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S1 Hierarchical Formulation

The ridge regression estimator coincides with the Bayesian MAP (Mode A Pos-
teriori) estimator when the prior for β|σ2 ∼ N (0, σ2τ−1Ip), where Ip is a p× p
identity matrix and τ > 0. For fixed τ1 > 0 and τ2 > 0, we can formulate the
two-level ridge regression model similarly with

y|X,Z,β,γ, σ2 ∼ Nn(Xβ, σ2)

β|γ, σ2 ∼ Np(Zγ, σ2τ−11 Ip)

γ|σ2 ∼ Nq(0, σ2τ−12 Iq)

σ2 ∼ π(σ2),

for some scale-invariant prior π(σ2).

S2 Derivations

S2.1 Closed-Form Solution Under Orthogonal X and Z

Assume that both X and Z are orthogonal. Then

(X̃T X̃ + Λ) =

[
Ip + Λ1 Z
ZT Iq + Λ2

]
=

[
(1 + λ1)Ip Z

ZT (1 + λ2)Iq

]
.

Now

(X̃T X̃ + Λ)−1 =

[
1

1+λ1
Ip + 1

{(1+λ1)(1+λ2)−1}(1+λ1)
ZZT − 1

(1+λ1)(1+λ2)−1Z

− 1
(1+λ1)(1+λ2)−1Z

T 1+λ1

(1+λ1)(1+λ2)−1Iq

]
.

Therefore

θ̂ = (X̃T X̃ + Λ)−1X̃Ty

=

[
1

1+λ1
Ip + 1

{(1+λ1)(1+λ2)−1}(1+λ1)
ZZT − 1

(1+λ1)(1+λ2)−1Z

− 1
(1+λ1)(1+λ2)−1Z

T 1+λ1

(1+λ1)(1+λ2)−1Iq

](
XTy

ZTXTy

)

=

(
1

1+λ1
XTy + 1

{(1+λ1)(1+λ2)−1}(1+λ1)
ZZTXTy − 1

(1+λ1)(1+λ2)−1ZZ
TXTy

− 1
(1+λ1)(1+λ2)−1Z

TXTy + 1+λ1

(1+λ1)(1+λ2)−1Z
TXTy

)

=

(
β̂ridge + 1

(1+λ1)(1+λ2)−1ZZ
T β̂ridge − (1+λ1)

(1+λ1)(1+λ2)−1ZZ
T β̂ridge

− (1+λ1)
(1+λ1)(1+λ2)−1Z

T β̂ridge + (1+λ1)
2

(1+λ1)(1+λ2)−1Z
T β̂ridge

)
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Now since φ = β − Zγ,

β̂ = φ̂ + Zγ̂ = β̂ridge + 1−2(1+λ1)+(1+λ1)
2

(1+λ1)(1+λ2)−1 ZZT β̂ridge

=

(
Ip +

λ21
(1 + λ1)(1 + λ2)− 1

ZZT
)
β̂ridge

=

(
Ip +

λ21
λ1λ2 + λ1 + λ2

ZZT
)
β̂ridge
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S3 Cyclic Coordinate Descent Algorithm for Two-
Level Ridge Regression

Recall θ = (φ,γ) and X̃ = [X,XZ]. Optimization via cyclic coordinate descent
is straightforward. We start by setting all p + q variables to some initial value
(e.g., θ(0) = 0, where the superscript identifies the iteration of the algorithm.
At the (m+ 1)-th iteration, a series of one-dimensional updates are performed

until the algorithm cycles through all the variables, returning θ̂(m+1). The
cycling process is repeated until some convergence criterion l(θ̂(m), θ̂(m+1)) < δ
for some δ > 0 is met (e.g., l(a, b) = ||a− b||22).

S3.1 Ordinary Least Squares

For the ordinary least squares model, one can show that the one-dimensional
update for the j-th variable at the (m+ 1)-th iteration is

θ̂
(m+1)
j ←

x̃Tj

(
y − X̃−j θ̂(m)

−j

)
x̃Tj x̃j + λj

, (1)

where x̃j is the j-th column of X̃, X̃−j is X̃ without the j-th column, θ̂
(m)
−j is

θ̂(m) without the j-th element, and λj = λ1 if j ∈ {1, . . . , p} and equal to λ2 if
j ∈ {p+ 1, . . . , p+ q}.

S3.2 Generalized linear models

Letting ∇l(θ) = ∂l(θ)/∂θ = X̃Tu and ∇2l(θ) = ∂2l(θ)/∂θ∂θT = X̃TWX̃,
we approximate the log-likelihood based on a Taylor series expansion about the
current iteration θ(m):

l(θ) ≈ 1

2
(ỹ − X̃θ)TW (ỹ − X̃θ),

where ỹ is the working response vector ỹ = Xθ(m) + W−1u. Note here that
u, W , and ỹ are dependent on θ(m). We can use cyclic coordinate descent to
minimize (11). For the two-level ridge regression for GLMs, the one-dimensional
update for the jth variable at the (m+ 1)-th iteration is

θ̂
(m+1)
j ← rj

vj + λj
, (2)

where vj is the jth diagonal element of V = X̃TWX̃ and rj is the jth element

of r = X̃TWu + V θ(m).

S4 Additional Figures
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Figure S1: Prediction performance, as measured by test R2, of standard, aug-
mented, and two-level ridge regression by ρX (Panel A), ρZ (Panel B), and σy
(Panel C). In all panels we fix n = 400, p = 2, 000 and q = 150. In Panel A
we fix ρZ = 0 and σy = 1. In Panel B we fix ρX = 0.5 and σy = 1. In Panel
C we fix ρX = 0.5 and ρZ = 0. Results are averaged over 500 Monte Carlo
replications. (See Section 3.2)
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