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Abstract

A standard competing risks set-up requires both time to event and cause of failure to be fully
observable for all subjects. However, in application, the cause of failure may not always be
observable, thus impeding the risk assessment. In some extreme cases, none of the causes of
failure is observable. In the case of a recurrent episode of Plasmodium vivax malaria following
treatment, the patient may have suffered a relapse from a previous infection or acquired a new
infection from a mosquito bite. In this case, the time to relapse cannot be modeled when a
competing risk, a new infection, is present. The efficacy of a treatment for preventing relapse
from a previous infection may be underestimated when the true cause of infection cannot be
classified. In this paper, we developed a novel method for classifying the latent cause of failure
under a competing risks set-up, which uses not only time to event information but also transition
likelihoods between covariates at the baseline and at the time of event occurrence. Our classifier
shows superior performance under various scenarios in simulation experiments. The method was
applied to Plasmodium vivax infection data to classify recurrent infections of malaria.

Keywords malaria relapse; Markov transition model; quadratic approximation; two-stage
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1 Introduction

1.1 Plasmodium vivax Malaria Infection

Plasmodium vivax, in short, P. vivax, is the most widespread human malaria (Howes et al., 2016).
According to the 2019 World Malaria Report released by World Health Organization (WHO),
53% of the global P. vivax burden is in the South-East Asia Region, and 75% of malaria cases
in the Region of the Americas are resulted from P. vivax. Due to the dormant liver stage of
P. vivax, hypnozoites may reactivate and cause another infection weeks to months after the
initial infection (Chu and White, 2016). Relapse due to inadequately treated blood stages is less
common and is referred to as treatment failure or recrudescence. Therefore, when first-line anti-
malarials are used, relapse is usually attributed to hypnozoite-induced relapse. P. vivax relapses
are an important source of morbidity and contribute to malaria mortality (Dini et al. 2020,
Robinson et al. 2015, Baird 2013). However, the fact that individuals can also become reinfected
due to a new mosquito bite makes it difficult to study the anti-relapse efficacy of treatment.
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Previous studies have concluded that even when the level of transmission is relatively low, there
is a high genetic diversity in P. vivax parasites within patient populations in Cambodia (Lin
et al., 2013, Friedrich et al., 2016). Such genetic diversity, often resulting in multiple parasites
haplotypes present in a single infection, provides an opportunity for researchers to distinguish
relapse from a recurrent infection by examining the overlap of haplotypes between infections
and the appearance of haplotypes associated with relapse.

Lin et al. (2015) applied targeted deep sequencing to 108 isolates collected from 78 Cam-
bodian volunteers with P. vivax infection (Lon et al., 2014). Subjects in the study were treated
initially with dihydroartemisinin-piperaquine (DP), an effective drug to treat the blood stages of
P. vivax, all but precluding treatment failure due to recrudescence. To detect recurrent infection,
blood smears of study subjects were taken firstly at baseline, then weekly for six weeks following
treatment, then monthly thereafter. At the end of the study, 23 of the 78 subjects experienced
recurrent infections, with a median of 68 days in the time to recurrence. Subjects’ participation
in the study ranged from 2 to 6 months, with a median of 4 months follow-up. Since treatment
failure with DP is unlikely, these recurrences most likely represent relapse or reinfection. In fact,
of the 23 subjects with recurrent infection, five subjects had a second recurrent infection, and
one subject had a third recurrent infection. To simplify the analysis, we only consider the first
recurrent infection among those 23 subjects. Figure 1 shows the Kaplan-Meier curve for the first
recurrent infection along with the risk table showing the number of subjects at risk over ten-day
intervals. The horizontal axis in the plot indicates days from baseline, and the vertical axis is the
estimated survival probability. The solid line is the step function and shaded area is associated
95% point-wise confidence interval of the step function. The longest follow-up time is 180 days,
and 70% (55 subjects) were disease-free at the end of the follow-up period. A subject-by-subject
time to first infection plot is given in the Supplementary Materials.

P. vivax exhibits great genetic diversity, surpassing that seen in P. falciparum (Neafsey
et al., 2012). Parobek et al. (2014) identified a highly variable 117-base pair (bp) segment of the P.
vivax merozoite surface protein 1 gene (pvmsp1 ) within the 33-kDa subunit of the 42-kDa region,
which exhibits great nucleotide diversity. After extracting DNA from filter paper blood spots,
Lin et al. (2015) applied deep sequencing to this region and used a bioinformatics pipeline called
SeekDeep (Hathaway et al., 2018) to determine different haplotypes of pvmsp1 defined by at least
a single nucleotide difference between haplotypes. They identified 67 unique pvmsp1 haplotypes
across 108 isolates from either initial infection or recurrent infections, with each patient isolate
harboring, on average, three different haplotypes. They found nine haplotypes that are common
and appeared in at least 10% of individuals. 46 rare haplotypes appeared in only one isolate, with
some later attributed to sequencing error. Only 41 unique haplotypes were identified in those
subjects with recurrent infection. Figure 2 shows a heatmap that indicates the presence/absence
of these 41 haplotypes (genetic variants) in the initial and recurrent infections from those 23
subjects. Each column represents one unique haplotype, and each row represents one subject
with an identification number. The subjects were sorted based on their time to the first recurrent
infection, with the shortest time at the top and the longest time at the bottom. Pink cells indicate
the presence of the haplotype in the initial infection but absence in the recurrent infection. Blue
cells show the absence of the haplotype in the initial infection but presence in the recurrent
infection. Purple cells show haplotypes that were present in both infections. Interestingly, only
16 subjects had overlapping haplotypes between initial and recurrent infections. Two subjects
with the shortest time to recurrent infection did not have any shared haplotypes.
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Figure 1: Kaplan-Meier curve for the first recurrent infection.

1.2 Competing Risks with Unknown Cause of Failure

It is commonly seen in biomedical research that the occurrence of an event during the follow-up
period can be attributed to one of multiple causes. Data of this type is a standard competing risks
set-up, where one event occurs per subject, and the failure type is one of many possible causes.
Usually, both time to event and the cause of failure are observable. However, in some cases, the
cause of failure may be unknown or missing. For example, in P. vivax malaria research, subjects
who live in endemic areas suffer recurrent infections which can arise from (1) mosquito bites
representing new infection, (2) relapse from latent infection in the liver, or (3) recrudescence due
to treatment failure. The cause of recurrent infection is unknown or indeterminable in this case,
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Figure 2: Heatmap for presence/absence of haplotypes.

thus impeding the efficacy assessment of anti-relapse treatment. Developing a reliable method
to distinguish new infections from relapse is critical.

The problem of missing cause of failure in competing risks data has been given much
attention since Dinse (1982). There are two possible approaches for estimating competing risks
data with missing cause of failure when the cause is missing at random (Rubin, 1976): (1)
complete-case analysis, utilizing only complete observations, e.g., Effraimidis and Dahl (2014),
or, (2) construct a regression model for the missing cause using all observations, including
those with missing cause of failure. In the second approach, one can use a global parametric
model (Lu and Tsiatis, 2001), a semi-parametric framework (Goetghebeur and Ryan, 1995) or a
nonparametric regression method (Gouskova et al., 2017) to estimate the cause-specific hazard
functions. A similar problem is also considered in Sun and Gilbert (2012) and Juraska and
Gilbert (2016) when considering the competing cause as a mark for the mark-specific hazard
function. A doubly robust estimator is proposed in these papers when the mark variable is
possibly missing. However, these approaches require at least some of the observations to have
complete records. They cannot be applied to the problem in P. vivax malaria research, where
the cause of failure is unknown for every subject.

When analyzing the causes of P. vivax malaria recurrence from a competing risks perspec-
tive, it is natural to assume that the time to recurrent infection is associated with baseline
covariates (e.g., genetic variants or haplotypes) collected at the initial infection. We assume that
each cause has a distinct cause-specific hazard function conditional on the baseline covariates,
enabling us to build an initial cause classifier that can distinguish the cause based on the time
to recurrence information. Subsequently, by observing changes in the values of genetic variants
between initial and recurrent infections, one can build another classifier that can distinguish the
cause of failure, as the changes are driven by the latent cause. Thus, one can update the initial
classifier by utilizing the information contained in the transition of covariates between initial



Dynamic Classification of Plasmodium vivax Malaria Recurrence 55

infection and recurrent infection. To study the transition mechanism, Lin et al. (2020) proposed
an approach that estimates the transition likelihoods using both shared and non-shared genetic
variants to improve classification accuracy when the cause of recurrent infection is unknown. Bu-
reau et al. (2003) utilized a continuous-time hidden Markov chain to obtain the true transition
probabilities between states when the disease status is possibly misclassified. However, Lin et al.
(2020) did not consider the time to recurrent infection, and Bureau et al. (2003) required the
disease status to be fully observed but subject to misclassification. Neither of these approaches
is ideal for our malaria data, and can not be applied to the classification problem when dealing
with competing risks data with missing cause of failure.

In the classification problem with unknown cause of malaria recurrence, Taylor et al. (2019)
proposed a Bayesian approach that models the time to recurrent infection for prior classification
probability and then computes the posterior probability based on an assumed genetic model with
a strong prior assumption. Ferreira MU, de Sousa TN et al. (2020) treated relapse (combined
with recrudescence) and new infection as competing risks assuming an exponential distribution
with a time-constant hazard for both causes. In contrast, we analyze the time to event data under
a competing risks set-up without specifying any temporal pattern of the hazard function. We
generalize the idea in Lin et al. (2020) to incorporate the transition likelihoods between covariates
to classify the unknown cause of infection. By considering the time to event information and
transition likelihoods at the same time, we utilize more information from the data and thus lead
to a more accurate classifier. Our method allows the causes of failure to be completely missing
and can be applied to P. vivax malaria data (Lin et al., 2015). The classification procedure
includes two main steps. First, we utilize the time to event and baseline covariates information
to obtain an initial classifier. Then, we update the classification probability obtained in the
first step using transition likelihoods between covariates to obtain the second classifier, whose
performance is better than the first one. The challenges of building these classifiers are that the
covariates are high-dimensional, and they can be of different kinds of variables. To resolve the
first challenge, we propose a penalized maximum partial likelihood estimator and use an efficient
proximal gradient descent algorithm to obtain the estimator. To resolve the second challenge,
we propose a general transition likelihood that can incorporate different kinds of variables.

The rest of this paper is organized as follows. In Section 2, we describe the method of
modeling competing risk data under a proportional hazards model with baseline covariates. In
Section 3, we introduce general formulae for the two classifiers. An algorithm for the computation
of parameters needed for constructing the classifiers is laid out in Section 4. We carry out
comprehensive simulation experiments under various scenarios to evaluate the performance of
the proposed classifiers in Section 5. Finally, we apply the developed method to the P. vivax
malaria data and show the classification result in Section 6. We summarize our current approach
and discuss its extensions in Section 7.

2 Model and Estimation
In a general setting of competing risks, let T ∗

i be the failure time and εi ∈ {1, 2} be the cause
of failure for subject i. We consider only two causes of failure since this is the most general
setting of competing risks application. If there are more than two causes, one may combine
causes other than the primary interest into one category and format the model with two causes
of failure. To model the time to failure when competing risks are presented, we consider a
cause-specific hazard function for cause k, (k = 1, 2), defined by: λik(t) = limdt→0 P(t � T ∗

i <
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t +dt, εi = k|T ∗
i � t)/dt . With Xi = (Xi1, . . . , XiJ )′ being the J -dimensional vector of covariates

at the baseline, we consider a proportional hazards model for the cause-specific hazard function,
defined by λik(t;β) = λ0k(t) exp(βk

′Xi), where λ0k(t) is the baseline hazard function for cause k,
βk = (βk1, . . . , βkJ )′ is the vector of regression coefficients, and β = (β ′

1, β
′
2)

′ (Kalbfleisch and
Prentice, 2002, Section 8.2).

When the causes of failure are fully observed and time to failure is right-censored, one
observes Ti = min(T ∗

i , Ci), δi = I (Ti � Ci), and failure type εi when δi = 1, where I (·) is the
indicator function. Assume {Ti, δi, δiεi, Xi} are i.i.d. for i = 1, . . . , n. Under the fully observed
data, we estimate β using the partial likelihood function

n∏
i=1

2∏
k=1

{
exp(βk

′Xi )∑
l∈Ri

exp(βk
′Xl)

}δik

, (1)

where δik = δiI (εi = k) indicates whether the failure of cause k occurs, and Ri ≡ {l : Tl � Ti} is a
set of subjects who are at risk at Ti . However, in our case, neither cause was observed. Thus, the
partial likelihood function above is not feasible since δik is not observable. When neither cause is
observed, the available data is {Ti, δi, Xi} for i = 1, . . . , n, which is identical to the conventional
right-censoring time to event data. The partial likelihood function for β is

n∏
i=1

{
λi(Ti)∑

�∈Ri
λ�(Ti)

}δi

, (2)

where λi(t) is the overall hazard function. Assuming only one event can occur at time t + dt ,
one writes the overall hazard function as λi(t) = ∑2

k=1 λik(t) since P(t � T ∗
i < t + dt |T ∗

i � t) =∑2
k=1 P(t � T ∗

i < t + dt, εi = k|T ∗
i � t). Hence, (2) becomes

n∏
i=1

{ ∑2
k=1 λ0k(Ti) exp(βk

′Xi )∑
�∈Ri

∑2
k=1 λ0k(Ti) exp(βk

′X�)

}δi

,

where the baseline hazard function λ0k(t) cannot be completely unspecified for k = 1, 2, unlike
the partial likelihood function in (1).

The primary interest of the competing risks model in our application is written as

λi1(t) = λ0(t) exp(α), (3)
λi2(t) = λ0(t) exp(β ′Xi). (4)

This model fits naturally with the P. vivax malaria data we intend to analyze. Reinfection is
considered as the first cause of failure (εi = 1) that randomly occurs from the environment
following a time-to-event distribution with no association with the baseline covariates Xi . We
assume its hazard λi1(t) can be written as the baseline hazard λ0(t) attenuated by a constant
factor exp(α) as shown in model (3). The hazard function λi1(t) is considered as the background
hazard. For the P. vivax malaria study, λi1(t) represents a random mosquito bite from the
living or working environment. Relapse is considered the second cause of failure (εi = 2) that
is associated with the baseline covariates Xi in model (4), which follows a proportional hazards
model. These two causes of failure compete to occur, and only one of the causes, either relapse
or reinfection, would occur if the event time is not censored. Under models (3) and (4), both
hazard functions share the same baseline hazard λ0(t). The ratio of λi1(t) and λi2(t) only depends
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on baseline covariates Xi , and can be considered as a semiparametric two-sample density ratio
model promoted by Qin (1998). The baseline hazard λ0(t) here needs no specification, and can be
any function of time. It can also be a function of covariates, under the condition that covariates
included in λ0(t) are independent of those in Xi .

Without any specification of λ0(t), one can use the partial likelihood function

PL(θ) =
n∏

i=1

[
exp(α) + exp(β ′Xi )∑

�∈Ri

{
exp(α) + exp(β ′X�)

}]δi

, (5)

to estimate θ = (α, β ′)′, where α and β are unknown parameters of interest. However, the
dimensionality of θ is a concern in our case since genetic sequencing produces a large number of
haplotypes that are considered as covariates in our model. In Section 4, we introduce a penalized
maximum partial likelihood method to estimate the high-dimensional θ .

In addition, we discuss an approach to verify the specification of models (3) and (4) for
the P. vivax malaria data. The model diagnosis can be explored by martingale residuals defined
by M̂i = δi − �̂i(Ti) for subjects i = 1, . . . , n, where �̂i(t) is the estimated cumulative hazard
function for �i(t) = �0(t){exp(α) + exp(β ′Xi )}. The estimation involves not only parameter
estimates for θ = (α, β ′)′, but also baseline hazard estimate for �0(t) = ∫ t

0 λ0(s)ds. One can use
a Breslow-type estimator �̂0(t) = ∑n

i=1 I (Ti � t)δi/
∑

j∈Ri
{exp(̂α) + exp(β̂

′
Xj )} for �0(t) and

calculate a test statistic T (x) = ∑n
i=1 I (β̂

′
Xi � x)M̂i for a lack-of-fit test over the follow-up

time. One can construct a confidence band for T (x) via Monte-Carlo simulation, as proposed in
Lin et al. (1993). Model diagnosis results for the P. vivax malaria data are given in Section 6.

3 Classification
We propose two classifiers to classify the event to one of the two causes. The first classifier uses
the baseline information and partial likelihood function (5) to obtain the initial estimate of the
probability that the event is of cause k. The second classifier updates the first classifier using
transition likelihoods under different causes. We expect that the second classifier will perform
better when the transition of covariates is informative since more information is involved. If the
transition of covariates is not informative of the cause of failure, the second classifier improves
little from the first classifier.

3.1 Based on Baseline Information
Let N∗

i (t) be the number of events up to time t , and dN∗
i (t) = N∗

i (t + dt) − N∗
i (t) be the

event indicator in the next instantaneous time dt after t . The observed counting process is
Ni(t) = Yi(t)N

∗
i (t), where Yi(t) = I (Ti � t) indicates whether subject i is at risk at time t . Let

ξ
(0)
ik (t) = P(εi = k|dNi(t) = 1, Xi = xi) be the probability of cause k, given that an event occurs

in [t, t + dt) and the realization of baseline covariate is Xi = xi . We have: ξ
(0)
ik (t) = P(εi =

k|dNi(t) = 1, Xi = xi ) = λik(t; θ)/λi(t; θ). If an event occurs at Ti = ti for subject i, ξ
(0)
ik (ti) can

be estimated by

ξ̂
(0)
i1 (ti) = λi1(Ti; θ̂)

λi(Ti; θ̂)
= λ0(Ti) exp(̂α)

λ0(Ti){exp(̂α) + exp(β̂
′
xi)}

= exp(̂α)

exp(̂α) + exp(β̂
′
xi )

, (6)

ξ̂
(0)
i2 (ti) = λi2(Ti; θ̂)

λi(Ti; θ̂)
= λ0(Ti) exp(β̂

′
xi )

λ0(Ti){exp(̂α) + exp(β̂
′
xi)}

= exp(β̂
′
xi)

exp(̂α) + exp(β̂
′
xi )

, (7)
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where θ̂ is the maximum partial likelihood estimator of θ in (5). Since formulae (6) and (7) are
independent of ti , we write ξ̂

(0)
i1 and ξ̂

(0)
i2 in short for ξ̂

(0)
i1 (ti) and ξ̂

(0)
i2 (ti), respectively.

We classify an event to be of cause 2 if ξ̂
(0)
i2 > ξ̂

(0)
i1 and to be of cause 1 otherwise.

3.2 Based on Both Baseline and Event Information
When an event occurs for subject i, we assume that Zi = (Zi1, . . . , ZiJ )′ is collected at the event
time, which is the same set of covariates as baseline covariates Xi . We propose to utilize the
transitions from Xi to Zi to aid the cause classification. Let ξ

(1)
ik (t) = P(εi = k|dNi(t) = 1, Xi =

xi , Zi = zi) be the probability of cause k given realizations of both Xi = xi and Zi = zi . One
can show that

ξ
(1)
ik (t) = f (zi |εi = k, dNi(t) = 1, Xi = xi )P (εi = k|dNi(t) = 1, Xi = xi )∑2

k=1 f (zi |εi = k, dNi(t) = 1, Xi = xi )P (εi = k|dNi(t) = 1, Xi = xi)

= φi(k)ξ
(0)
ik (t)∑2

k=1 φi(k)ξ
(0)
ik (t)

,

where φi(k) = f (zi |εi = k, dNi(t) = 1, Xi = xi) is the conditional density function of Zi given
Xi under cause k. We call φi(k) the conditional transition likelihood of cause k. One can treat
the classification probability ξ

(1)
ik (t) as an updated version of ξ

(0)
ik (t) by the ratio of transition

likelihoods between possible causes since ξ
(1)
ik (t)

ξ
(1)
i� (t)

= φi(k)

φi (�)

ξ
(0)
ik (t)

ξ
(0)
i� (t)

for � = 1, 2 and � �= k. Note that if
the transition likelihoods are informative, φi(1) and φi(2) will be very different from each other
and thus lead to a more accurate classification of ξ

(1)
ik (t).

We assume that the transition likelihood φi(k) follows a parametric model φi(k, γ k), where
γ k is the vector of parameters to be estimated. More details of this parametric model φi(k) follow
in Section 3.3. The distribution of Zi is a mixture of transition likelihoods from two latent causes:

f (zi |dNi(t) = 1, Xi = xi) =
2∑

k=1

f (zi , εi = k|dNi(t) = 1, Xi = xi)

=
2∑

k=1

f (zi |εi = k, dNi(t) = 1, Xi = xi )P (εi = k|dNi(t) = 1, Xi = xi)

=
2∑

k=1

φi(k, γ k)ξ
(0)
ik (t).

With ξ
(0)
ik (t) being estimated by ξ̂

(0)
ik , and let m = ∑n

i=1 δi be the number of subjects having
recurrent infections. We estimate γ k by maximizing a pseudo log-likelihood function:

�(γ 1, γ 2) =
m∑

i=1

log
{ 2∑

k=1

φi(k, γ k)̂ξ
(0)
ik

}
. (8)

Let (γ̂ ′
1, γ̂

′
2)

′ = argmaxγ 1,γ 2
�(γ 1, γ 2) and write ξ̂

(1)
ik in short for ξ̂

(1)
ik (ti). We estimate ξ

(1)
ik by

ξ̂
(1)
ik = φi(k, γ̂ k)̂ξ

(0)
ik∑2

k=1 φi(k, γ̂ k)̂ξ
(0)
ik

. (9)

We classify the event to be of cause 2 if and only if ξ̂
(1)
i2 > ξ̂

(1)
i1 .
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3.3 Transition Likelihood

The transition likelihood plays a critical role in classification. In this section, we discuss a gen-
eralized linear model to model the transition likelihood function φi(k, γ k). Suppose the density
of Zij conditioning on Xij and εi = k has the form of

f (z;ϑijk, ψjk) = exp
{
(zϑijk − b(ϑijk))/a(ψjk) + c(z, ψjk)

}
,

where a(·), b(·) and c(·) are known functions, ϑijk is the natural parameter, and ψjk is the
dispersion parameter (McCullagh and Nelder, 1989). Let g(μijk) = ϑijk be the cause-specific
canonical link function, where μijk = E(Zij |εi = k, dNi(t) = 1, Xij = xij ). We define φi(k, γ k) as:

φi(k, γ k) = f (zi |εi = k, dNi(t) = 1, Xi = xi )

=
J∏

j=1

exp
[{zijg(μijk) − b(g(μijk))}/a(ψjk) + c(zij , ψjk)

]
,

where g(μijk) = qjk0 + xijqjk1, qjk0 is the intercept term and qjk1 is the coefficient of xij .
To improve the classification performance, we want the transition likelihoods to be as infor-

mative as possible. When some external variables contain information about the transition, we
also would like to incorporate them into the transition likelihoods. Let W ij = (Wij1, Wij2, . . . ,

WijL)′ be the L-dimensional vector of these external variables and W i = (W ′
i1, W ′

i2, . . . , W
′
iJ )′.

Then, we have

φi(k, γ k) = f (zi |εi = k, dNi(t) = 1, Xi = xi , W i = wi)

=
J∏

j=1

exp
[{zijg(μijk) − b(g(μijk))}/a(ψjk) + c(zij , ψjk)

]
,

where g(μijk) = qjk0 + xijqjk1 + w′
ijq

∗
jk, wij is a realization of W ij with the corresponding

coefficients q∗
jk = (q∗

jk1, q
∗
jk2, . . . , q

∗
jkL)′. Let qk0 = (q1k0, . . . , qJk0)

′, qk1 = (q1k1, . . . , qJk1)
′, q∗

k =
(q∗

1k
′, . . . , q∗

Jk
′)′ and ψk = (ψ1k, . . . , ψJk)

′. Then, we let γ k = (q ′
k0, q

′
k1, q

∗′
k , ψ ′

k)
′ represent all the

parameters in φi(k, γ k).
Our proposed transition likelihood model manifests differently according to the type of

covariates. We give three examples showing how to construct φi(k, γ k) when the covariates are
binary, normal, or Poisson.

Example 1 (Binary Covariates). When Xij and Zij are binary covariates, we have

g(μijk) = log

(
μijk

1 − μijk

)
= qjk0 + xijqjk1 + w′

ijq
∗
jk,

where the link function g is a logit function. The transitional likelihood for cause k becomes

φi(k, γ k) =
J∏

j=1

μ
zij

ijk

(
1 − μijk

)1−zij
, (10)

where μijk = exp(ϑijk)/{1 + exp(ϑijk)}, ϑijk = qjk0 + xijqjk1 + w′
ijq

∗
jk, γ k = (q ′

k0, q
′
k1, q

∗′
k )′ and

ψk = (1, . . . , 1)′.
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Example 2 (Normal Covariates). When Xij and Zij are normally distributed covariates, we
have

g(μijk) = μijk = qjk0 + xijqjk1 + w′
ijq

∗
jk,

ψjk = Var(Zij |εi = k, dNi(t) = 1, Xij = xij , W ij = wij ),

where the link function g is an identity function. The transitional likelihood for cause k becomes

φi(k, γ k) =
J∏

j=1

1√
2πψjk

exp
{

− (zij − μijk)
2

2ψjk

}
, (11)

where γ k = (q ′
k0, q

′
k1, q

∗′
k , ψ ′

k)
′ and ψk = (ψ1k, . . . , ψJk)

′.

Example 3 (Poisson Covariates). When Xij and Zij are Poisson covariates, we have

g(μijk) = log(μijk) = qjk0 + xijqjk1 + w′
ijq

∗
jk,

where the link function g is a log function. The transitional likelihood for cause k becomes

φi(k, γ k) =
J∏

j=1

μ
zij

ijk exp(−μijk)

zij ! , (12)

where μijk = exp(ϑijk), ϑijk = qjk0 + xijqjk1 + w′
ijq

∗
jk, γ k = (q ′

k0, q
′
k1, q

∗′
k )′ and ψk = (1, . . . , 1)′.

4 Computation
4.1 Estimation of Parameters
Define the negative partial log-likelihood function as

�(θ) = −
n∑

i=1

δi

[
log

{
exp(α) + exp(β ′Xi)

}
− log

{ ∑
l∈Ri

{
exp(α) + exp(β ′Xl)

}}]
. (13)

To estimate θ in (5), we propose to solve a penalized partial likelihood problem

θ̂ = argmin
θ

{
�(θ) + νp(β)

}
, (14)

where ν is a positive tuning parameter and p(β) is a penalty function. When sample size n is
larger than the number of covariates J , (14) is a low-dimensional problem, in which case we set
ν = 0. When n is smaller than J , (14) is a high-dimensional problem, in which case we choose
the optimal ν by minimizing the Bayesian Information Criterion (BIC, Schwarz, 1978), which
is given by BIC = 2�(̂θ) + c · log(n), where c is the number of covariates selected in the model.
Popular choices of p(β) include the L1-penalty (Tibshirani, 1996), the elastic net penalty (Zou
and Hastie, 2005), or some folded concave penalty (Fan and Lv, 2011). In this paper, we choose
the L1-penalty.

To solve (14), we use a proximal gradient algorithm (Parikh and Boyd, 2014). First, we find
a quadratic approximation to �(θ) centered at θ (h), the estimate of θ at the hth iteration of the
algorithm, that majorizes �(θ). That is

�(θ) � �(θ (h)) + (θ − θ (h))′∇�(θ (h)) + 1

2d
||θ − θ (h)||22, (15)
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where d is a scalar that plays the role as a step size, θ (h) = (α(h), β(h)′)′ and the gradient vector
∇�(θ (h)) is given by ∇�(θ (h)) = (∇α�(θ

(h)), ∇β�(θ (h))′)′, where

∇α�(θ) = −
n∑

i=1

δi

[
exp(α)

exp(α) + exp(β ′Xi )
−

∑
l∈Ri

exp(α)∑
l∈Ri

{
exp(α) + exp(β ′Xl)

}]
, (16)

∇β�(θ) = −
n∑

i=1

δi

[
Xi exp(β ′Xi )

exp(α) + exp(β ′Xi)
−

∑
l∈Ri

{
Xl exp(β ′Xl)

}
∑

l∈Ri

{
exp(α) + exp(β ′Xl)

}]
. (17)

Denote the right-hand side of (15) by Qd(θ; θ (h)) and let g(β) = νp(β). Then we minimize
Qd(θ , θ (h)) + g(β), which gives the proximal problem

α(h+1) = argmin
α

1

2
||α − [α(h) − d∇α�(θ

(h))]||22, (18)

β(h+1) = argmin
β

1

2
||β − [β(h) − d∇β�(θ (h))]||22 + dg(β). (19)

The solution of (18) is given by α(h+1) = α(h) −d∇α�(θ
(h)). The solution of (19) is given by a

proximal operator β(h+1) = proxdg(β
(h) − d∇β�(θ (h))). Depending on the choice of penalty func-

tion, such an operator has a closed-form expression. For example, if we use an L1-penalty: p(β) =
||β||1, then proxdg(β

(h) − d∇β�(θ (h))) = s(β(h) − d∇β�(θ (h)), νd), where s(x, π) is the elementwise
soft-thresholding operator, whose jth element is defined as s(x, π)j = sgn(xj )(|xj | − π)+. As
for the step size, we follow Parikh & Boyd (2014, Section 4.2) and perform a backtracking line
search; namely, we iteratively decrease step size until the majorization holds, i.e., the inequality
(15) holds. This strategy is commonly used in the proximal gradient method.

We stop iterating the algorithm when the change in the objective function between two
consecutive iterations is less than ζ% of the objective function’s value at the former iteration,
where ζ ∈ (0, 100) is a user-defined stopping threshold, which we choose to be 10. A detailed
algorithm is summarized as follows:

Algorithm 1: The Proximal Gradient Algorithm.
Data: Xi , Ti, δi; i = 1, . . . , n.
Result: Estimates for θ = (α, β ′)′.
Initialize d at d(0) ∈ R

+, θ = (α, β ′)′ at θ (0) = (α(0), β(0)′)′, where α(0) ∈ R
1, β(0) ∈ R

p;
At the hth iteration, let d = d(h−1),
repeat

Let α = α(h−1) − d∇α�(θ
(h−1)) and β = proxdg(β

(h−1) − d∇β�(θ (h−1))),
if �(θ) � Qd{θ; θ (h−1)} then

let d(h) = d, α(h) = α, β(h) = β; break;
else

let d = 0.8d.
end

until
∣∣∣ {�(θ (h))+g(β(h))}−{�(θ (h−1))+g(β(h−1))}

�(θ (h−1))+g(β(h−1))

∣∣∣ � ζ%.
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4.2 Classification Algorithm

We give a complete algorithm for classifying the causes of an event by using the time to event
information Ti and δi , baseline covariates Xi , covariates collected when the event occurs Zi , and
external informative covariates W i in this section.

Firstly, Given Xi , Ti , and δi , estimate θ using partial likelihood (5) and Algorithm 1. Sec-
ondly, estimate ξ

(0)
ik by (6) and (7). Thirdly, based on the type of covariates Xi and Zi , estimate

the transition likelihood φi(k, γ k) of cause k by maximizing the pseudo-likelihood function in
(8). Next, estimate ξ

(1)
ik as in (9). Finally, if ξ̂

(1)
i2 > ξ̂

(1)
i1 , then the event is classified as cause 2;

otherwise, the event is classified as cause 1.

5 Simulation Experiments
To study the improvement in classification using transition likelihoods compared with using
baseline information alone, we carry out comprehensive simulation experiments to evaluate the
performance of two classifiers based on ξ̂

(0)
i and ξ̂

(1)
i respectively. We evaluate the performance

of the proposed classifiers by comparing their sensitivity, specificity, and overall accuracy in
classifying the causes of events. We mimic the data observed in the P. vivax malaria infection
study (Lin et al., 2015) and assume that the cause could be either reinfection (εi = 1) or relapse
(εi = 2). Sensitivity is defined as the number of subjects correctly classified as relapse divided by
the number of relapse subjects; specificity is defined as the number of subjects correctly classified
as reinfection divided by the number of reinfection subjects and overall accuracy is defined as
the number of correctly classified subjects divided by the number of subjects.

Following the proposed model in Section 2, we assume that the baseline hazard is a homo-
geneous Poisson process with hazard function λ0(t), which is a constant for t > 0 and the same
for all subjects. Using the partial likelihood function (5), we do not need to specify λ0(t) and
expect the classification performance to be similar under different baseline hazard functions.
We carry out simulations with three different baseline hazard functions λ0(t) = exp(τ ), where
τ = −0.5, 0, 0.5.

The reinfection process was assumed to be the same for all subjects with hazard function
λi1(t) = λ0(t) exp(α). The relapse process was assumed to have a proportional hazard function
λi2(t) = λ0(t) exp(β ′Xi ) for subject i. The first classifier classifies a recurrent infection as a relapse
if ξ̂

(0)
i2 > 0.5, and the second classifier classifies a recurrent infection as a relapse if ξ̂

(1)
i2 > 0.5.

We consider two situations where Xi and Zi are binary and normally distributed variables.
We allow dimensions of Xi and Zi to be either low or high. Under the low-dimensional settings,
we set two combinations for n and J , with (n, J ) = (400, 10) and (n, J ) = (800, 20). For the
high-dimensional settings, we focus on the classification performance of the classifiers, as well
as the variable selection performance. We consider (n, J ) = (100, 200) and (n, J ) = (200, 400),
where the former is closer to the real P. vivax malaria infection study. When evaluating the
variable selection performance, we focus on the sensitivity, specificity, and overall accuracy of
selecting covariates with non-zero regression coefficients.

Remark that the improvement of the second classifier is mainly attributed to including the
transition likelihoods from the baseline covariates Xi to the covariates at recurrence infection Zi .
If Zi associates with Xi , the transition likelihood is informative, and the second classifier would
have a better classification performance. However, when Zi is not associated with Xi , then little
information would be contained in the transition likelihood. Thus, the second classifier would
have a similar performance to the first classifier. We consider two scenarios where the association
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Table 1: Classification performance of proposed classifiers with low-dimensional binary covari-
ates.

I (̂ξ
(0)
i > 0.5) I (̂ξ

(1)
i > 0.5)

Scenario τ (n, J ) Sensitivity Specificity Overall Sensitivity Specificity Overall

1 −0.5 (400, 10) 50.3 (20.2) 59.0 (19.2) 53.6 (5.1) 90.7 (4.2) 94.3 (3.2) 92.1 (2.2)
(800, 20) 50.1 (19.9) 59.6 (19.2) 54.0 (4.5) 97.8 (0.9) 98.7 (0.8) 98.0 (0.5)

0 (400, 10) 49.1 (18.4) 60.1 (17.6) 53.6 (4.6) 89.3 (10.8) 93.2 (10.8) 90.9 (10.4)
(800, 20) 49.6 (18.2) 59.7 (17.8) 53.8 (3.9) 97.9 (0.9) 98.2 (0.8) 98.0 (0.6)

0.5 (400, 10) 48.3 (18.7) 61.9 (17.3) 53.9 (4.8) 88.9 (12.2) 92.4 (12.0) 90.3 (11.8)
(800, 20) 50.2 (17.8) 59.5 (17.2) 54.1 (3.9) 97.9 (0.8) 98.1 (0.8) 98.0 (0.5)

2 −0.5 (400, 10) 48.7 (19.7) 60.6 (18.8) 53.6 (5.0) 66.3 (16.9) 72.5 (30.2) 68.8 (21.2)
(800, 20) 50.7 (18.7) 58.8 (17.9) 54.0 (4.1) 66.2 (14.6) 71.9 (13.4) 68.6 (11.9)

0 (400, 10) 49.3 (19.7) 59.6 (18.5) 53.6 (5.1) 64.4 (18.2) 69.2 (32.3) 66.3 (23.1)
(800, 20) 51.6 (17.9) 58.5 (17.4) 54.5 (3.9) 66.2 (14.7) 72.1 (13.3) 68.6 (11.9)

0.5 (400, 10) 49.2 (18.6) 60.6 (17.6) 53.7 (4.5) 68.7 (16.6) 74.9 (27.5) 71.1 (20.4)
(800, 20) 50.8 (18.1) 58.8 (17.5) 54.0 (4.1) 66.3 (14.5) 72.3 (12.9) 68.7 (11.8)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.

between Zi and Xi is either strong or weak. For simplicity, we assume that for each pair of Xij

and Zij , only one external covariate Wij is associated with the transition.

5.1 Binary Covariates

For the low-dimensional setting, we set α to be 0, the first 3 components of β to be log(1.5),
and the rest of the components to be 0. We generated Xi from the Bernoulli distribution with
probability P(Xij = 1) = 0.5 exp{−0.1(j − 1)} for j = 1, . . . , 10. Such a choice of Xi and β

indicates that the three most prevalent variants are associated with the relapse. We generated
failure time T ∗

i based on the all-cause hazard function λi(t) = λi1(t)+λi2(t) and then determined
whether the infection is a relapse or reinfection by a Bernoulli random variable with success
probability equals to exp(β ′Xi)/{exp(α)+ exp(β ′Xi)}. The right censoring time Ci was generated
following a uniform distribution between 0 and c, where c is a constant controlling for 20%
censoring. The observed time Ti is the minimum between T ∗

i and Ci . We assume that for any
j � J , there is one external covariate Wij affecting the transition from Xij to Zij . For each i and
j , we independently generate Wij from a uniform distribution between 0 and 1, which is also
independent of Xij .

If the event is reinfection, Zi was generated independently from the same distribution
as Xi . If the event is a relapse, we generated Zi following the transition model (10). We let
qj21 = q∗

j21 = 0.9 in the first scenario when Zi strongly associates with Xi , and qj21 = q∗
j21 = 0.001

in the second scenario when Zi weakly associates with Xi . The intercept qj20 was set to be 0.3 for
both scenarios. We repeat the simulation 500 times for each combination of n and J under both
scenarios. The operating characteristics of the two classifiers are reported in Table 1. Reported
values are means and standard deviations over 500 simulations.

Table 1 shows that performance of the first classifier I (̂ξ
(0)
i > 0.5) is similar under both

scenarios in terms of sensitivity, specificity, and overall accuracy. This result is reasonable since
we only included baseline covariates and time to event information when constructing the first
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classifier. This information was generated using the same mechanisms under both scenarios.
The second classifier I (̂ξ

(1)
i2 > 0.5) has a better performance than the first classifier I (̂ξ

(0)
i2 > 0.5)

in scenario 1, where sensitivity, specificity, and overall accuracy are all in favor of the second
classifier. The classification accuracy gets better when the sample size is larger. In scenario 1, the
strong association between Zi and Xi makes the transition likelihood much more informative.
Therefore, the improvement in the classification performance is obvious in this scenario. However,
in scenario 2, the association between Zi and Xi is relatively weak. The transition likelihood
contains less information in this scenario. Hence, the second classifier improves little upon the
first classifier, averaging merely 12%–18% improvement in the overall accuracy, even when the
sample size is larger.

When n and J are fixed, we can see that differences in the baseline hazard function λ0(t)

barely affect the performance of both classifiers. This result is reasonable since the baseline
hazard λ0(t) is canceled in (13). As long as the proportional hazards assumption stands, the
classification accuracy is similar regardless of the true form of the baseline hazard λ0(t).

For high-dimensional settings, we set α to be 0, the first 10 components of regression co-
efficients in β to be log(1.5), and the rest to be 0. The remaining set-up was the same as in
the low-dimensional setting. We repeat the simulation 500 times for each combination of (n, J )

under two scenarios. The performance of the two classifiers is reported in Table 2.
In Table 2, we can see similar results as in Table 1. The first classifier behaves similarly

under both scenarios. In scenario 1, the second classifier has perfect sensitivity and nearly perfect
specificity. In scenario 2, the second classifier has similar overall accuracy as the first classifier,
with slightly lower sensitivity and slightly higher specificity. The choice of the baseline hazard
function λ0(t) barely affects the performance.

We also evaluated the accuracy of coefficient estimates θ̂ = (̂α, β̂
′
)′ for the high-dimensional

settings, where the bias of α̂ and variable selection performance of β̂ are reported in Table 2.
Since we did not use transition likelihoods when estimating θ , the accuracy of θ̂ is similar under
both scenarios. The baseline hazard function was canceled when calculating the partial likelihood
function (5). Therefore, it has little influence on the performance of θ̂ . One can see that as J

gets larger, the bias of α̂ increases. However, the performance of β̂ improves since more variables
are selected correctly.

In addition, we compare our classifiers with the classifiers proposed by Lin et al. (2020).
We note that Lin et al. (2020) also proposed two classifiers. The first one only uses baseline
covariates and the second one uses both baseline and recurrence covariates. However, they do
not use time-to-event information. These classifiers require prior knowledge of the reinfection
rate, which significantly affects the classification accuracy. The simulation results are provided
in Section S1.1 of the Supplementary Materials.

5.2 Normally Distributed Covariates

In addition, we simulate for normally distributed Xi and Zi . For both low- and high-dimensional
settings, we consider the same set-up for α and β as in the simulation study for binary covariates.
We generated Xi and W i independently from a standard normal distribution. The event time
T ∗

i , censoring time Ci , and observed time Ti were all generated with the same strategy as for
the binary covariates. We generated Zi based on the event type, following the transition model
(11). We let qj21 = q∗

j21 = 0.9 in scenario 1, where Zi strongly associates with Xi , and let qj21 =
q∗

j21 = 0.001 in scenario 2, where Zi weakly associates with Xi . We let qj20 = 0.3 and ψjk = 1
for each j under both scenarios. We repeated the simulation 500 times for each combination of
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Table 2: Classification and variable selection performance of proposed classifiers with high-dimensional binary covariates.

I (̂ξ
(0)
i > 0.5) I (̂ξ

(1)
i > 0.5) α̂ β̂

Scenario τ (n, J ) Sensitivity Specificity Overall Sensitivity Specificity Overall Bias Sensitivity Specificity Overall

1 −0.5 (100, 200) 98.1 (3.0) 4.4 (6.8) 76.1 (4.6) 100 (0) 96.3 (6.0) 99.5 (0.7) 0.48 (0.05) 75.2 (12.8) 57.1 (2.0) 58.0 (2.1)
(200, 400) 96.7 (3.5) 8.4 (7.1) 75.3 (3.1) 100 (0) 100 (0) 100 (0) 0.51 (0.01) 87.2 (10.6) 65.7 (1.3) 66.7 (1.4)

0 (100, 200) 97.8 (3.4) 5.3 (7.7) 74.8 (4.5) 100 (0) 97.4 (4.5) 99.6 (0.6) 0.49 (0.04) 72.9 (13.0) 58.2 (2.1) 59.0 (2.2)
(200, 400) 95.7 (3.7) 9.2 (7.5) 75.1 (3.5) 100 (0) 100 (0) 100 (0) 0.51 (0.01) 87.0 (10.6) 65.7 (1.6) 65.9 (1.4)

0.5 (100, 200) 97.6 (2.8) 4.6 (6.8) 75.3 (4.5) 100 (0) 96.7 (6.0) 99.5 (0.7) 0.49 (0.04) 72.9 (13.6) 58.0 (2.3) 58.7 (2.4)
(200, 400) 95.8 (3.8) 9.8 (7.1) 75.0 (3.3) 100 (0) 99.9 (0.8) 100 (0) 0.51 (0.02) 87.1 (11.2) 65.4 (1.4) 66.0 (1.5)

2 −0.5 (100, 200) 97.9 (2.9) 4.9 (5.8) 75.8 (4.6) 91.8 (4.5) 13.0 (8.2) 73.1 (5.0) 0.49 (0.05) 78.3 (14.3) 62.2 (2.5) 61.1 (2.3)
(200, 400) 96.2 (3.8) 8.8 (7.9) 75.3 (3.3) 90.7 (5.6) 14.9 (9.1) 72.7 (4.0) 0.50 (0.02) 73.8 (14.1) 67.2 (1.7) 66.3 (1.7)

0 (100, 200) 97.5 (3.1) 6.4 (6.9) 74.9 (4.3) 91.9 (4.8) 14.3 (9.2) 72.7 (4.2) 0.50 (0.04) 79.2 (15.8) 62.6 (2.2) 61.4 (2.4)
(200, 400) 95.8 (3.8) 8.8 (7.4) 74.8 (3.5) 90.6 (5.1) 15.4 (8.3) 72.5 (3.9) 0.51 (0.02) 75.3 (14.5) 67.5 (1.9) 66.5 (1.4)

0.5 (100, 200) 97.4 (2.6) 5.7 (6.1) 75.4 (4.4) 91.5 (4.8) 13.6 (8.7) 72.8 (4.8) 0.51 (0.04) 79.0 (15.8) 61.6 (2.3) 60.5 (2.3)
(200, 400) 95.6 (3.7) 9.5 (7.7) 74.7 (3.1) 90.3 (5.5) 16.3 (8.3) 72.2 (3.8) 0.51 (0.02) 73.1 (14.9) 66.2 (1.5) 65.4 (1.5)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.
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Table 3: Classification of proposed classifiers with low-dimensional continuous covariates.

I (̂ξ
(0)
i > 0.5) I (̂ξ

(1)
i > 0.5)

Scenario τ (n, J ) Sensitivity Specificity Overall Sensitivity Specificity Overall

1 −0.5 (400, 10) 67.8 (4.1) 54.8 (4.5) 61.6 (3.2) 97.5 (1.4) 97.5 (1.6) 97.6 (1.0)
(800, 20) 64.9 (2.8) 58.6 (2.5) 61.8 (1.9) 99.8 (0.2) 99.8 (0.3) 99.7 (0.1)

0 (400, 10) 65.9 (4.4) 57.1 (4.3) 61.6 (3.1) 97.6 (1.3) 97.5 (1.3) 97.5 (0.9)
(800, 20) 63.6 (2.4) 59.5 (2.6) 61.6 (1.9) 99.7 (0.3) 99.7 (0.3) 99.7 (0.2)

0.5 (400, 10) 64.7 (3.5) 60.2 (3.9) 62.4 (3.0) 97.6 (1.2) 97.4 (1.1) 97.5 (0.7)
(800, 20) 62.5 (2.5) 60.4 (2.2) 61.5 (1.7) 99.7 (0.3) 99.7 (0.3) 99.7 (0.2)

2 −0.5 (400, 10) 67.6 (4.3) 54.9 (4.3) 61.5 (3.1) 68.5 (4.3) 56.2 (4.8) 62.5 (3.1)
(800, 20) 64.6 (2.7) 58.4 (2.8) 61.8 (2.5) 67.9 (2.4) 62.7 (3.8) 65.4 (2.0)

0 (400, 10) 65.7 (3.9) 57.4 (4.2) 61.7 (3.0) 67.0 (3.9) 59.1 (4.4) 63.1 (3.0)
(800, 20) 63.6 (2.6) 59.9 (2.7) 61.8 (1.8) 67.3 (2.4) 64.0 (2.6) 65.6 (1.8)

0.5 (400, 10) 63.9 (3.6) 59.6 (4.0) 61.8 (2.7) 65.5 (3.2) 61.1 (4.0) 63.5 (2.5)
(800, 20) 62.8 (2.6) 60.6 (2.5) 61.7 (1.8) 66.4 (2.5) 64.6 (2.6) 65.5 (1.7)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.

n and J under both scenarios. The performance of two classifiers is reported in Tables 3 and 4
for low- and high-dimensional settings, respectively. We also reported the estimation accuracy
and variable selection performance of θ̂ in the high-dimensional settings in Table 4.

In Table 3, the first classifier performs similarly under both scenarios. The second classifier
has better performance than the first classifier under scenario 1 but comparable performance
under scenario 2. Also, the change of the baseline hazard function λ0(t) barely affects the per-
formance of both classifiers. A similar pattern is also observed in Table 4 in high-dimensional
settings. As for θ̂ , it has similar accuracy with various baseline hazard functions λ0(t). However,
when J gets larger, the bias of α̂ increases a little, but the performance of β̂ gets better. In
summary, our classifiers perform similarly for both binary and normally distributed covariates.

5.3 Misspecified Hazard Functions
To evaluate how our classifiers perform when the hazard models in (3) and (4) are misspec-
ified, we choose the cause-specific hazard functions as λi1(t) = λ0(t) + exp(α) and λi2(t) =
λ0(t) + exp(β ′Xi), where λ0(t) = exp(τ ), where τ = −0.5, 0, 0.5. In this way, the hazards are no
longer proportional. We still consider both binary and normally distributed covariates and set
all other parameters the transition functions the same as above. We repeat the same simulation
studies for these additive hazard models. The simulation results are shown in Section S1.2 of
the Supplementary Materials. We find that the first classifier does not perform well due to the
misspecification of the hazard model. However, after incorporating the transition likelihood, the
second classifier can still improve the classification accuracy.

6 Plasmodium vivax Malaria Infection Study
6.1 Identify the Cause of Recurrence Infections
As discussed in the introduction, it is essential to identify the cause of infection in P. vivax
malaria research when the primary interest is treatment efficacy or effectiveness. In this section,
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Table 4: Classification performance of proposed classifiers with high-dimensional continuous covariates.

I (̂ξ
(0)
i > 0.5) I (̂ξ

(1)
i > 0.5) α̂ β̂

Scenario τ (n, J ) Sensitivity Specificity Overall Sensitivity Specificity Overall Bias Sensitivity Specificity Overall

1 −0.5 (100, 200) 85.8 (5.8) 29.8 (8.7) 59.2 (5.5) 98.7 (11.4) 99.7 (5.7) 99.5 (6.7) 0.44 (0.02) 69.5 (14.8) 57.3 (2.3) 58.5 (2.9)
(200, 400) 88.7 (3.5) 27.1 (5.9) 60.0 (4.1) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 82.0 (11.9) 60.4 (1.9) 60.9 (1.9)

0 (100, 200) 83.4 (5.2) 33.6 (7.4) 59.0 (5.4) 99.0 (10.5) 99.6 (5.7) 99.1 (7.2) 0.45 (0.02) 70.8 (15.4) 57.3 (3.0) 57.9 (3.0)
(200, 400) 85.2 (4.5) 31.9 (5.6) 59.6 (3.9) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 82.7 (12.5) 59.3 (1.9) 59.9 (1.9)

0.5 (100, 200) 81.9 (5.3) 37.5 (7.2) 60.1 (5.2) 98.3 (12.8) 99.7 (5.8) 99.0 (8.1) 0.44 (0.02) 71.4 (14.5) 56.1 (2.7) 56.9 (2.9)
(200, 400) 84.5 (3.7) 34.0 (5.1) 59.6 (3.9) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 85.0 (11.0) 58.6 (1.7) 59.2 (1.6)

2 −0.5 (100, 200) 85.5 (5.4) 29.3 (7.9) 58.9 (5.7) 94.2 (3.6) 23.4 (7.9) 60.8 (6.3) 0.43 (0.02) 62.3 (15.4) 64.8 (2.8) 64.6 (2.9)
(200, 400) 84.0 (4.3) 32.0 (5.8) 59.5 (4.1) 96.3 (2.2) 31.7 (6.9) 65.8 (4.7) 0.47 (0.01) 75.6 (14.4) 68.0 (1.8) 68.2 (1.9)

0 (100, 200) 82.9 (6.0) 34.2 (7.2) 59.5 (5.4) 92.9 (4.0) 27.7 (7.6) 61.7 (5.6) 0.44 (0.02) 64.8 (15.6) 64.1 (2.7) 64.1 (2.9)
(200, 400) 81.3 (4.2) 36.5 (5.9) 59.6 (3.9) 95.7 (2.2) 35.7 (6.7) 66.5 (4.7) 0.47 (0.01) 76.8 (14.1) 67.4 (2.0) 67.7 (2.0)

0.5 (100, 200) 82.0 (5.7) 37.8 (7.1) 60.1 (5.5) 92.5 (4.1) 31.0 (8.1) 62.1 (6.1) 0.45 (0.02) 63.8 (15.9) 63.7 (2.8) 63.7 (2.9)
(200, 400) 79.9 (4.0) 38.5 (5.5) 59.5 (3.7) 95.1 (2.3) 37.8 (6.6) 66.9 (4.5) 0.46 (0.01) 77.1 (13.6) 66.7 (2.1) 67.4 (2.1)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.
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Table 5: Classification of the first recurrent infection (ν = 2.05).

Recurrence Days to Baseline Recurrence Variant Class by Class by
Pair Recurrence Variants β̂ ξ̂ (0) Variants Prevalence ξ̂ (1) our method Lin et al.
10 → 10R 84 CAM.00 0.907 0.783 CAM.00 0.590 0.995 Relapse Relapse

CAM.11 0 CAM.11 0.077
CAM.15 0.013

31 → 31R 84 CAM.00 0.907 0.910 CAM.16 0.006 0.988 Relapse Relapse
CAM.02 0
CAM.04 1.026
CAM.31 0

36 → 36R 99 CAM.00 0.907 0.910 CAM.01 0.269 0.645 Relapse Relapse
CAM.01 0 CAM.02 0.41
CAM.02 0 CAM.07 0.192
CAM.03 0 CAM.17 0.064
CAM.04 1.026
CAM.05 0
CAM.06 0
CAM.07 0
CAM.09 0
CAM.11 0

68 → 68R 99 CAM.00 0.907 0.910 CAM.10 0.077 0.997 Relapse Relapse
CAM.02 0
CAM.04 1.026
CAM.10 0

80 → 80R 56 CAM.00 0.907 0.910 CAM.00 0.590 0.000 Reinfection Reinfection
CAM.04 1.026 CAM.01 0.269
CAM.05 0 CAM.02 0.410
CAM.08 0 CAM.03 0.295
CAM.09 0 CAM.05 0.231
CAM.24 0 CAM.06 0.231
CAM.27 0 CAM.07 0.192

(Continued on next page)



D
ynam

ic
C

lassification
ofPlasm

odium
vivax

M
alaria

Recurrence
69

Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by
Pair Recurrence Variants β̂ ξ̂ (0) Variants Prevalence ξ̂ (1) our method Lin et al.

CAM.08 0.154
CAM.12 0.064
CAM.41 0.013

81 → 81R 35 CAM.00 0.907 0.783 CAM.00 0.590 0.974 Relapse Relapse
CAM.01 0 CAM.01 0.269
CAM.51 0

82 → 82R 56 CAM.00 0.907 0.910 CAM.00 0.590 0.674 Relapse Relapse
CAM.03 0 CAM.01 0.269
CAM.04 1.026 CAM.03 0.295
CAM.10 0 CAM.46 0.006

87 → 87R 81 CAM.00 0.907 0.783 CAM.00 0.590 0.424 Reinfection Relapse
CAM.01 0 CAM.07 0.192
CAM.02 0 CAM.08 0.154
CAM.08 0 CAM.53 0.013
CAM.24 0

89 → 89R 14 CAM.00 0.907 0.910 CAM.01 0.269 0.052 Reinfection Reinfection
CAM.04 1.026 CAM.09 0.077
CAM.06 0 CAM.20 0.026
CAM.08 0 CAM.27 0.038
CAM.10 0
CAM.12 0

96 → 96R 71 CAM.00 0.907 0.910 CAM.00 0.590 0.983 Relapse Relapse
CAM.02 0 CAM.30 0.013
CAM.04 1.026
CAM.08 0

112 → 112R 67 CAM.00 0.907 0.910 CAM.00 0.590 0.670 Relapse Relapse
CAM.01 0 CAM.01 0.269
CAM.02 0 CAM.02 0.410

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by
Pair Recurrence Variants β̂ ξ̂ (0) Variants Prevalence ξ̂ (1) our method Lin et al.

CAM.04 1.026
CAM.07 0
CAM.12 0
CAM.40 0
CAM.42 0
CAM.60 0

118 → 118R 89 CAM.08 0 0.593 CAM.01 0.269 0.008 Reinfection Reinfection
CAM.02 0.410
CAM.25 0.006
CAM.39 0.006

123 → 123R 26 CAM.00 0.907 0.783 CAM.00 0.590 0.700 Relapse Reinfection
CAM.02 0 CAM.01 0.269

125 → 125R 82 CAM.02 0 0.593 CAM.00 0.590 0.000 Reinfection Reinfection
CAM.01 0.269
CAM.02 0.410
CAM.04 0.346
CAM.09 0.077
CAM.13 0.006
CAM.14 0.026
CAM.38 0.006
CAM.45 0.006

126 → 126R 85 CAM.00 0.907 0.910 CAM.01 0.269 0.975 Relapse Relapse
CAM.01 0 CAM.07 0.192
CAM.02 0 CAM.33 0.006
CAM.03 0
CAM.04 1.026
CAM.05 0
CAM.06 0

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by
Pair Recurrence Variants β̂ ξ̂ (0) Variants Prevalence ξ̂ (1) our method Lin et al.

CAM.07 0
CAM.22 0
CAM.50 0

130 → 130R 68 CAM.00 0.907 0.910 CAM.00 0.590 0.997 Relapse Relapse
CAM.02 0 CAM.04 0.346
CAM.03 0 CAM.12 0.064
CAM.04 1.026
CAM.12 0

151 → 151R 126 CAM.03 0 0.593 CAM.00 0.590 0.325 Reinfection Reinfection
CAM.05 0 CAM.08 0.154
CAM.08 0 CAM.14 0.026

CAM.64 0.006
152 → 152R 94 CAM.00 0.907 0.783 CAM.00 0.590 0.153 Reinfection Reinfection

CAM.01 0 CAM.01 0.269
CAM.05 0.231
CAM.07 0.192

153 → 153R 115 CAM.00 0.907 0.910 CAM.02 0.410 0.425 Reinfection Relapse
CAM.04 1.026 CAM.20 0.026
CAM.07 0
CAM.55 0

154 → 154R 64 CAM.00 0.907 0.783 CAM.03 0.295 0.116 Reinfection Reinfection
CAM.06 0 CAM.05 0.231
CAM.57 0 CAM.06 0.231

160 → 160R 17 CAM.02 0 0.803 CAM.00 0.590 0.000 Reinfection Reinfection
CAM.04 1.026 CAM.03 0.295
CAM.07 0 CAM.05 0.231

CAM.10 0.077
CAM.61 0.006

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by
Pair Recurrence Variants β̂ ξ̂ (0) Variants Prevalence ξ̂ (1) our method Lin et al.
177 → 177R 84 CAM.00 0.907 0.910 CAM.01 0.269 0.773 Relapse Relapse

CAM.04 1.026
CAM.07 0

179 → 179R 84 CAM.03 0 0.593 CAM.01 0.269 0.234 Reinfection Reinfection
CAM.05 0 CAM.13 0.006
CAM.07 0
CAM.09 0
CAM.17 0
CAM.22 0
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we apply our proposed classifier to the P. vivax malaria data described in Section 1.1. We aim
to classify the recurrent infection as either reinfection (εi = 1) or relapse (εi = 2). We first
fit the cause-specific hazards model (3) and (4) with Xi as a vector of binary covariates that
indicate whether a haplotype (genetic variant) is present or absent. Parameters θ = (α, β ′)′ were
estimated via the penalized partial likelihood function (5) with an L1-penalty. To choose the
optimal tuning parameter ν, we performed a grid search in the interval [0, 3.5] and calculated
the corresponding Bayesian Information Criterion (BIC) values. The BIC curve is provided in
the Supplementary Materials.

We report the classification results based on ν = 2.05, where the BIC attains its minimum.
In this case, two haplotypes (CAM.00 and CAM.04) were selected, with the proportional baseline
coefficient exp(̂α) = 0.686. We also performed a sensitivity analysis by choosing ν = 0.8, where
the BIC curve begins flatting out. In this case, 12 haplotypes (CAM.00, CAM.02 to CAM.10,
CAM.12 and CAM.24) were selected with exp(̂α) = 0.859. The classification results based on
ν = 0.8 are reported in the Supplementary Materials.

After we obtained θ̂ , probabilities ξ̂
(0)
i1 and ξ̂

(0)
i2 were calculated based on formulae (6) and

(7), respectively. For subjects with a recurrent infection, reading frequency for each haplotype
presented at the baseline sequencing of the initial infection is used as the external covariate
W i . Here, covariates Xi and Zi are binary variables. When the recurrent infection is reinfection
(εi = 1), we assume Zi is independent of Xi and W i , but follows the same distribution as Xi .
In this case, φi(1) can be estimated independently without using the pseudo-likelihood function
(8), and the distribution of Zi can be estimated using Xi alone.

To be specific, for εi = 1, the transition likelihood function φi(1, γ 1) can be written as

φi(1, γ 1) = f (zi |εi = 1, dNi(t) = 1, Xi = xi , W i = wi ) =
J∏

j=1

p
zij

j (1 − pj)
1−zij ,

where pj = P(Xij = 1), γ 1 = (p1, . . . , pJ )′. The parameter pj can be consistently estimated by
the sample mean p̂j = n−1 ∑n

i=1 xij . Accordingly, the transition likelihood of reinfection can be
estimated by φi(1, γ̂ 1) = ∏J

j=1 p̂
zij

j (1 − p̂j )
1−zij .

For εi = 2, when the recurrent infection is a relapse, we assume the transition likelihood
follows the form of (10), that logit(μij2) = qj20 + xijqj21 + wijxijq

∗
j21, with wij being the reading

frequency of the jth haplotype of subject i when the haplotype is presented at the baseline
sequencing, i.e., xij = 1. For computational simplicity, we assume that all haplotypes follow
the same transition model, i.e., qj20 = q0, qj21 = q1, and q∗

j21 = q∗ for all j . Then, we have
φi(2, γ 2) = f (zi |εi = 2, dNi(t) = 1, Xi = xi , W i = wi ) = ∏J

j=1 μ
zij

ij2

(
1 − μij2

)1−zij , where μij2 =
exp(q0 + xijq1 + wijxij q

∗)/{1 + exp(q0 + xijq1 + wijxij q
∗)} and γ 2 = (q0, q1, q

∗)′.
We replaced φi(1, γ 1) in (8) by φi(1, γ̂ 1) and maximized the pseudo-likelihood function to

obtain γ̂ 2. When using ν = 2.05, we have q̂0 = −1.366, q̂1 = 2.738, and q̂∗ = 4.317. When
the recurrent infection is relapse, the parameter q0 is the log odds of a subject whose baseline
sequencing did not contain haplotype j (xij = 0) but the follow-up sequencing at the recurrence
did (zij = 1). The estimate q̂0 = −1.366 can be transformed into an estimated transition
probability of 0.203, meaning there is 20% chance that the unseen haplotype at the baseline
may show up at the recurrence when the cause is relapse. Since q̂0 + q̂1 = 1.372, it shows that
there is around 80% chance of observing a haplotype again at the recurrence (zij = 1) when
the cause is relapse and the haplotype appeared at the baseline (xij = 1). Since q̂∗ = 4.317,
it indicates that there is more than 99% chance of observing the same haplotype again at the
recurrence (zij = 1) when the reading frequency of the haplotype is more than 80% at the
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baseline (wij = 0.8). When using ν = 0.8, we have q̂0 = −1.323, q̂1 = 2.506, and q̂∗ = 4.284.
These estimates are similar to those when using ν = 2.05 and can be interpreted analogously.

Finally, we calculate ξ̂
(1)
ik by (9) for k = 1, 2 and classify the recurrent event as relapse if

ξ̂
(1)
i2 > ξ̂

(1)
i1 and reinfection otherwise. Table 5 contains the classification results for the 23 subjects

with recurrent infection based on our proposed method using ν = 2.05. The tables include
days to recurrence, baseline and recurrence haplotypes, the estimates β̂, recurrence haplotype
prevalence, two classification probabilities, and classification results from Lin et al. (2020), which
analyzed the same data without utilizing the time to event information and external covariates
in the estimation of transition likelihoods.

Our proposed method classifies 3 out of 23 recurrence pairs differently from Lin et al.
(2020). The first pair is 87 → 87R, which was classified as relapse by Lin et al. (2020) but
as reinfection by our classifier. Five variants showed up at the baseline sequencing, of which
only CAM.00, the haplotype with the highest prevalence, showed up again in the recurrence
sequencing. Also, the days to recurrence for this pair are 81 days, which is a relatively long time
for relapse, suggesting that this recurrence event is more likely to be reinfection. The second
pair is 123 → 123R, which was classified as reinfection by Lin et al. (2020) but as relapse by our
classifier. Two haplotypes (CAM.00 and CAM.02) were observed at the baseline sequencing, and
haplotype CAM.00 showed up again at the recurrence sequencing with CAM.01. Since only two
haplotypes appeared at the recurrence, and CAM.00 is the most prevalent variant, the recurrent
infection looks more likely to be a reinfection if not taking time to recurrent into consideration.
However, the recurrent infection occurred only 26 days after the initial infection, which is a
relatively short time compared to other reinfection cases. The only case classified as reinfection
with a recurrent time less than 26 days was pair 160 → 160 R, with only 17 days to recurrence,
but this is reasonable since there is no overlap between the baseline and recurrence variants.
Notably, the pair 123 → 123R has 96% CAM.00 in the reading frequency at baseline, which
supports the classification as relapse due to a high likelihood of observing the same variant in
relapse if the variant has a high reading frequency at baseline, as suggested by large q̂∗. The last
disparity comes from pair 153 → 153R, which was classified as relapse by Lin et al. (2020) but
as reinfection by our classifier. There is no overlap between initial and recurrence variants. The
time to recurrence is 115 days, which is longer than any case that was classified as relapse. The
only case with days to recurrence longer than this pair is pair 151 → 151R, which was classified
as reinfection by both Lin et al. (2020) and our classifier. Therefore, it is more reasonable to
classify pair 153 → 153R as reinfection. Overall, by considering the time to event and baseline
haplotype reading frequency, our classifier achieves more consensus in this study.

6.2 Model Diagnosis and Sensitivity Analysis
In this specific study, we assume that the cause-specific hazard functions are proportional to
a baseline hazard function. Next, We verify such an assumption for the P. vivax malaria data
using the martingale residuals method proposed in Section 2. We carry out the model diagnosis
as follows. For a sequence of x in the range of the linear predictor β̂

′
Xi , we calculate the test

statistic T (x) = ∑n
i=1 I (β̂

′
Xi � x)M̂i , where M̂i is the martingale residual defined in Section 2.

Using a Monte-Carlo simulation with Qi(i = 1, . . . , n) sampled independently from the standard
normal distribution, the confidence band for T (x) can be constructed by calculating TQ(x) =∑n

i=1 I (β̂
′
Xi � x)M̂iQi . We simulate the process of T (x) by repeating the sampling. Using

ν = 2.05, the linear predictor β̂
′
Xi ranges from 0 to 1.94. Figure 3 shows the result with

observed T (x) (thick solid line) and 100 simulated curves (dashed lines) for x ∈ [0, 1.94]. The
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Figure 3: Goodness-of-fit model diagnosis for the P. vivax malaria data using ν = 2.05.

test statistics are point-wisely within the simulated processes, with no significant indication of
model violation. The model diagnosis result for the sensitivity analysis when ν = 0.8 is provided
in the Supplementary Materials. Similarly, there is no significant model violation when using
ν = 0.8 as well.

Misidentification of unique haplotypes is a concern in the current analysis. Low-frequency
minority genetic variants that only differ in sequence by one nucleotide base pair to common
variants may represent false haplotypes generated by sequencing error. We adjusted the strin-
gency of criteria used for calling haplotypes to “collapse” such variants together, reducing the
total number of 67 unique haplotypes to 32 (Hathaway et al., 2018). As a sensitivity analysis,
we also analyzed the data with this total number of 32 haplotypes, based on collapsing variants
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with 1-nucleotide apart within the same isolate. The classification result has several disparities
with the one using 67 haplotypes but mostly agreed with the one based on the method in Lin
et al. (2020) using 32 haplotypes. It is not surprising to find the classification result sensitive to
the identification of haplotype since our method relies on the modeling of the transition between
variants. The collapse of variants and corresponding classification results using 32 haplotypes
are provided in the Supplementary Materials.

7 Discussion
We proposed a classification method for identifying the latent cause of events under competing
risks set-up, which utilizes both time to event and transition likelihood information for better
classification performance. By considering the transition likelihood, we utilize more information
when constructing the classifier, which leads to better performance than the classifier using only
baseline information. The method can be applied regardless of the true form of the baseline
hazard function, and can also be applied to a variety of covariate data types. We examined the
performance of our method through simulation studies under various settings as well as real
data analysis, which shows high reliability of our method.

When modeling the outcomes of competing risks, we assumed a proportional hazards model
with a common baseline hazard function for every cause-specific hazard. When the hazards share
the same covariates, the model may not be identifiable. To avoid the identifiability issue when
analyzing the P. vivax malaria data, we assume the reinfection process is independent of any
baseline covariates in Xi but has a hazard function proportional to a baseline hazard λ0(t).
This assumption is reasonable for our data but may not be ideal for a general case. Alternative
approaches for the estimation of the hazard functions call for more investigation. In our current
approach, we assume the transition of covariates is independent of time. It will be of interest to
generalize the transition model to be a function of time. A possible approach is to include time
ti as a covariate in the model for μijk. This approach is somehow restricted to a linear function
of time, which is subject to model misspecification.

The statistical inference of regression coefficients β is also a topic worth investigating.
While the current method can perform variable selection on β with high accuracy, inferring the
significance of these selected variables needs more work. We also remark that if one would like
to evaluate the treatment efficacy using our approach, they can include treatment as a covariate
in (4). Then, using the same penalized partial likelihood method as shown in (14), they can
estimate the coefficient corresponding to the treatment for the treatment efficacy.

Finally, we point out that due to the nature of the P. vivax malaria, causes for recurrence are
often unobservable. This problem motivates us to develop the classification method for totally
unobservable causes. For other applications, when causes may be partially observed, one can plug
their cause-specific hazards into the partial likelihood function (1) for subjects with observed
causes and treat the rest causes as missing data. Then, EM algorithms may be utilized to obtain
θ̂ , based on which one can still build the two proposed classifiers. It will be of great interest to
study the estimator’s efficiency improvement by the transition likelihood in the future study.

Supplementary Material
In the Supplementary Materials, we provide additional simulation results for scenarios when
the hazard models are misspecified. We also compare our classifiers with those proposed in Lin
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et al. (2020) for binary covariates. In addition, we provide results for parameter estimation
performance under low-dimensional settings. Additional details of the P. vivax malaria study,
including the data and codes are provided as well.

Acknowledgement
The authors thank the editor, the associate editor, and two reviewers for their valuable com-
ments, which have led to the great improvement of the manuscript.

Funding

Dr. Feng-Chang Lin’s research was partially supported by NIH grant UL1TR002489. Dr. Que-
feng Li’s research was partially supported by NIH grant R01AG073259.

References
Baird JK (2013). Evidence and implications of mortality associated with acute plasmodium

vivax malaria. Clinical Microbiology Reviews, 26(1): 36–57.
Bureau A, Shiboski S, Hughes JP (2003). Applications of continuous time hidden Markov models

to the study of misclassified disease outcomes. Statistics in Medicine, 22(3): 441–462.
Chu CS, White NJ (2016). Management of relapsing plasmodium vivax malaria. Expert Review

of Anti-Infective Therapy, 14(10): 885–900.
Dini S, Douglas NM, Poespoprodjo JR, Kenangalem E, Sugiarto P, Plumb ID, et al. (2020). The

risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective
cohort study. BMC Medicine, 18(1): 1–12.

Dinse GE (1982). Nonparametric estimation for partially-complete time and type of failure data.
Biometrics, 38(2): 417–431.

Effraimidis G, Dahl CM (2014). Nonparametric estimation of cumulative incidence functions for
competing risks data with missing cause of failure. Statistics & Probability Letters, 89: 1–7.

Fan J, Lv J (2011). Nonconcave penalized likelihood with NP-dimensionality. IEEE Transactions
on Information Theory, 57(8): 5467–5484.

Ferreira MU, de Sousa TN, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, et al.
(2020). Monitoring plasmodium vivax resistance to antimalarials: persisting challenges and
future directions. International Journal for Parasitology: Drugs and Drug Resistance, 15: 9.

Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, et al. (2016). Com-
plexity of infection and genetic diversity in cambodian plasmodium vivax. PLoS Neglected
Tropical Diseases, 10(3): e0004526.

Goetghebeur E, Ryan L (1995). Analysis of competing risks survival data when some failure
types are missing. Biometrika, 82(4): 821–833.

Gouskova NA, Lin FC, Fine JP (2017). Nonparametric analysis of competing risks data with
event category missing at random. Biometrics, 73(1): 104–113.

Hathaway NJ, Parobek CM, Juliano JJ, Bailey JA (2018). SeekDeep: single-base resolution de
novo clustering for amplicon deep sequencing. Nucleic Acids Research, 46(4): e21.

Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. (2016). Global
epidemiology of plasmodium vivax. The American Journal of Tropical Medicine and Hygiene,
95(6): 15–34.

Juraska M, Gilbert PB (2016). Mark-specific hazard ratio model with missing multivariate
marks. Lifetime Data Analysis, 22(4): 606–625.



78 Liu, Y. et al.

Kalbfleisch JD, Prentice RL (2002). The statistical analysis of failure time data, volume 360.
John Wiley & Sons.

Lin DY, Wei LJ, Ying Z (1993). Checking the Cox model with cumulative sums of martingale-
based residuals. Biometrika, 80(3): 557–572.

Lin FC, Li Q, Lin JT (2020). Relapse or reinfection: classification of malaria infection using
transition likelihoods. Biometrics, 76(4): 1351–1363.

Lin JT, Hathaway NJ, Saunders DL, Lon C, Balasubramanian S, Kharabora O, et al. (2015).
Using amplicon deep sequencing to detect genetic signatures of plasmodium vivax relapse.
The Journal of Infectious Diseases, 212(6): 999–1008.

Lin JT, Patel JC, Kharabora O, Sattabongkot J, Muth S, Ubalee R, et al. (2013). Plasmodium
vivax isolates from Cambodia and Thailand show high genetic complexity and distinct patterns
of P. vivax multidrug resistance gene 1 (pvmdr1) polymorphisms. The American Journal of
Tropical Medicine and Hygiene, 88(6): 1116–1123.

Lon C, Manning JE, Vanachayangkul P, So M, Sea D, Se Y, et al. (2014). Efficacy of two versus
three-day regimens of dihydroartemisinin-piperaquine for uncomplicated malaria in military
personnel in northern Cambodia: an open-label randomized trial. PLoS ONE, 9(3): e93138.

Lu K, Tsiatis AA (2001). Multiple imputation methods for estimating regression coefficients in
the competing risks model with missing cause of failure. Biometrics, 57(4): 1191–1197.

McCullagh P, Nelder J (1989). Generalized linear models. Chapman and Hill.
Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Saif S, et al. (2012). The malaria

parasite plasmodium vivax exhibits greater genetic diversity than plasmodium falciparum.
Nature Genetics, 44(9): 1046–1050.

Parikh N, Boyd S (2014). Proximal algorithms. Foundations and Trends in Optimization, 1(3):
127–239.

Parobek CM, Bailey JA, Hathaway NJ, Socheat D, Rogers WO, Juliano JJ (2014). Differing
patterns of selection and geospatial genetic diversity within two leading plasmodium vivax
candidate vaccine antigens. PLoS Neglected Tropical Diseases, 8(4): e2796.

Qin J (1998). Inferences for case-control and semiparametric two-sample density ratio models.
Biometrika, 85(3): 619–630.

Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Suen CSLW, et al. (2015). Strategies for
understanding and reducing the plasmodium vivax and plasmodium ovale hypnozoite reser-
voir in Papua new guinean children: a randomised placebo-controlled trial and mathematical
model. PLoS Medicine, 12(10): e1001891.

Rubin DB (1976). Inference and missing data. Biometrika, 63(3): 581–592.
Schwarz G (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2): 461–464.
Sun Y, Gilbert PB (2012). Estimation of stratified mark-specific proportional hazards models

with missing marks. Scandinavian Journal of Statistics, 39(1): 34–52.
Taylor AR, Watson JA, Chu CS, Puaprasert K, Duanguppama J, Day NP, et al. (2019). Re-

solving the cause of recurrent plasmodium vivax malaria probabilistically. Nature Communi-
cations, 10(1): 1–11.

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B, 58(1): 267–288.

WHO (2019). World malaria report 2019. World Health Organization.
Zou H, Hastie T (2005). Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society: Series B, 67(2): 301–320.


	Introduction
	Plasmodium vivax Malaria Infection
	Competing Risks with Unknown Cause of Failure

	Model and Estimation
	Classification
	Based on Baseline Information
	Based on Both Baseline and Event Information
	Transition Likelihood

	Computation
	Estimation of Parameters
	Classification Algorithm

	Simulation Experiments
	Binary Covariates
	Normally Distributed Covariates
	Misspecified Hazard Functions

	Plasmodium vivax Malaria Infection Study
	Identify the Cause of Recurrence Infections
	Model Diagnosis and Sensitivity Analysis

	Discussion

