ

{
1

2
‖y − Xβ‖2

2 + λ1

2
‖β − Zγ ‖2

2 + λ2

2
‖γ ‖2

2

}
, (3)

https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=xrnet
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where λ1 > 0 and λ2 > 0 are two tuning parameters. The first term in (3) is the standard least
squares loss, the second term is a ridge penalty that shrinks the estimates of β toward some
feature-specific mean μ = Zγ (rather than 0), and the third term is a standard ridge penalty
that shrinks the estimates of γ . Note that unlike standard ridge regression, the value of μ toward
which the β are shrunk is not fixed but modeled as a linear function of the meta features Z.
This second-level penalty encourages genomic features with similar meta-feature profiles to have
more similar coefficient estimates compared to genomic features with dissimilar profiles, effec-
tively “borrowing information” across features. We provide specific examples in Section 2.4. Note
also that when γ = 0, (3) reduces to (2), and thus the standard ridge regression is a particular
submodel of our hierarchical formulation. Furthermore, the second term can be viewed as a least
squares regression of β on Z. In this case, β takes the role of the “outcome”. A Bayesian moti-
vation behind this hierarchical formulation is provided in the Online Supplementary Materials.
Under the Bayesian framework, it is clear that (3) assumes the meta features affect the mean of
the subject-level features. This is in contrast to other approaches that integrate meta features by
creating feature-specific penalties which, consequently, assumes that the meta features impact
the variance of the subject-level features. Shrinkage of both the subject-level features (to the
feature-specific mean μ) and meta features (to 0) is controlled by λ1 and λ2, respectively. Similar
to the standard ridge regression, one can use k-fold cross validation to select the optimal pair of
values for λ1 and λ2 over a two-dimensional grid.

While equation (3) posits a natural hierarchical structure to the model, the objective func-
tion can be simplified to a single linear regression model using the following variable substitution,
φ = β − Zγ . By jointly minimizing over (φ, γ ), (3) can be rewritten as

arg min
φ,γ

{
1

2
‖y − X(φ + Zγ )‖2

2 + λ1

2
‖φ‖2

2 + λ2

2
‖γ ‖2

2

}
. (4)

The formulation in (4) can be extended to include penalties other than ridge. In fact,
commonly-used penalties such as the LASSO or elastic-net could be used for regularization on
either (or both) the subject-level or meta feature coefficients. We focus on �2 regularization on
both levels due to its ability to handle highly-correlated features (Zou and Hastie, 2005) and its
generally good performance in prediction problems.

2.3 Model Fitting
Since (4) is jointly convex in (φ, γ ) it can be minimized using standard convex optimization
methods. In particular, being also separable, cyclic coordinate descent can be used to efficiently
optimize it with guaranteed convergence to a global minimum (Tseng, 2001). Before outlining
the algorithm, we further simplify the notation by letting X̃ = [X, XZ] and θ = (φ, γ )T . We can
then re-express (4) as

1

2
‖y − X(φ + Zγ )‖2

2 + λ1

2
‖φ‖2

2 + λ2

2
‖γ ‖2

2

= 1

2

∥∥∥y − X̃θ
∥∥∥2

2
+ 1

2
θT �θ , (5)

where � = diag(�1, �2), �1 = diag(λ1, . . . , λ1) and �2 = diag(λ2, . . . , λ2).
In summary, our two-level ridge regression model can be reformulated as a single-level ridge

regression, where the first p variables, X, have a specific penalty parameter, λ1, and the last q

variables, XZ, have a specific penalty parameter λ2. It may seem that (5) provides a framework
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for differential �2 regularization of multi-omic data (e.g., Gross and Tibshirani, 2015; Chai et al.,
2017; Liu et al., 2018). While multi-omic data refers to a collection of multiple subject-level
measurements, our hierarchical formulation assumes that we have one set of measurements at
the subject level (X) and one set of meta features at the feature level (Z). Since the rows of the
XZ matrix are linear combinations of the original features given by the columns of Z, it is never
full rank even when p + q < n. Shrinkage is necessary to produce unique estimates, even in the
low dimensional case. Furthermore, (5) admits the following closed-form solution,

θ̂ = (X̃T X̃ + �)−1X̃T y.

which can be computed using numerical linear algebra. In practice, however, we propose to
employ cyclic coordinate descent due to its efficiency in generating entire solution paths across
a grid of tuning parameters through the use of warm starts (Friedman et al., 2010) and for
its generalizability to other outcome types (see Section 2.5). We outline the cyclic coordinate
descent algorithm in the Online Supplementary Materials.

The formulation of (5) allows it to be solved using currently-available software (e.g., glm-
net) for fixed values of (λ1, λ2). However, an important distinction is that we allow φ to be
penalized differently than γ . We demonstrate this in our simulation study. The cyclic coordi-
nate descent algorithm simultaneously estimates φ and γ . Estimates of β can be obtained by
the back transformation β̂ = φ̂ +Zγ̂ . Our implementation estimates the model parameters for a
two-dimensional grid of penalty tuning parameters (λ1, λ2) and performs joint parameter tuning
of λ1 and λ2 using cross validation.

2.4 Behavior of the Two-Level Ridge Regression Model
When the matrix X is of full column rank (i.e. well-conditioned low-dimensional case), we can
investigate the relationship between both the ridge and ordinary least squares solutions. Under
an orthonormal design matrix (i.e. XT X = Ip) the ridge estimator has the explicit solution:

β̂ridge = 1

1 + λ
β̂ols, (6)

where β̂ols are the least squares estimates. Therefore, one can see that for λ → 0, β̂ridge → β̂ols

and for λ → ∞, β̂ridge → 0.
Similar to the closed form solution in (6), under the single-level formulation (5) we can derive

closed-form solutions for the parameters estimates, under certain assumptions, that reveals how
the external information in Z impacts estimation of the coefficients β. While we let X denote
generic genomic features, for concreteness, we present the following examples in terms of gene
expression levels.

2.4.1 Case 1: Disjoint Groups (E.g., Gene Expression for Genes in Non-Overlapping
Pathways)

Let X be an n × 4 orthogonal design matrix (i.e., XT X = I4) of gene expression levels. Suppose
that the first two genes belong to one specific pathway and the last two genes belong to another
pathway, disjoint from the first. Then Z can be expressed as a 4 × 2 matrix of binary indicators:

Z =

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦
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By solving (5), one can show that the estimates for β are
⎛
⎜⎜⎜⎝

β̂1

β̂2

β̂3

β̂4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β̂
ridge

1 + λ∗(β̂ridge

1 + β̂
ridge

2 )

β̂
ridge

2 + λ∗(β̂ridge

1 + β̂
ridge

2 )

β̂
ridge

3 + λ∗(β̂ridge

3 + β̂
ridge

4 )

β̂
ridge

4 + λ∗(β̂ridge

3 + β̂
ridge

4 )

⎞
⎟⎟⎟⎠ ,

where λ∗ = λ2
1

2λ1+λ1λ2+λ2
. Thus we see that the subject-level estimates are equal to their standard

ridge estimator plus a weighted sum of the estimates in the same pathway.

2.4.2 Case 2: Genes in Overlapping Pathways

Our previous example assumed that genes belong to two disjoint pathways, which lends itself to
a simple interpretation of the estimators. We assume now that X is a n × 3 orthogonal design
matrix of gene expression levels and let

Z =
⎡
⎣1 0

1 1
0 1

⎤
⎦ .

Unlike the previous example, the second gene belongs now to both pathways. The two-level
ridge estimates for this particular scenario are

⎛
⎝β̂1

β̂2

β̂3

⎞
⎠ =

⎛
⎜⎝

β̂
ridge

1 + λ∗(2β̂
ridge

1 + β̂
ridge

2 − β̂
ridge

3 )

β̂
ridge

2 + λ∗(β̂ridge

1 + 2β̂
ridge

2 + β̂
ridge

3 )

β̂
ridge

3 + λ∗(−β̂
ridge

1 + β̂
ridge

2 + 2β̂
ridge

3 )

⎞
⎟⎠ ,

where λ∗ = λ2
1

3λ1+λ1λ2+λ2
. Each β̂j is now a linear combination (i.e., a weighted sum) of all three

ridge estimates.

2.4.3 Case 3: Orthogonal X and Z

While meta features that define feature groupings are common, meta features of interest can
also be quantitative (e.g., test statistics or p-values from previous studies). We now only assume
that Z is orthogonal to X, but can contain quantitative meta features. A general solution in this
case is given by:

β̂ =
(

Ip + λ2
1

λ1λ2 + λ1 + λ2
ZZT

)
β̂ridge

The derivation is provided in the Online Supplementary Materials. The first-level coefficient
estimates, β̂, equal their original ridge estimates plus a linear combination of all of the ridge es-
timates via ZZT . The matrix ZZT can be thought of as a matrix of pairwise similarities between
the features, where similarity is measured by the inner product of the pairwise meta-feature pro-
files. Thus, information is borrowed across all features proportionally to their similarity.
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2.5 Extension to GLM outcomes
The two-level ridge regression model can be easily extended to models with non-normal outcomes
(e.g., binary, categorical, count). Under the generalized linear model framework, we assume that
the observations vi = (xT

i , yi)
T , i = 1, . . . , n, are mutually independent and that, conditional on

xi , yi belongs to the exponential family with the following density

fY (y; x, ν) = exp

{
yξ − a(ξ)

b(ν)
− c(y, ν)

}
, (7)

where ξ is defined as the canonical parameter, ν > 0 is the scale (dispersion) parameter and
a(ν), b(ξ), and c(y, ν) are known functions whose values depend on the distribution (Dobson
and Barnett, 2018; McCullagh, 2019). Furthermore, under the assumption that a(·) is twice
differentiable, (7) indicates that E(yi |xi ) = μi = a′(ξi) and var(yi |xi) = a′′(ξi)b(νi). In addition,
the canonical parameter ξ is connected to xi through a prespecified link function h(μi) = xT

i β

for some β = (β1, . . . , βp)T . The likelihood function for β is defined as

L(β; vi ) ∝
n∏

i=1

exp(yiθi − a(ξi)) (8)

and the log-likelihood is defined as l(β) = log L(β; vi ). We estimate the regression coefficients β

by minimizing the negative log-likelihood function. The two-level ridge GLM can now be defined
as

arg min
θ

−l(θ) + θT �θ . (9)

Since l(θ) is convex and the ridge penalty is separable, cyclic coordinate descent can again
be used to estimate the parameters in the model (see Online Supplementary Materials). We
provide an example of the two-level ridge logistic regression in our numerical studies and a real
data application on breast cancer mortality is provided.

3 Simulation Study
We assess the prediction performance of our proposed two-level ridge estimator to several
competing methods: 1) standard ridge regression; 2) “augmented” ridge regression; 3) feature-
weighted elastic net (fwelnet); 4) the random forest algorithm. The augmented ridge regression
can be viewed as a standard ridge regression (2) with the design matrix X̃ = [X, XZ]. While the
augmented ridge regression is similar in form to two-level ridge regression (5), the main distinc-
tion is that only one tuning parameter is used to shrink both the subject-level and meta-feature
effects (φ, γ ). For the random forest algorithm we input the augmented design matrix X̃. For
comparison purposes, we fix the elastic net tuning parameter to 0 so that fwelnet will coincide
with ridge regularization. Ten-fold cross validation was used to estimate the tuning parameter(s)
for the regularization methods. Results are averaged over 500 Monte Carlo replications.

3.1 Discrete Z

We simulated data loosely based on the breast cancer real data application in Section 4, with
gene expression levels as the features and a quantitative outcome. We first consider the case
where meta feature matrix Z consists of indicator columns corresponding to grouping of genes
into (not necessarily disjoint) pathways. Specifically, we generate a binary matrix Zp×6 such that
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each column has on average 20% nonzero entries where we vary p = 400, 1,000, and 2,000. We
then set γ = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) Conditional on Z and γ , we generate the subject-level
features by sampling from a multivariate normal distribution β ∼ Np(Zγ , σ 2

βIp). We determined
how informative the meta features are for the effect sizes of β by defining the signal-to-noise
ratio (SNRγ ) as

SNRγ = γ T 
Zγ

σ 2
β

,

where 
Z is the empirical covariance matrix of Z and solving for σ 2
β . Finally, we generated

the continuous outcome y|X, β ∼ Nn(Xβ, σ 2
y In), where X ∼ Nn(0, 
X), with an autoregressive

correlation structure 
X = (ρ
|i−j |
X )ij , with μ0 = 0.2, ρX = 0.5, and σy = 1. To measure and

compare predictive performance, we compute the test R2 based on a test set of n = 1,000.
In general, we see that two-level ridge regression has better prediction performance when

compared to its competitors (Figure 1). As expected, all methods suffer in performance as the
number of features increases (Panel A) and improve when the sample size increases (Panel B).
In the “small data” scenario (n = 1000, p = 400, q = 6), we observe that fwelnet performs fairly
well. However, its performance is comparable to the standard LASSO across several scenarios.
This is unsurprising since the outcome is generated assuming that the meta features affect the
mean of the subject-level features, not the variance. In both Panels A and B, we set the meta fea-
tures to be moderately informative (SNRγ = 1). We evaluate the impact of the informativeness
of the meta features by comparing the three methods across a range of SNRγ (Panel C). With
the exception of the random forest algorithm, we see that two-level ridge regression performs
similarly to the standard and augmented ridge regression and to fwelnet when the meta features
are virtually uninformative (SNRγ = 0.001) and drastically outperforms them as informative-
ness increases. We also notice a substantial improvement in the prediction performance of the
random forest algorithm as informativeness increases.

3.2 Continuous Z

Next we simulated data where the meta features are continuous, by drawing Z from a multivari-
ate normal density. We let γ = 0.01 ∗ (150, 025, 325, 125, 0q−150) and generate Zp×q ∼ Nq(0, 
Z),
where 
Z = (ρ

|i−j |
Z )ij . Similar to Section 3.1, we then simulate β ∼ Np(Zγ , σ 2

βIp) and y|X, β ∼
Nn(μ0 + Xβ, σ 2

y In), where X ∼ Np(0, 
X). We fix μ0 = 0.5, ρX = 0.5, ρZ = 0, and σy = 1. We
compare the performance of all five methods across different values of n, p, q and SNRγ .

Similar to Section 3.1, we consistently see a gain in prediction performance with the two-
level ridge regression when compared to its competitors (Figure 2). When the feature dimension
p increases, there is a degradation in prediction performance across all methods; however, in-
corporating the meta features in a hierarchical framework outperforms both the standard and
augmented ridge methods. The trend was also consistent across varied σy , ρX and ρZ (see Fig-
ure S1 in the Online Supplementary Materials).

In addition, we also vary the number of meta features in the model (Figure 2 Panel B).
Note that as the number of meta features increases, the predictive performance of two-level
ridge regression decreases while the performance of standard and augmented ridge regression
remain unchanged. The degradation in prediction performance for the two-level ridge regression
is expected since we are only increasing the number of noise variables in Z. Surprisingly, the
random forest algorithm performs poorly in all scenarios.
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Figure 1: Prediction performance, as measured by test R2, of standard, augmented, and two-level
ridge regression, feature-weighted elastic net (ridge), and random forest by number of features
(Panel A), sample size (Panel B), and signal-to-noise ratio (Panel C). In Panel A we fix n = 400
and SNR = 1. In Panel B we fix p = 2,000 and SNR = 1. In Panel C we fix p = 2,000 and
n = 400. Results are averaged over 500 Monte Carlo replications. (See Section 3.1 for more
information).

3.3 Binary Outcomes

To illustrate two-level ridge regression in a GLM framework, we also compared the performance
of all methods under a binary outcome by extending the hierarchical model to logistic regression.
The data generating process is similar to Section 3.2 however y|X, β ∼ Bernoulli{π(μ0 + Xβ)},



Two-Level Ridge Regression 43

Figure 2: Prediction performance, as measured by test R2, of standard, augmented, and two-level
ridge regression, feature-weighted elastic net (ridge), and random forest by number of features
(Panel A), number of meta features (Panel B), sample size (Panel C), and signal-to-noise ratio
(Panel D). In Panel A we fix n = 400, q = 150 and SNR = 1. In Panel B we fix p = 2,000,
n = 400, and SNR = 1. In Panel C we fix p = 2,000, SNR = 1 and q = 150. In Panel D we fix
p = 2,000, q = 150, and n = 400. Results are averaged over 500 Monte Carlo replications. (See
Section 3.2 for more information).

where π(·) = exp(·)/{1 + exp(·)}. Again, we fixed μ0 = 0.5, ρX = 0.5, and ρZ = 0. The true
predictive performance was determined as the area under the curve (AUC) for the test set
of 1,000 observations. The results are similar to those observed in the continuous case (Fig-
ure 3).
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Figure 3: Prediction performance, as measured by test AUC, of standard, augmented, and two-
level ridge regression by number of features (Panel A), number of meta features (Panel B),
sample size (Panel C), and signal-to-noise ratio (Panel D). In Panel A we fix n = 400, q = 150
and SNR = 1. In Panel B we fix p = 2,000, n = 400, and SNR = 1. In Panel C we fix p = 2,000,
SNR = 1 and q = 150. In Panel D we fix p = 2,000, q = 150, and n = 400. Results are averaged
over 500 Monte Carlo replications. (See Section 3.3 for more information).

4 Real Data Applications

4.1 Epigenetic Clock
Several studies have demonstrated that DNA methylation levels have strong effects on aging (see
e.g., Berdyshev et al., 1967; Rakyan et al., 2010; Teschendorff et al., 2010; Koch and Wagner,
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2011; Horvath et al., 2012; Bell et al., 2012). Using DNA methylation levels, epigenetic clocks (see
e.g., Hannum et al., 2013; Horvath, 2013) attempt to accurately predict chronological age, with
the goal of identifying molecular biomarkers of aging that can be used to study age acceleration
and the relationship of methylation and disease (see e.g., Horvath, 2013; Horvath et al., 2015;
Levine et al., 2015; Horvath et al., 2016; Quach et al., 2017). High-dimensional regularization
techniques have been used to develop these tools. We evaluate the prediction performance of
all three ridge regression models (standard, augmented, and two level) on a publicly-available
dataset consisting of n = 656 individuals with methylation measured on the Infinium 450K
platform. The size and structure of the data made competing methods inoperable. Both xrnet
and glmnet permit sparse data structures which allowed us to analyze the data and compared
to performance of two-level ridge regression to standard and augmented ridge regression.

While the total number of CpG sites available was 473,034; we reduced the dimensionality
of the methylation data by only including the top 250,000 most variable probes. Further, we
mapped the methylation probes to the closest gene in terms of physical distance. As meta
features of interest we generated the indicators for whether a probe maps to a gene. Thus Z,
our matrix of external information, consists of q columns that represent the q unique genes (the
jth column of Z codes all probes that map to gene j as one and zero otherwise). After reducing
the number of genes in the external data, by only considering genes that have at least 10 probes
mapped to them, the resulting Z consists of 6,766 unique genes with an average of 33 probes per
gene. In our analysis, we normalize Z by dividing each column by its sum (i.e. number of probes
mapping to the corresponding gene). With this standardization the meta-feature estimate, γ̂j

represents the average effect of all probes that map to gene j (j = 1, . . . , q) on chronological
age. Of note is that both the features (methylation probes) and meta features (gene indicators)
are high-dimensional.

We generated 50 training (80%) – test (20%) pairs by randomly splitting the 656 obser-
vations. For all three models, 10-fold cross validation is used to tune the penalty parameter(s)
in each training data set. Similar to the simulation study, we assessed prediction performance
using the test R2 (averaged across all 50 test sets).

The two-level ridge regression significantly improved prediction performance over standard
and augmented ridge (Figure 4). The mean test R2 for standard, augmented, and two-level ridge
regression were 0.71, 0.71 and 0.75, respectively, representing a 5.6% improvement in prediction
performance when modeling both the methylation probes and their gene groupings hierarchi-
cally. By contrast, augmenting the original design matrix by XZ, i.e. by the linear combinations
of the meta features according to Z, did not improve prediction. Our analysis shows that hier-
archical regularization, by adequately leveraging external information (i.e., groupings based on
genes), can lead to improved performance in predicting chronological age compared to standard
approaches for regularization.

4.2 Breast Cancer Mortality

We applied the proposed method on a data set of breast cancer tumors from the Molecu-
lar Taxonomy of Breast Cancer International Consortium (METABRIC) study available from
the European Genome-Phenome Archive (https://ega-archive.org/studies/EGAS00000000083)
(Curtis et al., 2012). The data includes cDNA microarray profiling of close to two thousand
breast cancer tumor specimens processed on the Illumina HT-12 v3 platform. The METABRIC
study was used in an open-source competition (DREAM Breast Cancer Prognosis Challenge)
to improve prediction of survival based on clinical characteristics, gene expression levels, and

https://ega-archive.org/studies/EGAS00000000083
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Figure 4: Epigenetic clock: boxplot of test R2 from 50 training (80%) – test (20%) pairs by
randomly splitting the 656 observations. Ten-fold cross validation was used to estimate the
tuning parameter(s) for each method. (See Section 4.1 for more information).

copy number variation. The primary tumors were originally divided into a discovery set of 997
samples and a validation set of 995 samples. In our analysis, we used the discovery set as the
training set to fit the model and the validation set as the test set to evaluate the model per-
formance in prediction. The METABRIC dataset also contains the patients’ long-term clinical
outcomes and pathological variables (e.g., age at diagnosis, number of positive lymph nodes).
Due to significant heterogeneity in expression between ER+/HER2-, ER-, and HER2+ tumors,
we restrict our analysis to the subset of patients who were ER+ and HER2-. Furthermore, we
dichotomized the patients’ survival time at 5 years and used this binary variable which indicates
the 5-year survival of breast cancer as the outcome to predict. The sample sizes, after subsetting
to ER+/HER2- patients not censored within 5 years, for the training and test datasets were 594
and 563, respectively and had a mortality (event) rate of 27% and 24%, respectively.

We use the gene expression data, consisting of 29, 477 probes (after pre-filtering), as our
primary features in the analysis. A previous study by Cheng et al. (2013), developed a model
made of four gene signatures (CIN, MES, LYM, and FGD3-SUSD3), referred to as “attractor
metagenes”, that captured molecular events known to be associated with clinical outcomes
in many cancers. We generated four meta features by grouping probes that are in the same
metagene. In the resulting 29, 477 × 4 matrix, the jth column codes all probes that are part of
the jth metagene as one and zero otherwise. The CIN, MES, LYM, and FGD-SUSD3 metagenes
each consist of 61, 70, 69, and 2 genes, respectively. We normalized each column of the meta
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Table 1: METABRIC study: comparison of the Area under the Curve from a test set (test AUC)
of n = 563 between standard, augmented, and two-level ridge regression. Model estimation was
performed on a training set of n = 594. Ten-fold cross validation was used to estimate the tuning
parameter(s) for each method. (See Section 4.2 for more information).

Method Test AUC

Two-Level Ridge 0.69
Ridge 0.67

Aug. Ridge 0.67
fwelnet 0.67

Random Forest 0.67
xtune 0.64

feature matrix by the number of probes so that each column summed to one.
In addition to comparing two-level ridge regression to both standard and augmented ridge

regression, we also implemented the following competing methods: xtune (Zeng et al., 2020),
feature-weighted elastic net (fwelnet, Tay et al., 2021) and random forest (Breiman, 2001). The
tuning parameter(s) for the five regularized models (two-level ridge, standard ridge, augmented
ridge, xtune, fwelnet) were tuned using 10-fold cross validation. For comparison purposes we
set the elastic net tuning parameter to 0 for fwelnet, which corresponds to a ridge penalty.
A stratification scheme was used to generate the folds due to the class imbalance of cases
and controls. Similar to our methylation example, the two-level ridge regression improves class
prediction over its competitors (Table 1).

5 Discussion
In this paper, we proposed a two-level hierarchical ridge regression model that can directly
incorporate meta features into the estimation. We show that the two-level ridge regression can
be reformulated into a single-level ridge regression with two tuning parameters, enabling an
efficient model coordinate descent fitting algorithm that can handle large numbers of features
and meta-features. We provide closed-form solutions under simple scenarios to gain intuition on
how the incorporation of meta features impact the estimation of the regression coefficients by
borrowing information.

Our simulation results demonstrate that, in general, two-level ridge regression outperforms
its competitors when relevant meta features are available. Importantly, in the presence of non-
informative meta features, two-level ridge regression has comparable to only slightly worse per-
formance compared to standard ridge regression without meta features. Thus, there is essentially
“no cost”, in terms of prediction performance, when incorporating a set of meta features a re-
searcher deems relevant into the model building process. We also illustrate the advantage of our
proposed model in two real data applications where we observe improved prediction performance
for both continuous and binary outcomes.

We envision several future paths to further improve two-level regularization. First, our
current method focuses on incorporating an �2 penalty for both the subject-level features and
meta features. In general, �2 regularization has been criticized for not being able to perform
variable selection (i.e., identifying important predictor variables that are associated with the
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response of interest), since the ridge penalty shrinks the regression coefficient estimate toward
zero, but not exactly to zero. We are currently investigating ways to allow for more general
penalties (e.g., LASSO, elastic net, etc.) for both subject-level and meta-feature regularization
to allow for variable selection. Second, our real data application focused on five-year mortality
as the outcome of interest. While this was done to illustrate the performance of two-level ridge
regression for binary outcomes, it would be preferred to model the survival time directly. The Cox
(1972) model is a well-appreciated approach to model feature effects on survival (through the
conditional hazard function). We are currently developing the two-level regression with a range
of penalties, including lasso and elastic net in addition to ridge, as well as a two-level regularized
Cox model, which involves replacing the log-likelihood in (9) with the Cox (1975) log-partial
likelihood. We expect the implementations of these methods within the two-level regularization
framework to provide a wide range of analytical options for integrating prior information into
high-dimensional genomic studies.
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