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Abstract

In omics studies, different sources of information about the same set of genes are often available.
When the group structure (e.g., gene pathways) within the genes are of interests, we combine
the normal hierarchical model with the stochastic block model, through an integrative clustering
framework, to model gene expression and gene networks jointly. The integrative framework
provides higher accuracy in extensive simulation studies when one or both of the data sources
contain noises or when different data sources provide complementary information. An empirical
guideline in the choice between integrative versus separate clustering models is proposed. The
integrative clustering method is illustrated on the mouse embryo single cell RNAseq and bulk
cell microarray data, which identified not only the gene sets shared by both data sources but
also the gene sets unique in one data source.

Keywords EM algorithm; empirical guidelines; microarray data; normal hierarchical model;
single cell RNAseq; stochastic block model

1 Introduction
Network analysis is the study of networks representing relationships (i.e., links or edges) between
objects (i.e., vertices or nodes). Examples of networks include social networks, World Wide
Web, protein-protein interactions, logistics supply chains, etc. A large number of probabilistic
and statistical models have been proposed (Goldenberg et al., 2010). In this paper, we focus on
community structure in networks, where a community is a set of nodes that is densely connected
internally and sparsely connected to the rest of the network.

Community structures are often reflected in the gene expression levels when genes in the
same cluster are expressed synergistically. Normal hierarchical model (NHM) is a special case of
Bayesian hierarchical models where individual observations follow normal distributions whose
mean parameters share a common prior (Morris and Lysy, 2012). We modify the classical NHM
by assuming one NMH in each gene cluster. That is, mean expression levels from genes in
different clusters follow normal prior distributions with different parameters.

The normal hierarchical model (NHM) is often employed in analyzing microarray data
(Thompson et al., 2020). However, single cell RNAseq data cannot be easily modeled by standard
probability distributions due to high levels of noises, dropouts, outliers and over-dispersion.
Therefore, we dichotomize connectivity measures in single cell RNAseq data and apply stochastic
block model (SBM) on the resulting gene network data. SBM is a popular community detection
approach on binary network data, which assumes that the link probability of each pair of nodes

∗Corresponding author. Email: yunpeng.zhao@asu.edu.

© 2022 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received April 6, 2021; Accepted October 12, 2021

mailto:yunpeng.zhao@asu.edu
https://creativecommons.org/licenses/by/4.0/


Integrative Clustering Analysis with Application in Multi-Source Gene Expression Data 15

is determined by their community labels (Holland et al., 1983). A lot of progresses have been
made on the theoretical justification and computational methods of SBM (Bickel and Chen,
2009; Karrer and Newman, 2011; Zhao et al., 2012; Bickel and Chen, 2009; Amini et al., 2013;
Abbe, 2017; Zhao, 2017). In gene network data, a pair of genes are considered to be connected
if their expressions are tightly related. The similarity of two gene expression profiles may be
measured by the Euclidean distance (Priness et al., 2007) or correlation coefficients (Zhang and
Horvath, 2005). The main goal is to partition the gene network into cohesive groups, which
may coincide with functional gene sets or pathways. Binary links in a gene network are defined
by setting thresholds on the distances or correlation values. The estimated group structure is
usually sensitive to the choice of the threshold and would be less reliable if an inappropriate
threshold was chosen (Perkins and Langston, 2009).

With more and more microarray and single cell RNA (scRNA) data in the public data
consortium, integrative analysis combining these two data sources has achieved higher accu-
racy and power in differential expression analysis (Forcato et al., 2021). Different sources of
gene expression data on the same set of genes collected under similar conditions often provide
complementary information on the underlying structure of gene sets or pathways. But there
lacks an integrative clustering method explicitly designed for joint analysis of microarray and
scRNA data. In multi-omics studies, integrative clustering methods can be roughly classified into
five categories (Rappoport and Shamir, 2018): concatenating matrices (Wu et al., 2015; Wang
et al., 2013), clustering omics separately followed by integration of clusters (Hoadley et al., 2014;
Nguyen et al., 2017), integrating similarities (Wang et al., 2014), dimension reduction followed
by clustering (Lock et al., 2013; Zhang et al., 2012) and probability clustering (Mo et al., 2013;
Lock and Dunson, 2013). The proposed method falls into the category of probability clustering
models, since it combines the log likelihoods of the NHM and the SBM on two sets of data
from independent data sources. Specifically, the NHM describes the clustering structure on the
mean values of gene expression levels, while the SBM extracts groups using mutual distances
between genes. The integrative log-likelihood equals the sum of the log-likelihood from a hier-
archical model on the microarray data and the log-likelihood from a stochastic block model on
the binary network from scRNA data.

The rest of the paper is organized as follows. In Section 2, a novel EM algorithm is pro-
posed, which combines the pseudo-likelihood method (Amini et al., 2013) for the SBM and the
NHM. Extensive simulation studies are carried out in Section 3. We examine the performance
of integrative clustering versus separate clustering in the presence of contamination as well as
orthogonal community structures in different data sources. In most scenarios the proposed inte-
grative method has a higher accuracy in identifying the latent community structure compared
to the methods using a single data source. Furthermore, we provide empirical guidelines for the
choice between integrative analysis and separate analysis. In Section 4, our integrative clustering
model is applied to a microarray data and an scRNA data, measuring gene expression levels in
mouse embryo cells under the same experimental conditions, independently generated in two
different labs. Section 5 discusses limitations and future research directions.

2 Methods

2.1 Normal Hierarchical Model for Gene Expression Data

We adopt NHM to model the normalized counts of gene expression. Specifically, the means of
gene-specific expression levels share group-level prior distributions. We first set up the notations.
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Suppose there are p genes and n subjects. The expression level of gene i (i = 1, . . . , p) in
subject j (j = 1, . . . , n) (after proper transformations) is denoted by xij , and let X = [xij ].
Let c = (c1, . . . , cp) where ci is the community label of gene i and there are K non-overlapping
communities in total. Let P(ci = k) = πk, k = 1, . . . , K, π = (π1, . . . , πK)T . We further assume
xij follows N(μik, 1/γi) given ci = k, where the gene-specific precision γi is treated as a fixed
parameter, which is estimated using observation from gene i. And μik follows a prior distribution
N(μk, 1/ηk), where μk and ηk are the group-level mean and precision, respectively. Let θk =
(μk, ηk). The likelihood of the NHM is

f (xij |ci = k, γi, μik) = 1√
2π

γ
1
2

i exp

(
−(xij − μik)

2γi

2

)
,

f (μik|θk) = 1√
2π

η
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2
k exp

(
−(μik − μk)

2ηk

2

)
.

Furthermore, let xi = (xi1, . . . , xin), and the probability density function for the posterior distri-
bution of μik given xi is

f (μik|xi, ci = k, θk, γi) ∝ f (xi |ci = k, μik, γi)f (μik|μk, ηk)

= (2π)− n
2 (γi)

n
2 exp

⎧⎨
⎩−1

2
γi

n∑
j=1

(xij − μik)
2

⎫⎬
⎭ ×

(2π)− 1
2 (ηk)

1
2 exp

{
−1

2
ηk(μik − μk)

2

}

∝ exp

{
−1

2
(ηk + nγi)

(
μik − ηkμk + γi

∑
xij

ηk + nγi

)2
}

.

Since the prior on μik is a conjugate prior, the posterior distribution is still normal. That is,

μik|xi, ci = k, θk, γi ∼ N

(
ηkμk + γi

∑
xij

ηk + nγi

,
1

ηk + nγi

)
.

Finally, the probability density function of xi conditional on ci = k (with μik being integrated
out), denoted as fX(xi |θk, ci = k), k = 1, . . . , K, goes as follows

fX(xi |θk, ci = k) = (2π)− n
2

γ
n
2

i η
1
2
k

(ηk + nγi)
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2

×

exp
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⎣ηk
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2 + nγi
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⎤
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⎫⎬
⎭ . (1)

We use the sample variance to estimate γi , that is, [ 1
n−1

∑n
j=1(xij − x̄i)

2]−1, and replace γi

by the estimator in formulas hereafter. Next we apply the EM algorithm to obtain the MLE of
{πk} and {θk}.

Let

Tk,i = P(ci = k|xi, {πk}, {θk}) = fX(xi |θk, ci = k)πk∑K
l=1 fX(xi |θl, ci = l)πl

,

L({πk}, {θk};X, {ci})] = fX(X|{θk}, {ci})P ({ci}|{πk}), k = 1, . . . , K, i = 1, . . . , p.
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Then the expectation of the log-likelihood function in the t-th iteration of the EM algorithm,
with respect to the conditional distribution of {ci} given X, {πk} and {θk} is

E{ci }|X,{πk}(t),{θk}(t)[log L({πk}(t), {θk}(t);X, {ci})] =
p∑

i=1

K∑
k=1

T
(t)
k,i [log π

(t)
k + log f (xi |θ(t)

k , ci = k)].

In the M-step,

π(t+1) = arg max
π
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K∑
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T
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Because the optimization problem above does not have a closed-form solution, BFGS quasi-
Newton method (Fletcher, 2013) is employed using the R function optim.

2.2 Pseudo-Likelihood Method for the Stochastic Block Model

We adopt the stochastic block model (SBM) to model the community structure within a network
with binary edges, that is, an adjacency matrix A = [Aii′ ] with Aii′ = 1 if node i and i ′ are
connected, Aii′ = 0 otherwise. The SBM assumes that the linkage probability between a pair
only depends on the community labels ci and ci′ of the two endpoints. It is well known that
the E-step of a classical EM algorithm is intractable when applied to the SBM. Amini et al.
(2013) proposed a scalable pseudo-likelihood method that can fit a large network under the
SBM efficiently. The key idea is to approximate the original adjacency matrix by a sample from
a mixture of multivariate Poisson distributions and fit the model by a standard EM algorithm.
We summarize this method below. Let e = (e1, . . . , ep) be an initial community assignment.
Define bik = ∑

i′ Aii′1(ei′ = k) for i = 1, . . . , p and k = 1, . . . , K. Let bi = (bi1, . . . , biK).
As observed by Amini et al. (2013), each bi approximately follows a mixture of multivariate

Poisson distribution. That is, given ci = k, bil is approximately Poisson with mean denoted by λkl,
l = 1, · · · , K. Moreover, as observed by Amini et al. (2013), {bi} are approximately independent
across i because bik and bi′l (i �= i ′) share at most one common link, and are approximately
independent when p is large. Letting λk = (λk1, . . . , λkK), the conditional probability of bi given
ci = k is (up to a constant)

fA(bi |λk, ci = k) = exp

(
−

K∑
l=1

λkl

K∏
l=1

λ
bil

kl

)
, (2)
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and the joint pseudo log-likelihood is (up to a constant)

p∑
i=1

log

[
K∑

k=1

πk exp

(
−

K∑
l=1

λkl

)
K∏

l=1

λ
bil

kl

]
.

A maximum pseudo-likelihood estimate of {πk}, {λk} can then be obtained via the standard
EM algorithm for mixture models. Once the EM converges, the initial community assignment
e is updated to the most current estimate of node labels. This process is repeated for a fixed
number of iterations. In practice, Amini et al. (2013) observed that it usually takes a small
number of updates to stabilize e.

Finally, we specify the choice of initial values {π(0)
k }, {λ(0)

k } as proposed in Amini et al. (2013).
Given the initial community assignment e obtained by spectral clustering,

π
(0)
k = 1

p

p∑
i=1

1(ei = k), (3)

λ
(0)
kl =

∑
ii′

Aii′1(ei = k, ei′ = l)/
∑

i

1(ei = k). (4)

2.3 Integrative Method

In the presence of both microarray data and the binary adjacent matrix, we combine the log-
likelihood from the NHM and the log-pseudo-likelihood from the SBM to infer the underlying
community structure. To specify the joint likelihood, we make the following two additional
assumptions:
1. X and A share the same community labels c;
2. Given c, X and A are independent.

Recall that xi is the row of X corresponding to gene i and bi is a K-dimensional vector
that measures the connections between node i and each block according to the initial labeling e.
Based on the assumptions above, the integrative pseudo-likelihood for (xi, bi) given ci = k is

IG(xi, bi; θk, λk) = fX(xi |θk, ci = k)fA(bi |λk, ci = k),

where fX(xi |θk, ci = k) and fA(bi |λk, ci = k) are defined in (1) and (2), respectively. As in
Section 2.2, a maximum likelihood estimate of ({πk}, {θk}, {λk}) can be obtained via the EM
algorithm. After the EM loop converges, we use the estimated posterior probabilities to update
the labeling e and re-compute {bi}.

We now give the detailed algorithm. Start with initial labeling e and initial parameters
({π(0)

k }, {θ(0)
k }, {λ(0)

k }). Then repeat the process below T times:
(1) Compute bik according to e as

bik =
∑

i′
Aii′1(ei′ = k), i = 1, . . . , p, k = 1, . . . , K.

(2) Use current parameter estimates π(t), θ(t) to compute the conditional probabilities for node
labels as

T
(t)
k,i = P(ci = k|xi, bi) = π

(t)
k IG(xi, bi; θ

(t)
k , λ

(t)
k )∑K

l=1 π
(t)
l IG(xi, bi; θ

(t)
l , λ

(t)
l )

, i = 1, . . . , p, k = 1, . . . , K.
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(3) Given T
(t)
k,i , update ({π(t+1)

k }, {θ(t+1)
k }, {λ(t+1)

k }) as

π
(t+1)
k = 1

p

p∑
i=1

T
(t)
k,i , k = 1, . . . , K,

θ
(t+1)
k = arg max

θk

p∑
i=1

T
(t)
k,i log fX(xi |θk, ci = k), k = 1, . . . , K,

and

λ
(t+1)
kl =

∑p

i=1 T
(t)
k,i bil∑p

i=1 T
(t)
k,i

, k = 1, . . . , K, l = 1, . . . , K.

(4) Repeat steps (2) and (3) until convergence.
(5) Update labels by ei = arg maxk T

(t+1)
k,i , i = 1, . . . , p.

3 Simulation
In this section, we evaluated the performance of the proposed integrative method by simulation
studies. We fixed p = 1000, n = 40, K = 3, π = (0.3, 0.3, 0.4) and repeated T = 12 times in the
outer loop of the integrative EM algorithm, which is sufficient for estimated labels reaching the
stable status in most cases. Conditional on the labels, the gene expression data xij (i = 1, . . . , p,
j = 1, . . . , n) were generated from the NHM, that is, xij |ci = k ∼ N(μik, γi), where μik ∼
N(μk, ηk). We chose (μ1, η1) = (−0.5, 1/0.36), (μ2, η2) = (2, 1/0.36), (μ3, η3) = (4, 1/0.64), and
γi were independently generated by 1/(Unif(0.2, 1.5))2. Conditional on the labels, the edges of
A were generated as independent Bernoulli variables with probability 0.12 if a pair of nodes are
from the same community, otherwise with probability 0.06.

We further introduced contamination in X and A. Specifically, for X, let each xi =
(xi1, . . . , xin) be replaced by an n × 1 vector where each component was sampled from N(2.5, 1)

independently with probability p.noise.X. For A, we randomly chose pairs of nodes with prob-
ability p.noise.A, and set their linkage probability to be p0 = 0.0001. Both p.noise.X and
p.noise.A varied from 0.1 to 0.9 with increments 0.1.

For the NHM, we first applied k-means to find the initial labels and given the initial labels,
we computed the maximum likelihood estimates and used them as {θ(0)

k }. For the SBM, the
initial labels were produced by spectral clustering and {π(0)

k }, {λ(0)
k } are computed according to (3)

and (4). For the integrative model, we obtained initial values {θ(0)
k } from X and {π(0)

k }, {λ(0)
k } from

A, respectively, by the aforementioned methods. The EM algorithm starts from an E-step using
the initial parameter estimates.

To compare the estimated labels with the true labels, we use the adjusted Rand index (ARI),
which is a measure of similarity between two partitions. Higher ARI indicates higher degree of
agreement between two sets of labels (Rand, 1971). Each plot shows three ARIs, representing
the performance of three methods: the NHM using X alone, the SBM using A alone, and the
integrative method (IG) using both data types. Additionally, we plot the ARI measuring the
similarity between labels estimated from NHM and SBM (denoted as “NHM vs SBM” in the
legend).

Figure 1 shows the four sets of ARI values with varied p.noise.X (from 0.1 to 0.9) and
p.noise.A (from 0.1 to 0.9). As expected, the performance of all three methods becomes worse
as the contamination levels in two data sources increase. The integrative method performs
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Figure 1: Comparison of the performance of integrative method vs SBM along vs NHM alone
when X and A share a common community structure: the ARI between true/estimated and
estimated labels as a function of p.noise.X and p.noise.A.

better than both SBM and NHM when the contamination levels in X and A are from low to
moderate, say both less than 0.4. On the other hand, when one data source contains a high level
of contamination while the other has low contamination levels, for example, p.noise.X = 0.1
and p.noise.A = 0.9, the integrative model is no longer better than the method using the
single source with little contamination. Without knowledge of which data source contains more
contamination, the integrative method is a safe choice because it is always better than the worse
one among the two data sources. However, if we know one data source is less contaminated than
the other, we need to choose either the integrative or the better data source alone depending
on the contamination levels. We therefore propose an empirical guideline in the choice between
the integrative method and separate clustering analysis on individual data sources in the next
section.
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Table 1: Thresholds at different p.noise.X levels, K from 3 to 8.

K Threshold
p.noise.X = 0.1 p.noise.X = 0.2 p.noise.X = 0.3 p.noise.X = 0.4 Overall

3 0.039 0.026 0.016 0.180 0.180
4 0.059 0.049 0.213 0.147 0.213
5 0.024 0.021 0.014 0.084 0.084
6 0.032 0.024 0.018 0.006 0.032
7 0.020 0.016 0.011 0.007 0.020
8 0.015 0.009 0.007 0.005 0.015
3∗ 0.084 0.014 0.352 0.224 0.352
4∗ 0.058 0.046 0.031 0.163 0.163

3.1 Empirical Guidelines Choosing Between Integrative and Separate Anal-
yses

Figure 1 indicates an interesting pattern across the four sets of ARIs. The ARI between the
community estimates from A (SBM) and X (NHM) alone is small when the contamination level
is heavy in either data source, which coincides with the performance pattern of the integrative
model. That is, when the ARI between NHM and SBM is small, the integrative model is no longer
the best. Therefore, we searched for a threshold in the ARI between NHM and SBM, below which
the performance of our integrative model is inferior to at least one of the methods using a single
data source. The first section of Table 1 lists the four thresholds from the first four subplots in
Figure 1 when K = 3. As shown in the plots, for p.noise.X = 0.1, 0.2, 0.3, the integrative model
performs the best in almost the entire range of p.noise.A, except for p.noise.A = 0.9. Thus
the thresholds are equal to the second to the smallest ARI values between NHM and SBM at
p.noise.A = 0.9. For p.noise.X = 0.4, the integrative model is the best when green line is above
0.18 at p.noise.A = 0.1, after which the integrative method is slightly worse than the SBM,
and we employ the ARI between X and A at p.noise.A = 0.1 as the corresponding threshold.
We do not show the thresholds for p.noise.X � 0.5 because our simulation (Figure 1) shows
the integrative model is not the best even when p.noise.A = 0.1, and the ARIs between X and
A are always lower than 0.12, which is the first ARI value of the green curve in Figure 1 at
p.noise.X = 0.5. In summary, when K = 3 and the ARI between NHM and SBM is above 0.18,
the integrative method using both data sources outperforms the clustering method using single
source under our setup.

We carried out additional simulations to investigate how the threshold changes with the
number of clusters K. We repeated the experiments as shown in Figure 1 under different K

values, from 4 to 8. For each K, the true labels were evenly allocated, i.e., π = (1/K, . . . , 1/K).
Parameters in the NHM, (μk, ηk) for k = 1, 2, 3 were the same as the settings in the previous
simulation. For k from 4 to 8, we further set μ4 = 1, μ5 = 3, μ6 = 5, μ7 = 6, μ8 = 7 and
ηk = 1/0.36. Moreover, the edges of A were generated as independent Bernoulli variables with
probability 0.12 for within community pairs and probability 0.06 for between community pairs.
The resulted thresholds versus the numbers of clusters are listed in blocks 2-6 of Table 1. The
contaminations in A and X are generated in the same way as those in Figure 1. The column
of overall thresholds lists the thresholds above which integrative analysis performs better for
different K values. Table 1 shows that when K becomes larger, one can in general expect a
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smaller threshold value. This may arise from the increasing possibilities of cluster memberships
for each node when K is large, hence harder to reach an agreement between two sets of estimated
clustering labels even though their data sources share a similar underlying clustering structure.

Lastly, the thresholds may depend on the parameter setting in the data generation pro-
cess. Therefore, we recommend researchers run simulations based on the estimated values of
parameters from their data to choose appropriate thresholds. We ran two sets of simulations,
3∗ and 4∗ in Table 1, to examine the robustness of thresholds from simulations using estimated
parameters. We first generated X with p.noise.X = 0.1 and A with p.noise.A = 0.1 under the
same setting as Section 3.1. We then fitted the NHM on X and the SBM on A respectively, and
used the estimated parameters to generate data and find the thresholds for K = 3 and 4. The
estimated parameters can be viewed as a perturbation of the original parameters. Although the
thresholds in 3∗ and 4∗ are not identical to those in the two sets of simulations with K = 3 and
K = 4, they are close numerically with the same decreasing trend.

3.2 Performance Under Unequal Community Structures

The previous simulation studies demonstrate that the integrative method pools different infor-
mation sources and achieves higher accuracy when the ground truth of label cX from X and cA

from A are identical, i.e., cXi = cAi for i = 1, . . . , p. Most of the existing integrative methods
such as Wang et al. (2014), Yan and Sarkar (2021), Xu et al. (2012), and Newman and Clauset
(2016) also assume the same underlying community structure among different data sources.
However, under real life scenarios, whether different data sources share the same underlying
community structure is unknown. Furthermore, it is possible that two different data sources
contain different yet complementary community structures. In those cases, the overall commu-
nity structure is the overlap of two sets of clusters. A pair of genes belongs to the same group
in the overall community structure if and only if they belong to the same group in the clus-
ters from X and also in the clusters from A. Below we demonstrate through simulations that
the integrative method still provides higher accuracy in identifying the overall structure from
two different sets of communities. Specifically, we investigate the performance of the integrative
method given independent community labels cX and cA.

We first generated cX and cA independently with K = 2, both by p random draws from
Multinomial(1, (0.5, 0.5)). Then we constructed the overall c with K = 4 where

ci =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 cXi = cAi = 1

2 cXi = 1, cAi = 2

3 cXi = 2, cAi = 1

4 cXi = cAi = 2

, i = 1, . . . , p.

Given cX, X was generated from the NHM with (μ1, η1) = (2, 1/0.25), (μ2, η2) = (4, 1/0.25) and
γi (i = 1, 2, . . . , p) were independently generated by 1/(Unif(0.2, 1.5))2. Given cA, A was gener-
ated under the setup of within-community connection probability 0.1 and between-community
connection probability 0.06. For this scenario, we also introduced contamination into both X

and A by the same way in Section 3.1.
In Figure 2, the ARIs for the integrative model, the NHM and the SBM were calculated

by comparing their estimated labels with the overall cluster structure c. When estimating un-
der integrative model, we set K = 4; under the NHM and SBM, we set K = 2. Similar to
what we observe in Figure 1, the integrative model is better at capturing the overall clustering
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Figure 2: Comparison of the performance of integrative method vs SBM along vs NHM alone
when X and A have independent community structures: the ARI between true/estimated and
estimated labels as a function of p.noise.X and p.noise.A.

structure than the separate models unless the contamination level is very high in one source
and low in the other source, in which case the source with less contamination alone is the best
choice. When both contamination levels in X and A are high, the performance of the integra-
tive method tends to overlap with that of the SBM method on data source A, possibly due to
the fact that IG(xi, bi; θk, λk) is dominated by fA(bi |λk, ci = k) in the calculation of posterior
probabilities.

3.3 BIC-Type Criteria to Choose K

The BIC-type model selection criteria have been proposed to select the number of communities
in networks, e.g., BIC (Saldana et al., 2017) and CBIC (Hu et al., 2020). Additional simulations
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Figure 3: Values of BIC and CBIC over K in integrative network analysis.

were run to examine whether the BIC-type criteria are appropriate for integrative network
analysis. We generated X and A with the true community number K = 4 and p.noise.A = 0.2,
p.noise.X = 0.2. The rest of the parameter setting was identical to Section 3.1. We fitted the
integrative model with K = 2, . . . , 10, and used the three BIC-type criteria – BIC, CBIC with
λ = 0.5, and CBIC with λ = 2 for model selection. Here we followed the definition of BIC and
CBIC in Hu et al. (2020). That is, the three criteria are defined in the form of 2(log likelihood)−
penalty. The simulation was repeated 100 times. The three lines in Figure 3 show the average
values of BIC, CBIC with λ = 0.5, and CBIC with λ = 2. Both BIC and CBIC with λ = 0.5
reached their maximum at K̂ = 4 in all 100 replicates while CBIC with λ = 2 picked K̂ = 2
in all 100 replicates. It can be seen that CBIC with λ = 0.5 gives the most clear upside-down
U-shape.

3.4 Robustness to Correlated Data Sources

Two correlated data sets X(1) and X(2) were generated under the NHM following the setup
with K = 3, where the correlation coefficients between X

(1)
ij and X

(2)
ij varied from 0 to 0.8 with

increments of 0.2. We added contamination to X(1) with p.noise.X = 0.2. Furthermore, we
generated an adjacency matrix A with each entry Aij being 1 with probability equal to the
inverse distance in X(2), which were capped at 1. Finally, contamination was added to A with
p.noise.A = 0.4. We then fitted the NHM on X(1), the SBM on A, and the integrative model
on both. The simulation was repeated 200 times and the results were reported in Figure 4.
There is no visible deteriorating performance as the correlation increases. Although correlated,
A still provide extra information about the underlying community structure and the integrative
analysis is always more accurate than either SBM on A alone or NHM alone, especially in the
presence of contaminations in both data sources.
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Figure 4: Comparison of the performance of integrative method vs SBM along vs NHM alone
when X and A are correlated: the ARI between true and estimated labels as a function of
correlation coefficients.

4 Clustering Analysis for Mouse Embryo Data
The integrative clustering method is applied to two independent data sets, both of which measure
gene expressions in mouse embryonic cells. One is a microarray data set from Moliner et al. (2008)
that measured gene expressions in bulk mouse embryonic stem (ES) cells. The other one is the
scRNA sequence data in individual mouse ES cells from Islam et al. (2011). Cell samples in
these two independent studies were cultivated following the same protocol (Andäng et al., 2008)
and they were used as benchmark data sets sharing the same biomarker information in many
bioinformatics papers (Wang et al., 2019; Di et al., 2011). The original bulk and single cell data
were merged by gene names and genes that dropped out in more than 40 out of a total of 92 cells
in the single cell data are deleted. After the pre-processing, there are 1015 genes shared by the
microarray data and the scRNA data. Row data counts from both datasets were transformed
using log-count-per-million (logCPM).

Both microarray and scRNA sequencing are high-throughput techniques that measure thou-
sands to millions of genes simultaneously. Single cell expression data measure gene-specific tran-
script counts in individual cells, one cell at a time. Microarray data are gene expression levels
from different samples, where each sample is a collection of cells. If all cells in a microarray
sample have the same expression pattern, the two data sources would have the same underly-
ing community structure/gene pathways. In this case, including both datasets in an integrative
clustering analysis would lead to increased sample size and higher accuracy, especially given
the extra noisy scRNA data. However, usually cells are heterogeneous with different expres-
sion patterns and scRNA data would provide information on individual cell level correlations
between genes besides their mean levels. At the same time, scRNA has low data quality due
to the limitation in sequencing a tiny amount of transcripts in a single cell. On the contrary,
microarray data measures the average expression with high quality. Therefore, microarray data
provide information on the clustering structure of the mean expression levels. The clustering
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Table 2: Comparison of binary adjacency matrices using different thresholds.

Threshold
0.024 0.022 0.021 0.020

Graph density 0.050 0.100 0.150 0.200
Signed R2 0.669 0.495 0.236 0.058
ARI with X 0.290 0.283 0.239 0.247

structure on means (similar mean levels) and that on correlations (simultaneous expression)
may not always agree. They can be viewed as complementary information on gene pathways
where genes interact and collaborate to complete specific biological processes.

Microarray data are often modeled as normally distributed but the scRNA data are far
from normal due to the extra noise in sequencing single cells (dropout, over-dispersion, batch
effects, outliers, heterogeneity across cells, etc.). We ran additional simulations to examine the
performance of the SBM on binary adjacent matrices converted from data generated under the
NHM, which is robust and achieves similar ARI as NHM on the original data. Therefore, we
treated the bulk cell microarray data as the multivariate normal X and summarized scRNA
data into a binary adjacency matrix A. We constructed an affinity matrix based on the scRNA
data where the affinity value was calculated as the inverse of the Euclidean distance between
two genes. The range in the affinity matrix was further normalized into [0,1] through rescaling.
The affinity matrix was further converted into a binary adjacency matrix where links with
affinity values higher than 0.024 were set to be one and zero otherwise. This threshold of affinity
value was chosen based on overall considerations of scale free topology fitting index signed R2

(Zhang and Horvath, 2005), average link density and ARI with the microarray data X. Our
choice of threshold 0.024 corresponds to the adjacency matrix with density approximately 0.05.
Additionally, we tried three other thresholds 0.022, 0.021, and 0.020, corresponding to graph
densities approximately 0.10, 0.15, and 0.20. The threshold 0.024 gave an adjacent matrix with
the highest scale-free topology fitting index signed R2 and the highest ARI with the microarray
data X (Table 2).

We fitted the SBM on the scRNA adjacency matrix (A) and the NHM on the normalized
bulk cell microarray data (X). The clusters from spectral clustering on A served as the initial
labels in the pseudo-likelihood method for the SBM. The parameter estimates based on clusters
from k-means on X were used as initial values for the EM algorithm of the NHM. The two sets
of estimated labels from SBM on A only and NHM on X only were compared using ARI in
Figure 5A. The figure shows that the ARI between NHM from X and the SBM from A decreases
when the K increases. The ARI between the estimated clusters from the two data sources is
larger than the reference threshold values in Table 1 under the corresponding K, suggesting
potential benefits to conduct the integrative clustering method pooling information from both
X and A.

We found a set of initial labels for the integrative model by combining the clustering struc-
tures from both data sources. An affinity matrix, denoted as aff(X), was produced from X by
using the same inverse Euclidean transformation as we did in the scRNA data. Spectral clus-
tering was conducted on aff(X) + A and the resulted labels were used as the initial labels in the
integrative model. BIC and CBIC with λ = 0.5 and 2 were calculated as criteria to choose the
number of clusters. The BIC and CBIC values of the group labels estimated from the integrative
model versus the number of clusters K are plotted in Figure 5B. From the figure, the BIC and
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Figure 5: A (left panel): The ARI between estimated labels from X and A as a function of the
number of clusters K; B (right panel): The BIC and CBIC (λ = 0.5, 2) as a function of the
number of clusters K.

CBICs generally increase as the number of clusters K gets larger. The BIC (blue line) is always
the highest followed by CBIC with λ = 0.5, due to the different penalty terms associated with
K. We chose K = 14 because after this point all lines had their first drop. The clusters identified
by the proposed integrative method as well as the results from single data sources were com-
pared with known gene sets in MSigDB (https://www.gsea-msigdb.org/gsea/msigdb) to screen
for gene sets with significant overlap. The three sets of results (known gene sets with significant
overlap) using p-values threshold of 10−20 are exhibited in Table 3, Table 4 and Table 5 for the
integrative model, the NHM and the SBM, respectively.

There are 32 gene sets in Table 3, 31 in Table 4, and 35 in Table 5. The last column is
the cluster id that overlaps with the corresponding gene set. From the integrative clustering
model, cluster 10 overlaps with 26 gene sets (p-values < 10−20). Similarly, cluster 5 identified by
the NHM on the bulk cell microarray data and cluster 3 by the SBM on the scRNA data also
overlap with 26 and 28 gene sets, respectively. These three clusters estimated from the three
models include 65, 60 and 65 genes respectively and share 31 genes in common. Moreover, 24 out
of 26 common gene sets from Table 4 and Table 5, where most of them involve crucial functions
in the early developments of an organism, were also identified by the integrative method in
Table 3. Four gene sets discovered by the SBM in Table 5 but missed by the NHM in Table 4 are
actually reported by the integrative model in Table 3. Two gene sets that are uniquely discovered
by the integrative method, did not reach the p-value threshold of 10−20 in the methods using
one data set alone (p-values = 3.65 × 10−7, 8.43 × 10−10 in X and 4.97 × 10−11, 2.03 × 10−19

in A).

5 Discussion and Future Research Directions
We proposed an integrative clustering method that combines the NHM for microarray data
and the SBM for a binary adjacency matrix derived from scRNA data. An EM algorithm was
developed following the spirit of the pseudo-likelihood method (Amini et al., 2013). In real ap-
plications, since researchers often do not know whether the underlying community structures
in different data sources agree, a challenging question is whether integrative method provides
higher accuracy than separate clustering analysis on individual data sources. We proposed an

https://www.gsea-msigdb.org/gsea/msigdb
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Table 3: GSEA for gene clusters identified by the integrative clustering model.

Gene set name p-value FDR q-value K

REACTOME NONSENSE MEDIATED DECAY NMD
INDEPENDENT OF THE EXON JUNCTION
COMPLEX EJC

1.90 × 10−68 1.04 × 10−64 10

HSIAO HOUSEKEEPING GENES 1.13 × 10−67 3.11 × 10−64 10
KEGG RIBOSOME 8.85 × 10−67 1.62 × 10−63 10
REACTOME SRP DEPENDENT
COTRANSLATIONAL PROTEIN TARGETING TO
MEMBRANE

5.85 × 10−66 8.05 × 10−63 10

REACTOME NONSENSE MEDIATED DECAY NMD 1.45 × 10−65 1.59 × 10−62 10
REACTOME SELENOAMINO ACID METABOLISM 2.61 × 10−65 2.39 × 10−62 10
REACTOME EUKARYOTIC TRANSLATION
INITIATION

4.65 × 10−65 3.65 × 10−62 10

REACTOME INFLUENZA INFECTION 5.83 × 10−64 4.01 × 10−61 10
REACTOME REGULATION OF EXPRESSION OF
SLITS AND ROBOS

7.99 × 10−60 4.88 × 10−57 10

REACTOME RRNA PROCESSING IN THE
NUCLEUS AND CYTOSOL

3.42 × 10−58 1.88 × 10−55 10

REACTOME RRNA PROCESSING 2.40 × 10−57 1.20 × 10−54 10
REACTOME SIGNALING BY ROBO RECEPTORS 1.74 × 10−56 7.97 × 10−54 10
REACTOME INFECTIOUS DISEASE 8.35 × 10−56 3.53 × 10−53 10
REACTOME TRANSLATION 9.95 × 10−55 3.91 × 10−52 10
REACTOME AXON GUIDANCE 1.50 × 10−52 5.49 × 10−50 10
REACTOME METABOLISM OF AMINO ACIDS
AND DERIVATIVES

3.63 × 10−49 1.25 × 10−46 10

REACTOME DISEASE 1.05 × 10−48 3.38 × 10−46 10
REACTOME DEVELOPMENTAL BIOLOGY 3.18 × 10−42 9.71 × 10−40 10
REACTOME METABOLISM OF RNA 2.78 × 10−41 7.85 × 10−39 10
BILANGES SERUM AND RAPAMYCIN SENSITIVE
GENES

2.86 × 10−41 7.85 × 10−39 10

DIAZ CHRONIC MEYLOGENOUS LEUKEMIA UP 3.06 × 10−36 1.68 × 10−32 13
OSMAN BLADDER CANCER DN 6.46 × 10−31 1.69 × 10−28 10
LOPEZ MBD TARGETS 3.04 × 10−27 8.36 × 10−24 2
REACTOME ACTIVATION OF THE MRNA UPON
BINDING OF THE CAP BINDING COMPLEX AND
EIFS AND SUBSEQUENT BINDING TO 43S

3.73 × 10−29 9.34 × 10−27 10

WANG TUMOR INVASIVENESS UP 1.59 × 10−28 3.79 × 10−26 10
PECE MAMMARY STEM CELL UP 4.97 × 10−28 1.14 × 10−25 10
CHNG MULTIPLE MYELOMA HYPERPLOID UP 2.68 × 10−27 5.89 × 10−25 10
REN ALVEOLAR RHABDOMYOSARCOMA DN 9.65 × 10−26 5.31 × 10−22 4
PUJANA BRCA1 PCC NETWORK 4.53 × 10−25 1.24 × 10−21 13
TIEN INTESTINE PROBIOTICS 6HR UP 7.00 × 10−25 1.48 × 10−22 10
PILON KLF1 TARGETS DN 7.62 × 10−24 1.40 × 10−20 13
GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 2.20 × 10−21 3.03 × 10−18 13
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Table 4: GSEA for gene clusters identified by the NHM.

Gene set name p-value FDR q-value K

KEGG RIBOSOME 6.53 × 10−66 3.59 × 10−62 5
REACTOME NONSENSE MEDIATED DECAY NMD
INDEPENDENT OF THE EXON JUNCTION
COMPLEX EJC

1.17 × 10−64 3.21 × 10−61 5

REACTOME SRP DEPENDENT
COTRANSLATIONAL PROTEIN TARGETING TO
MEMBRANE

2.30 × 10−62 4.22 × 10−59 5

REACTOME REGULATION OF EXPRESSION OF
SLITS AND ROBOS

3.28 × 10−62 4.51 × 10−59 5

REACTOME NONSENSE MEDIATED DECAY NMD 5.30 × 10−62 5.84 × 10−59 5
REACTOME SELENOAMINO ACID METABOLISM 9.14 × 10−62 8.38 × 10−59 5
REACTOME EUKARYOTIC TRANSLATION
INITIATION

1.56 × 10−61 1.22 × 10−58 5

REACTOME SIGNALING BY ROBO RECEPTORS 7.18 × 10−59 4.94 × 10−56 5
HSIAO HOUSEKEEPING GENES 4.66 × 10−58 2.85 × 10−55 5
REACTOME INFLUENZA INFECTION 5.54 × 10−58 3.05 × 10−55 5
REACTOME RRNA PROCESSING IN THE
NUCLEUS AND CYTOSOL

3.60 × 10−55 1.78 × 10−52 5

REACTOME RRNA PROCESSING 2.18 × 10−54 9.99 × 10−52 5
REACTOME INFECTIOUS DISEASE 1.26 × 10−53 5.35 × 10−51 5
REACTOME AXON GUIDANCE 3.66 × 10−53 1.44 × 10−50 5
REACTOME TRANSLATION 1.03 × 10−49 3.80 × 10−47 5
REACTOME METABOLISM OF AMINO ACIDS
AND DERIVATIVES

8.81 × 10−47 3.03 × 10−44 5

REACTOME METABOLISM OF RNA 1.22 × 10−43 3.95 × 10−41 5
REACTOME DEVELOPMENTAL BIOLOGY 4.00 × 10−43 1.22 × 10−40 5
REACTOME DISEASE 1.93 × 10−41 5.59 × 10−39 5
BILANGES SERUM AND RAPAMYCIN SENSITIVE
GENES

7.92 × 10−34 2.18 × 10−31 5

REN ALVEOLAR RHABDOMYOSARCOMA DN 7.85 × 10−32 4.32 × 10−28 1
REACTOME ACTIVATION OF THE MRNA UPON
BINDING OF THE CAP BINDING COMPLEX AND
EIFS AND SUBSEQUENT BINDING TO 43S

5.8 × 10−30 1.52 × 10−27 5

MARTENS TRETINOIN RESPONSE DN 3.06 × 10−29 7.65 × 10−27 5
KIM BIPOLAR DISORDER OLIGODENDROCYTE
DENSITY CORR UP

1.38 × 10−28 3.79 × 10−25 14

TIEN INTESTINE PROBIOTICS 6HR UP 1.49 × 10−25 3.56 × 10−23 5
KIM ALL DISORDERS OLIGODENDROCYTE
NUMBER CORR UP

1.76 × 10−24 3.22 × 10−21 14

WANG TUMOR INVASIVENESS UP 5.74 × 10−24 1.32 × 10−21 5
PASINI SUZ12 TARGETS DN 2.76 × 10−23 1.52 × 10−19 8
DIAZ CHRONIC MEYLOGENOUS LEUKEMIA UP 1.02 × 10−22 5.62 × 10−19 3
BILANGES SERUM RESPONSE TRANSLATION 4.47 × 10−21 9.84 × 10−19 5
OSMAN BLADDER CANCER DN 5.04 × 10−21 1.07 × 10−18 5
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Table 5: GSEA for gene clusters identified by the SBM.

Gene set name p-value FDR q-value K

REACTOME NONSENSE MEDIATED DECAY NMD
INDEPENDENT OF THE EXON JUNCTION COMPLEX EJC

1.90 × 10−68 1.04 × 10−64 3

HSIAO HOUSEKEEPING GENES 1.13 × 10−67 3.11 × 10−64 3
KEGG RIBOSOME 8.85 × 10−67 1.62 × 10−63 3
REACTOME SRP DEPENDENT COTRANSLATIONAL
PROTEIN TARGETING TO MEMBRANE

5.85 × 10−66 8.05 × 10−63 3

REACTOME NONSENSE MEDIATED DECAY NMD 1.45 × 10−65 1.59 × 10−62 3
REACTOME SELENOAMINO ACID METABOLISM 2.61 × 10−65 2.39 × 10−62 3
REACTOME EUKARYOTIC TRANSLATION INITIATION 4.65 × 10−65 3.65 × 10−62 3
REACTOME INFLUENZA INFECTION 5.83 × 10−64 4.01 × 10−61 3
REACTOME REGULATION OF EXPRESSION OF SLITS
AND ROBOS

7.99 × 10−60 4.88 × 10−57 3

REACTOME RRNA PROCESSING IN THE NUCLEUS AND
CYTOSOL

3.42 × 10−58 1.88 × 10−55 3

REACTOME RRNA PROCESSING 2.40 × 10−57 1.20 × 10−54 3
REACTOME SIGNALING BY ROBO RECEPTORS 1.74 × 10−56 7.97 × 10−54 3
REACTOME INFECTIOUS DISEASE 8.35 × 10−56 3.53 × 10−53 3
REACTOME TRANSLATION 9.95 × 10−55 3.91 × 10−52 3
REACTOME AXON GUIDANCE 1.50 × 10−52 5.49 × 10−50 3
REACTOME METABOLISM OF AMINO ACIDS AND
DERIVATIVES

3.63 × 10−49 1.25 × 10−46 3

REACTOME DISEASE 1.05 × 10−48 3.38 × 10−46 3
REACTOME DEVELOPMENTAL BIOLOGY 3.18 × 10−42 9.71 × 10−40 3
REACTOME METABOLISM OF RNA 2.78 × 10−41 7.85 × 10−39 3
BILANGES SERUM AND RAPAMYCIN SENSITIVE GENES 2.86 × 10−41 7.85 × 10−39 3
DIAZ CHRONIC MEYLOGENOUS LEUKEMIA UP 5.33 × 10−35 2.93 × 10−31 2
OSMAN BLADDER CANCER DN 6.46 × 10−31 1.69 × 10−28 3
REN ALVEOLAR RHABDOMYOSARCOMA DN 1.60 × 10−29 8.78 × 10−26 9
REACTOME ACTIVATION OF THE MRNA UPON
BINDING OF THE CAP BINDING COMPLEX AND EIFS
AND SUBSEQUENT BINDING TO 43S

3.73 × 10−29 9.34 × 10−27 3

PUJANA BRCA1 PCC NETWORK 1.07 × 10−28 2.96 × 10−25 2
WANG TUMOR INVASIVENESS UP 1.59 × 10−28 3.79 × 10−26 3
PECE MAMMARY STEM CELL UP 4.97 × 10−28 1.14 × 10−25 3
CHNG MULTIPLE MYELOMA HYPERPLOID UP 2.68 × 10−27 5.89 × 10−25 3
LOPEZ MBD TARGETS 1.77 × 10−23 4.86 × 10−20 8
TIEN INTESTINE PROBIOTICS 6HR UP 7.00 × 10−25 1.48 × 10−22 3
TIEN INTESTINE PROBIOTICS 24HR DN 7.45 × 10−23 1.52 × 10−20 3
BLALOCK ALZHEIMERS DISEASE DN 1.04 × 10−22 1.43 × 10−19 2
JISON SICKLE CELL DISEASE DN 8.01 × 10−22 1.57 × 10−19 3
KIM BIPOLAR DISORDER OLIGODENDROCYTE
DENSITY CORR UP

1.18 × 10−21 1.63 × 10−18 8

PASINI SUZ12 TARGETS DN 1.35 × 10−21 2.47 × 10−18 9
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empirical guideline to this question. Furthermore, we also investigated the performance of the
integrative model on data sources with different community structures. In that case, we con-
sidered the intersection of the community structures in different data sources to be the overall
community structure, and different data sources provide complementary information on the
overall community structure. Therefore, the integrative methods are also helpful in disclosing
overlapping community structures.

We plan to conduct future research in the following directions. We provided an empirical
guideline for the choice between the integrative method and separate analysis. The thresholds,
which are determined by simulations studies, are ARIs between the estimated clusters from
different data sources when the integrative method starts to outperform methods using a single
data source. Future research may derive the asymptotic distributions of ARI under the null
hypothesis that the community structures from different data sources are identical. Furthermore,
if there is biological or clinical belief that the two related data sources describe the same disease
or biophysical processes, it is reasonable to carry out integrative clustering analysis without
checking the ARI. Moreover, the integrative method can also be used as an exploratory data
analysis tool to discover new clusters. The proposed integrative clustering method falls into
the probability clustering category where the log-likelihood for each dataset are summed and
maximized jointly. Therefore, models other than NHM or SBM can be assumed as long as a
likelihood, quasi-likelihood or pseudo-likelihood can be written out. Furthermore, in cases with
more than two datasets available, their log-likelihoods can still be summed but the verification
of common clustering structure can no longer be judged by pairwise ARI. Testing procedures
or empirical guidelines need to be developed to examine whether clustering structures from
more than two sources are the same or not. Finally, although both NHM and SBM are based
on expression data, they extract information from different aspects (i.e. means and Euclidean
distances), which may lead to different sample sizes and different contributions in the joint
likelihood. The sizes of the two likelihood functions may not be comparable in the E-step when
calculating the posterior probabilities. It is possible that the group structure are dominated by
either the NHM or SBM model because of this imbalance. Therefore, when one data source is
more important or reliable than the other, one may weigh the data sets accordingly in the joint
likelihood.

Supplementary Material
Code for the integrative analysis and the data used in the real data analysis are available at
https://github.com/yangliuqing1992/Integrative_clustering.
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