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Abstract

Regression methods, including the proportional rates model and additive rates model, have been
proposed to evaluate the effect of covariates on the risk of recurrent events. These two mod-
els have different assumptions on the form of the covariate effects. A more flexible model, the
additive-multiplicative rates model, is considered to allow the covariates to have both additive
and multiplicative effects on the marginal rate of recurrent event process. However, its use is lim-
ited to the cases where the time-dependent covariates are monitored continuously throughout the
follow-up time. In practice, time-dependent covariates are often only measured intermittently,
which renders the current estimation method for the additive-multiplicative rates model inappli-
cable. In this paper, we propose a semiparametric estimator for the regression coefficients of the
additive-multiplicative rates model to allow intermittently observed time-dependent covariates.
We present the simulation results for the comparison between the proposed method and the
simple methods, including last covariate carried forward and linear interpolation, and apply the
proposed method to an epidemiologic study aiming to evaluate the effect of time-varying strepto-
coccal infections on the risk of pharyngitis among school children. The R package implementing
the proposed method is available at www.github.com/TianmengL/rectime.

Keywords additive-multiplicative rates model; kernel smoothing; recurrent events;
semiparametric method; time-dependent covariates

1 Introduction
In various clinical and biomedical studies, the event of interest may happen multiple times, which
is referred to as a recurrent event. Examples include recurrent bleedings in patients with hemato-
logic malignancies (Stanworth et al., 2015) and recurrent cardiovascular events in subjects with
diabetes (Van Der Heijden et al., 2013). During the follow-up of recurrent events, it is common
to have repeated measurements of time-dependent covariates, and it is often of interest to inves-
tigate the effect of such covariates on the occurrence of recurrent events. Our motivation is from
an observational study about pharyngitis among school children. Pharyngitis is often caused by
viruses, but some bacteria, including streptococci, can cause pharyngitis as well. The goal of this
study was to explore the effect of streptococci on the risk of pharyngitis. In this study, weekly
visits were scheduled to monitor the recurrent occurrence of pharyngitis, and the status of strep-
tococci infection was determined for those diagnosed with pharyngitis. In the meantime, monthly
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visits were scheduled for each participant to monitor the streptococci infection status regularly.
For the analysis of recurrent events, Prentice et al. (1981) and Andersen and Gill (1982)

proposed the multiplicative model on the intensity function, which is interpreted as the instan-
taneous risk of event conditioning on the event history. To achieve a better interpretation and
to allow flexible dependence structure among the recurrent events, various authors (Pepe and
Cai, 1993; Lawless et al., 1997; Lin et al., 2000) discussed the regression models on mean or
rate function of recurrent event process and assumed that the covariate effects were in a multi-
plicative fashion. Alternatively, the covariate effects may add to the baseline function. Liu and
Wu (2011) considered the additive intensity model, and Schaubel et al. (2006) proposed the
additive rates model where the covariate effects were in absolute forms. The multiplicative and
additive models have different assumptions on the relationship between the covariate effects and
the event process; thus it is desirable to estimate both types of effects under a general model
setting. For univariate survival data where the event of interest only happens once, Lin and
Ying (1995) proposed the additive-multiplicative model for the hazard function and Scheike and
Zhang (2002) considered the Cox-Aalen model to allow the covariate effects to be time-varying.
Recently, Cai et al. (2017a) studied modeling additive and multiplicative effects simultaneously
in the mean residual life function. For recurrent event data, Han et al. (2016) proposed the
additive-multiplicative models focusing on the markers contingent on recurrent events with an
informative terminal event. Liu et al. (2010) considered the additive-multiplicative rates models
for recurrent events, which allows the covariates to have both multiplicative and additive effects
on the rate function of the recurrent event process.

Although the additive-multiplicative rates model allows the covariates to be time-dependent,
it requires the observation of the complete history of the covariates, which is nearly impossible
in practice. Typically, the time-dependent covariates are measured intermittently during the
follow-up. One way to deal with the infrequently updated covariates is to predict the missing
covariate values by smoothing the observed values, as was discussed in Raboud et al. (1993);
Tsiatis et al. (1995); Boscardin et al. (1998); Bycott and Taylor (1998); Dafni and Tsiatis (1998)
and summarized in Andersen and Liestøl (2003). Another commonly used approach is to jointly
model the longitudinal covariate process and the event process. The joint models of repeated
measured longitudinal data and time-to-event data have been studied extensively. Many au-
thors considered the joint models of the two processes through latent random effects, including
Wulfsohn and Tsiatis (1997); Xu and Zeger (2001); Vonesh et al. (2006), among others. In the
setting of recurrent event data, Henderson et al. (2000) proposed to model the relationship be-
tween the time-dependent covariates and recurrent events by a latent Gaussian process, and
Li (2016) considered the joint model of the recurrent event process and the binary covariate
process. More complex models which considered the covariate process, recurrent event process
and the terminal event simultaneously also have been studied, including Kim et al. (2012) and
Cai et al. (2017b) among others. To our knowledge, little research has been done to explore the
additive-multiplicative rates model with intermittently observed time-dependent covariates.

Recently, Li et al. (2016) and Cao et al. (2015) have proposed kernel smoothed estimators
for the proportional rates model and hazard model, respectively, with intermittently observed
time-dependent covariates. Specifically, Cao et al. (2015) considered the scenario where the time-
dependent covariates were not measured at event times but during regular visits only and Li
et al. (2016) focused on the case where the covariates were measured at both recurrent times
and regular visits. Lyu et al. (2021) and Sun et al. (2021a) considered kernel weighted esti-
mation procedures for additive rates model and additive hazard regression model, respectively.
In addition, Cao and Fine (2021) proposed a weighted last covariate carried forward approach
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for proportional hazard model with time-dependent covariates not observed at failure times
and Sun et al. (2021b) proposed an estimation procedure based on inverse-rate-weighting and
kernel-smoothing to estimate the proportional rates model with intermittently observed time-
dependent covariates measured at informative clinical visits. In this paper, we propose to extend
the kernel smoothing method to the parameter estimation of the additive-multiplicative rates
model. The proposed estimator is expected to be accurate; it relies on fewer assumptions of the
underlying covariate and recurrent event processes.

The rest of the paper is organized as follows. The additive-multiplicative rates model and
the proposed estimator are introduced in Section 2. Simulation studies to evaluate the perfor-
mance of the proposed estimator are presented in Section 3. Section 4 includes the analysis of
the pharyngitis data as introduced in the motivating example. Finally, a concluding remark is
included in Section 5.

2 Model and the Proposed Estimator
2.1 Additive-Multiplicative Rates Model
Suppose that n subjects are recruited in a study. Let i = 1, . . . , n index the subjects. Let N∗

i (t)

denote the number of events that subject i has experienced at or prior to time t when there is no
censoring. Let Wi(t) = (Zi (t)

ᵀ, Xi(t)
ᵀ)ᵀ be a p × 1 vector of possibly time-dependent covariates

and let θ0 = (γ
ᵀ
0 , β

ᵀ
0 )ᵀ be the corresponding true regression parameters. Following Liu et al.

(2010), we assume the rate function of the counting process N∗
i (t) has the following form,

λ(t |Wi(t)) = g{γ ᵀ
0 Zi (t)} + h{βᵀ

0 Xi (t)}λ0(t), (1)

where λ0(t) is an unspecified baseline rate function, and the link functions g and h are assumed
to be known. Specifically, if we let g(x) = x and h(x) = exp(x), then model (1) becomes

λ(t |Wi (t)) = γ
ᵀ
0 Zi (t) + exp{βᵀ

0 Xi (t)}λ0(t). (2)

Therefore, the model can be regarded as a generalization of the semiparametric additive rates
model and proportional rates model for recurrent event process.

Let Ci denote the censoring time of subject i and we assume that Ci is independent of the
counting process N∗

i (t) given Wi (t) in the sense that E{dN∗
i (t)|Wi (t), Ci � t} = E{dN∗

i (t)|Wi (t)}.
Define Yi(t) = I (Ci � t) and denote by Ni(t) = N∗

i (min(t, Ci)) the observed number of events.
Let [0, τ ] be a pre-specified time interval of interest, and the recurrent event process could
potentially be observed beyond τ . For model estimation, we define the following process,

Mi(t, θ) = Ni(t) −
∫ t

0
Yi(u)

[
g{γ ᵀZi (u)}du + h{βᵀXi(u)}dμ0(u)

]
,

where μ0(t) = ∫ t

0 λ0(u)du is the baseline mean function. Following Lin and Ying (1995), Liu
et al. (2010) proposed the following estimating function for model (1):

U(θ) = 1

n

n∑
i=1

∫ τ

0
{Di(θ , u) − D̄(θ , u)}dMi(u, θ), (3)

where Di(θ , t) is a p-dimensional smooth process involving Wi (t) and θ , and

D̄(θ , t) =
∑n

i=1 Yi(t)Di(θ , t)h{βᵀXi(t)}∑n
i=1 Yi(t)h{βᵀXi (t)} .
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According to Lin and Ying (1995) and Liu et al. (2010), a possible choice for Di(θ , t) is

Di(θ , t) =
(

g′{γ ᵀZi (t)}Zi (t)

h{βᵀXi (t)}
h′{βᵀXi (t)}Xi (t)

h{βᵀXi (t)}

)
.

For a given θ , by solving
∑n

i=1

∫ t

0 dMi(u, θ) = 0, the baseline mean function μ0(t) in (3) can be
estimated by

μ̂0(t, θ) =
∫ t

0

∑n
i=1 [dNi(u) − Yi(u)g{γ ᵀZi (u)}du]∑n

i=1 Yi(u)h{βᵀXi (u)} , (4)

thus the estimating function in (3) becomes

U(θ) = 1

n

n∑
i=1

∫ τ

0
{Di(θ , u) − D̄(θ , u)} [dNi(u) − Yi(u)g{γ ᵀZi (u)}du] . (5)

Since we are mostly interested in simultaneously modeling the relative and absolute differ-
ence in rate function due to the covariates, we focus on the model in (2) in the remainder of this
paper. Under model (2), we have

Di (θ , t) =
(

Zi (t) exp{−βᵀXi(t)}
Xi(t)

)
,

and thus

D̄(θ , t) =
⎛⎝ ∑n

i=1 Yi(t)Zi (t)∑n
i=1 Yi(t) exp{βᵀXi (t)}∑n

i=1 Yi(t)Xi (t) exp{βᵀXi (t)}∑n
i=1 Yi(t) exp{βᵀXi (t)}

⎞⎠ .

The estimating function in (5) can be written as

U(θ) = 1

n

n∑
i=1

∫ τ

0
{Di(θ , u) − D̄(θ , u)}dNi(u) − 1

n

n∑
i=1

∫ τ

0
{Di(θ , u) − D̄(θ , u)}Yi(u)γ ᵀZi (u)du

= 1

n

n∑
i=1

∫ τ

0
{Di(θ , u) − D̄(θ , u)}dNi(u)

−
∫ τ

0

1

n

n∑
i=1

Yi(u)

{∑n
j=1 Dj (θ , u)Yj (u)Zᵀ

j (u)∑n
j=1 Yj (u)

− D̄(θ , u)

∑n
j=1 Yj (u)Zᵀ

j (u)∑n
j=1 Yj (u)

}
duγ .

(6)

Then the estimator θ̂ can be obtained by solving U(θ) = 0.

2.2 Estimation When Covariates Are Intermittently Observed
When time-dependent covariates are present, the evaluation of the estimating function requires
the time-dependent covariates to be observed continuously throughout the entire follow-up time.
However, as is illustrated in the motivating example, time-dependent covariates were measured
at intermittent visits, including the event times and monthly regular visits. Specifically, denote
by Oi(t) the number of measurements of the covariates at regular visits at or prior to time t , and
we have dOi(t) = 1 when the ith subject has a regular visit at t . Moreover, we assume that the
observation process Oi(·) is independent of {Wi (·), Ni(·), Ci}, i = 1, . . . , n. The observed data are
{Ni(t), Oi(t), Wi(t)dNi(t), Wi(t)dOi(t), Ci; 0 � t � Ci, i = 1, . . . , n}, which are assumed to be
independent and identically distributed. Hence the values of covariates between measurement
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times are unknown, which renders that the estimating function in (6) cannot be evaluated based
on the observed data only. A simple approach to deal with the intermittently observed time-
dependent covariates is to impute the missing values by carrying forward the last observed
value. However, this approach imposes a strong assumption that the covariate processes are
step functions and thus is expected to introduce bias in the model estimation in both survival
and recurrent event analysis (Prentice, 1982; Faucett et al., 1998; Cao et al., 2015; Li et al.,
2016; Lyu et al., 2021). Another possible approach is to impute the missing values between
two observation times by linear interpolation. The linear interpolation method assumes that
the covariate value is a linear function of time between every two adjacent observation times.
However, this assumption may not hold in practice, especially for binary covariates. As an
alternative approach, estimation methods based on kernel smoothing to deal with intermittently
observed time-dependent covariates have gained growing interest recently (Cao et al., 2015;
Li et al., 2016). In what follows, we propose a novel semiparametric estimator by applying
the kernel smoothing method to deal with intermittently observed time-dependent covariates
in the additive-multiplicative rates model. In contrast with methods that impute the missing
values of each individual, the proposed method estimates the mean covariate processes via kernel
smoothing and is expected to yield lower bias.

First, we show that the estimating function in (6) can be written as a function of empirical
processes. Given a vector a, we define the operator ⊗ such that a⊗0 = 1, a⊗1 = a, a⊗2 = aaᵀ.
For k = 0, 1, we define

S(k)
z (t) = n−1

n∑
i=1

Yi(t)Zi (t)
⊗k,

S(k)
x (t, β) = n−1

n∑
i=1

Yi(t)Xi (t)
⊗k exp{βᵀXi (t)},

Sz2x(t, β) = n−1
n∑

i=1

Yi(t)Zi (t)
⊗2 exp{−βᵀXi(t)},

Szx(t) = n−1
n∑

i=1

Yi(t)Xi (t)Zᵀ
i (t).

Then the estimating function in (6) can be re-expressed as U(θ) = (U1(θ)ᵀ, U2(θ)ᵀ)ᵀ, where

U1(θ) = 1

n

n∑
i=1

∫ τ

0
Zi (u) exp{−βᵀXi(u)}dNi(u) −

∫ τ

0

S(1)
z (u)

S
(0)
x (u, β)

{
1

n

n∑
i=1

dNi(u)

}

−
∫ τ

0

1

n

n∑
i=1

Yi(u)

{
Sz2x(u, β)

S
(0)
z (u)

− S(1)
z (u)

S
(0)
x (u, β)

(
S(1)

z (u)

S
(0)
z (u)

)ᵀ}
duγ ,

U2(θ) = 1

n

n∑
i=1

∫ τ

0
Xi(u)dNi(u) −

∫ τ

0

S(1)
x (u, β)

S
(0)
x (u, β)

{
1

n

n∑
i=1

dNi(u)

}

−
∫ τ

0

1

n

n∑
i=1

Yi(u)

{
Szx(u)

S
(0)
z (u)

− S(1)
x (u, β)

S
(0)
x (u, β)

(
S(1)

z (u)

S
(0)
z (u)

)ᵀ}
duγ .

(7)

In equation (7), the quantities n−1
∑n

i=1

∫ τ

0 Zi (t) exp{−βᵀXi(t)}dNi(u) and
n−1 ∑n

i=1

∫ τ

0 Xi(u)dNi(u) can be easily calculated because the covariates are observed when
recurrent events occur, as shown in the motivating example. However, calculating the ratios
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S(1)
z (t)/S(0)

x (t, β), Sz2x(t, β)/S(0)
z (t), S(1)

z (t)/S(0)
z (t), Szx(t)/S

(0)
z (t), and S(1)

x (t, β)/S(0)
x (t, β) requires

the covariate process W(·) to be observed throughout the follow-up period. Nevertheless, in real
applications, it is usually not feasible to continuously monitor the covariates and the covariates
are only measured intermittently.

Next, we present how to approximate these ratios based on the observed data by apply-
ing the kernel smoothing method. It can be easily seen that the processes S(k)

z (t), S(k)
x (t, β),

Sz2x(t, β), and Szx(t), converge in probability to the limiting functions s(k)
z (t) = E{Yi(t)Zi (t)

⊗k},
s(k)
x (t, β) = E

[
Yi(t)Xi (t)

⊗k exp{βᵀXi (t)}
]
, sz2x(t, β) = E

[
Yi(t)Zi (t)

⊗2 exp{−βᵀXi (t)}
]
, and szx(t) =

E{Yi(t)Xi(t)Zᵀ
i (t)}, respectively. With intermitently observed covariate data, we approximate the

unknown ratios using kernel smoothing estimators that converge to the same target functions.
Consider the following smoothed processes,

Ŝ
(k)
z,h(t) = 1

n

n∑
i=1

∫ ∞

0
Kh(t − u)Yi(u)Zi (u)⊗kdOi(u),

Ŝ
(k)
x,h(t, β) = 1

n

n∑
i=1

∫ ∞

0
Kh(t − u)Yi(u)Xi(u)⊗k exp{βᵀXi (u)}dOi(u),

Ŝz2x,h(t, β) = 1

n

n∑
i=1

∫ ∞

0
Kh(t − u)Yi(u)Zi (u)⊗2 exp{−βᵀXi(u)}dOi(u),

Ŝzx,h(t) = 1

n

n∑
i=1

∫ ∞

0
Kh(t − u)Yi(u)Xi(u)Zi (u)ᵀdOi(u), (8)

where Kh(t) = K(t/h)/h, K is a second order kernel function with a bounded support on [−1, 1],
and h is the bandwidth parameter. For bandwidth selection, as is shown in the Appendix, the
bandwidth h = cn−v, where 1/4 < v < 1/2, so we chose h = cn−1/3 where the constant c was
chosen by following the cross-validation approach as presented in Lyu et al. (2021).

We define m(t) = E{Oi(t)}, then it can be shown that the kernel smoothed processes,
Ŝ

(k)
z,h(t), Ŝ

(k)
x,h(t, β), Ŝz2x,h(t, β), and Ŝzx,h(t), converge in probability to s(k)

z (t)m(t), s(k)
x (t, β)m(t),

sz2x(t, β)m(t), szx(t)m(t), respectively. Since m(t) cancels out in the ratios, the ratios of the ker-
nel smoothed processes converge to the ratios of the corresponding limiting processes. Thus,
the ratios S(1)

z (t)/S(0)
x (t, β), Sz2x(t, β)/S(0)

z (t), S(1)
z (t)/S(0)

z (t), Szx(t)/S
(0)
z (t) and S(1)

x (t, β)/S(0)
x (t, β)

in (7) can be replaced by the kernel smoothed counterparts. Moreover, to account for estima-
tion bias near the boundary t = 0 due to positive observation times, we set Ŝ

(k)
z,h(t) = Ŝ

(k)
z,h(h),

Ŝ
(k)
x,h(t, β) = Ŝ

(k)
x,h(h, β), Ŝz2x,h(t, β) = Ŝz2x,h(h, β), Ŝzx,h(t) = Ŝzx,h(h) for t ∈ [0, h). Then the

proposed estimating function is Û (θ) =
(

Û1(θ)

Û2(θ)

)
, where

Û1(θ) = 1

n

n∑
i=1

∫ τ

0
Zi (u) exp{−βᵀXi(u)}dNi(u) −

∫ τ

0

Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β)

{
1

n

n∑
i=1

dNi(u)

}

−
∫ τ

0

1

n

n∑
i=1

Yi(u)

{
Ŝz2x,h(u, β)

Ŝ
(0)
z,h(u)

− Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β)

(
Ŝ

(1)
z,h(u)

Ŝ
(0)
z,h(u)

)ᵀ}
duγ ,

Û2(θ) = 1

n

n∑
i=1

∫ τ

0
Xi(u)dNi(u) −

∫ τ

0

Ŝ
(1)
x,h(u, β)

Ŝ
(0)
x,h(u, β)

{
1

n

n∑
i=1

dNi(u)

}

−
∫ τ

0

1

n

n∑
i=1

Yi(u)

{
Ŝzx,h(u)

Ŝ
(0)
z,h(u)

− Ŝ
(1)
x,h(u, β)

Ŝ
(0)
x,h(u, β)

(
Ŝ

(1)
z,h(u)

Ŝ
(0)
z,h(u)

)ᵀ}
duγ .
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The proposed estimator θ̂h = (γ̂
ᵀ
h, β̂

ᵀ
h)ᵀ can be obtained by solving Û (θ) = 0. The large sample

properties of θ̂h are summarized below. A detailed proof is included in the Appendix.

Theorem 1. Under regularity conditions 1-10 in the Appendix, θ̂h converges in probability
to θ0. Moreover, as n → ∞,

√
n(̂θh − θ0) converges in distribution to a zero mean normal

random variable with variance A(θ0)
−1V (θ0){A(θ0)

−1}ᵀ, where A(θ0) and V (θ0) are defined in
the Appendix.

The asymptotic variance of θ̂h involves unknown nuisance functions that need to be esti-
mated using kernel smoothing methods. Hence bootstrap is recommended for variance estimation
because of its better finite-sample performance.

For the estimation of the baseline mean function, we show that the estimator in (4) can be
written as

μ̂0(t, θ) =
∫ t

0

∑n
i=1{dNi(u) − Yi(u)γ ᵀZi (u)du}∑n

i=1 Yi(u) exp{βᵀXi (u)}

=
n∑

i=1

∫ t

0

S(0)
z (u)

S
(0)
x (u, β)

1∑n
i=1 Yi(u)

dNi(u) −
∫ t

0
γ ᵀ S(1)

z (u)

S
(0)
x (u, β)

du.

Thus, the baseline mean function can be estimated by

μ̂0,h(t, θ̂h) =
n∑

i=1

∫ t

0

Ŝ
(0)
z,h(u)

Ŝ
(0)
x,h(u, β̂h)

1∑n
i=1 Yi(u)

dNi(u) −
∫ t

0
γ̂
ᵀ
h

Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β̂h)

du.

Following Liu et al. (2010), to ensure that the estimated baseline mean function is monotone,
an alternative estimator is μ̃0,h(t, θ̂h) = max0�u�t μ̂0,h(u, θ̂h).

3 Simulation
Simulation studies were conducted to evaluate the performance of the proposed method. 1000
data replicates with sample size 100 and 200 were generated for each simulation scenario. The
resampling size in the bootstrap method for variance estimation was set to be 50. Since the rate
model does not fully specify the probability feature, we simulated the recurrent events based on
the following intensity model

λ{t |Wi (t), ui} = ui

[
γ0Zi(t) + exp{β0Xi(t)}λ0(t)

]
, (9)

where ui is the frailty variable with mean 1 and variance σ 2. The frailty variable induces the
within-subject correlations. We explored two distributions of the frailty variable: gamma distri-
bution and log-normal distribution, and two values of the variance σ 2 = 0.2, 0.4, for different lev-
els of correlations. The baseline intensity function λ0(t) = 0.3I(t � 10)+ 0.5I(10 < t � 20). Note
that the intensity model in (9) implies the rate model λ{t |Wi (t)} = γ0Zi(t) + exp{β0Xi(t)}λ0(t).
To evaluate the proposed method on different types of covariates, we let Zi(t) be a continuous
covariate and Xi(t) be a binary covariate. Zi(t) was simulated by a linear function of time t as
Zi(t) = b0i +b1i t . The random intercept b0i was generated from a normal distribution with mean
0.5 and variance 0.05. The random slope was simulated from a normal distribution with mean
−0.05 and variance 5 · 10−4. With a negative mean of the random slope, the covariate Z(·) has a
decreasing time trend at the population level. For the binary covariate Xi(t), we first generated
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the baseline Xi(0) from a Bernoulli distribution with probability 0.2. Then the binary covariate
process was assumed to alternate between states 0 and 1. We assumed that the duration of state
0 of subject i followed an exponential distribution with rate function 1/(ξig(t)) and the duration
of state 1 followed an exponential distribution with rate 1/ξi , where ξi was a subject-specific
random effect which followed a gamma distribution with mean 1 and variance 0.25. The value of
g(t) was 4 for t ∈ [0, 10] and changed to 6 afterwards, which indicates a decreasing time trend
at the population level. For the values of regression coefficients, we considered three scenarios:
(1) the true model included both an additive part and a multiplicative part: β0 = 0.5, γ0 = 0.2;
(2) the additive-multiplicative model degenerated to the additive rates model: β0 = 0, γ0 = 0.2;
(3) the additive-multiplicative degenerated to the proportional rates model: β0 = 0.5, γ0 = 0.

In all scenarios, we assumed that the covariates of a subject were always observed at the
event times of the same subject. For the regular visits, we assumed that the covariates were
measured at the baseline visit (time 0) and at each pre-scheduled regular visit per unit time
interval, which means that there were 20 regular visits in time period (0, 20] of each subject. The
time of the regular visit in each unit time interval was simulated from a uniform distribution
from 0 to 1. The censoring time was randomly generated from a uniform distribution from 0 to
20. Both the event times and regular visits happened after the censoring time were dropped.

We applied the proposed method to the simulated data and compared the results with those
from the LCCF and linear interpolation approaches. We used the Epanechnikov kernel function
in the proposed kernel smoothing method. The results for simulated datasets with gamma or
lognormal frailty are presented in Tables 1 and 2, respectively. We provide the relative bias
(Bias) and Monte Carlo standard deviation (SD) of the point estimations for each estimation
method that we compared. For the proposed method, we also report the average of the estimated
standard errors by bootstrap method (ASE) and the coverage percentage (CP). When the true
model is the additive-multiplicative model (β0 = 0.5, γ0 = 0.2), the LCCF method gives biased
estimations for both β and γ . The linear interpolation method has small bias for the estimation
of γ , which is likely due to the linear feature of covariate Z(·), but gives biased estimations for
β. The proposed method provides virtually unbiased estimations for both regression coefficients.
The ASEs are close to the empirical SDs and the coverage percentages are around 95%. As
the variance of the frailty increases from 0.2 to 0.4, the Monte Carlo SDs of the estimations
increases. When the true model degenerates to the additive model or the multiplicative model
with one significant covariate (β = 0, γ = 0.2; β = 0.5, γ = 0), the proposed method pro-
vides virtually unbiased estimations for both coefficients, which indicates the robustness of the
additive-multiplicative model.

4 Real Data Analysis
In this section, we analyzed the Indian pharyngitis data (Jose et al., 2018) using the proposed
method. Pharyngitis is the infection of the back of the throat and it can be caused by viruses
or bacteria. When the cause is group A streptococcus (GAS), pharyngitis is also known as
strep throat. The symptoms of GAS pharyngitis include sore throat, fever, nausea and it may
cause some rare but serious diseases including rheumatic heart disease if left untreated. GAS
pharyngitis is common in children from age 5 to age 15 and can be transmitted through saliva
or nasal secretions. Meanwhile, other bacteria, for example, group G streptococcus (GGS), may
cause pharyngitis with similar clinical symptoms as well. In the motivating example, 307 school
children aged 7 to 11 years old in a rural area in Velore, India were recruited to investigate



Additive-Multiplicative Rates Model With Intermittently Observed Covariates 623

Table 1: Simulation results: the frailty followed a gamma distribution; n is the sample size; σ 2 is
the variance of the frailty distribution; m̄ is the average number of recurrent events; Bias is the
relative bias computed by dividing the difference of the mean of the 1000 estimated parameters
and the true value by the true value (if the true value is 0, Bias is the mean of the 1000 estimated
parameters); SD is the standard deviation of the 1000 estimated values; ASE is the mean of the
1000 estimated standard errors by bootstrap method; CP is the proportion of 95% confidence
intervals covering the true value.

LCCF Linear Proposed

n σ 2 m̄ Bias SD Bias SD Bias SD ASE CP

β = 0.5, γ = 0.2

100 0.2 4.23 β −0.136 0.126 0.145 0.158 0.012 0.144 0.148 0.933
γ −0.575 0.109 0.009 0.104 0.034 0.105 0.103 0.937

0.4 4.24 β −0.131 0.139 0.150 0.176 0.011 0.157 0.155 0.948
γ −0.621 0.128 −0.033 0.123 −0.013 0.123 0.123 0.938

200 0.2 4.25 β −0.133 0.092 0.153 0.114 0.009 0.103 0.102 0.929
γ −0.570 0.082 0.006 0.078 0.021 0.078 0.073 0.931

0.4 4.24 β −0.139 0.099 0.143 0.124 0.000 0.111 0.108 0.946
γ −0.602 0.096 −0.023 0.092 −0.009 0.092 0.088 0.935

β = 0, γ = 0.2

100 0.2 3.82 β −0.012 0.148 −0.005 0.195 −0.003 0.169 0.172 0.953
γ −0.540 0.105 −0.008 0.100 0.033 0.101 0.100 0.934

0.4 3.83 β −0.016 0.163 −0.011 0.216 −0.006 0.181 0.183 0.946
γ −0.526 0.128 0.008 0.123 0.051 0.123 0.119 0.938

200 0.2 3.84 β −0.010 0.101 −0.002 0.131 −0.002 0.113 0.120 0.952
γ −0.546 0.075 −0.021 0.073 0.016 0.073 0.070 0.943

0.4 3.82 β −0.017 0.106 −0.009 0.140 −0.006 0.119 0.125 0.968
γ −0.550 0.092 −0.024 0.089 0.012 0.089 0.086 0.937

β = 0.5, γ = 0

100 0.2 3.92 β −0.148 0.122 0.143 0.152 0.007 0.136 0.143 0.955
γ −0.112 0.108 0.001 0.103 0.006 0.103 0.099 0.931

0.4 3.90 β −0.163 0.136 0.121 0.172 −0.021 0.153 0.150 0.938
γ −0.124 0.131 −0.011 0.124 −0.006 0.125 0.120 0.930

200 0.2 3.91 β −0.138 0.086 0.157 0.107 0.013 0.097 0.098 0.952
γ −0.113 0.074 −0.002 0.070 0.002 0.071 0.071 0.940

0.4 3.91 β −0.136 0.093 0.161 0.117 0.015 0.103 0.104 0.949
γ −0.113 0.096 −0.002 0.090 0.002 0.090 0.086 0.929

the relationship between streptococcal infections and the risk of pharyngitis. Each child was
examined weekly for the symptoms of pharyngitis. For those who were diagnosed with pharyn-
gitis, throat cultures were obtained to test if GAS and GGS were positive. In the meantime, to
monitor the streptococci status regularly, monthly regular visits were scheduled for each child.
Since the regular visits were pre-scheduled, it is reasonable to assume that they are independent
of the recurrent event, censoring and covariate processes, as is required by the proposed method.



624 Lyu, T. et al.

Table 2: Simulation results: the frailty followed a lognormal distribution; n is the sample size; σ 2

is the variance of the frailty distribution; m̄ is the average number of recurrent events; Bias is the
relative bias computed by dividing the difference of the mean of the 1000 estimated parameters
and the true value by the true value (if the true value is 0, Bias is the mean of the 1000 estimated
parameters); SD is the standard deviation of the 1000 estimated values; ASE is the mean of the
1000 estimated standard errors by bootstrap method; CP is the proportion of 95% confidence
intervals covering the true value.

LCCF Linear Proposed

n σ 2 m̄ Bias SD Bias SD Bias SD ASE CP

β = 0.5, γ = 0.2

100 0.2 4.24 β −0.141 0.130 0.141 0.161 0.004 0.145 0.147 0.950
γ −0.605 0.110 −0.021 0.106 0.005 0.106 0.102 0.930

0.4 4.22 β −0.141 0.135 0.140 0.167 0.004 0.150 0.157 0.954
γ −0.575 0.134 0.010 0.129 0.032 0.130 0.123 0.938

200 0.2 4.25 β −0.141 0.088 0.141 0.110 0.006 0.100 0.102 0.943
γ −0.560 0.078 0.015 0.076 0.030 0.076 0.074 0.940

0.4 4.24 β −0.130 0.093 0.152 0.114 0.007 0.102 0.107 0.959
γ −0.584 0.093 −0.008 0.090 0.010 0.090 0.088 0.943

β = 0, γ = 0.2

100 0.2 3.83 β −0.029 0.160 −0.027 0.210 −0.019 0.177 0.173 0.934
γ −0.554 0.105 −0.020 0.101 0.026 0.102 0.099 0.940

0.4 3.82 β −0.016 0.164 −0.012 0.215 −0.008 0.181 0.180 0.947
γ −0.568 0.130 −0.034 0.126 0.010 0.127 0.117 0.932

200 0.2 3.82 β −0.019 0.107 −0.013 0.140 −0.010 0.120 0.120 0.944
γ −0.524 0.073 −0.001 0.071 0.037 0.071 0.070 0.939

0.4 3.82 β −0.014 0.110 −0.007 0.144 −0.003 0.122 0.125 0.941
γ −0.559 0.092 −0.033 0.089 0.001 0.089 0.085 0.940

β = 0.5, γ = 0

100 0.2 3.90 β −0.149 0.118 0.142 0.147 0.007 0.134 0.140 0.954
γ −0.112 0.108 0.001 0.102 0.006 0.103 0.099 0.931

0.4 3.91 β −0.155 0.129 0.133 0.161 −0.009 0.146 0.150 0.951
γ −0.111 0.127 0.002 0.120 0.007 0.121 0.119 0.947

200 0.2 3.91 β −0.146 0.086 0.148 0.108 0.005 0.098 0.098 0.957
γ −0.110 0.075 0.001 0.071 0.004 0.071 0.070 0.944

0.4 3.91 β −0.147 0.093 0.146 0.116 0.000 0.103 0.104 0.948
γ −0.113 0.092 −0.002 0.087 0.003 0.087 0.086 0.945

We considered the following four candidate models: (1) both covariates have multiplicative
effects (Model MM); (2) both covariates have additive effects (Model AA); (3) GAS has an
additive effect and GGS has a multiplicative effect (Model AM); (4) GAS has a multiplicative
effect and GGS has an additive effect (Model MA). The same approach as described in Section 2
was applied to select the bandwidth used in the proposed kernel smoothing method. Table 3
shows the regression results of the four models. All four models suggest that the presence of
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Table 3: Analysis of Indian pharyngitis data. AM is the additive-multiplicative rates model
which includes GAS in the additive part and GGS in the multiplicative part; MA is the additive-
multiplicative rates model which includes GAS in the multiplicative part and GGS in the additive
part; MM is the proportional rates model; AA is the additive rates model. Est is the estimated
regression coefficient; SE is the standard error estimated by bootstrap with resampling size 100;
CI is the 95% confidence interval.

Model GAS GGS

Est SE 95% CI Est SE 95% CI

MM 0.418 0.117 (0.189, 0.647) 0.146 0.118 (−0.085, 0.377)
AA 0.067 0.020 (0.028, 0.106) 0.020 0.017 (−0.013, 0.053)
AM 0.067 0.019 (0.030, 0.104) 0.148 0.121 (−0.089, 0.385)
MA 0.437 0.120 (0.202, 0.672) 0.021 0.023 (−0.024, 0.066)

GAS increases the risk of pharyngitis, while the effect of GGS is not significant in any model.
In light of the same direction of the effect and the similar statistical significance from the four
candidate models, the choice would be based on study objectives and the interpretation of the
effect. As discussed in Schaubel et al. (2006), in certain settings, the absolute covariate effect is
of more interest than the relative covariate effect. For instance, the former can directly provide
information for predicting change in event rate attributable to a covariate, while the latter would
need information on the baseline rate.

5 Discussion
In this paper, we proposed a semiparametric estimator for the regression coefficients of the
additive-multiplicative rates model to deal with the intermittently observed time-dependent
covariates. The additive-multiplicative rates model generalizes the proportional rates model
and additive rates model, and hence allows some covariates to have multiplicative effects on
the risk of recurrent events and others to have additive effects. The proposed method applies
the nonparametric kernel smoothing approach to estimate the mean processes of the time-
dependent covariates, thus it does not rely on any assumption of the covariate distribution or
any specification of the covariate process and is expected to be more robust. The proposed
method requires that the rate function m(t) of the observation time process is positive and
bounded on [0, τ ]. As the observations of time-dependent covariates become more dense, we
expect better performance of the proposed method.

In this paper, we assume that the observation process is independent of the covariates,
the recurrent event process, and the censoring time. When such an independence assumption
is violated, the proposed method may yield biased estimation. When the rate function of the
observation process is determined by observed covariates, one can assume a proportional rate
model on the observation process and construct an inverse-rate-weighting in the kernel smoothing
estimator for the outcome model, following the arguments of Sun et al. (2021b). Extending their
method to additive-multiplicative rates model is a future research direction.

In practice, a problem is to determine the covariates included in the additive part Z(t)

and the multiplicative part X(t). As discussed in Liu et al. (2010), if a covariate is expected to
greatly influence the risk difference or the researchers are most interested in the absolute risks,
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then it should be included in Z(t). Otherwise, if a covariate is expected to strongly influence
the risk ratios or the researchers are interested in the relative risks, then it should be included
in X(t). If the underlying biological process is not clear and the number of covariates is small,
an alternative way is to consider all the possible candidate models and then develop rigorous
model selection approach to determine the best model. The mean-square-type distance measure
between the observed and expected recurrences implemented in Liu et al. (2010) could be a
model selection criteria for the additive and/or multiplicative model structure. However, it can-
not be directly applied to data with intermittently observed time-dependent covariates. Future
research on model selection procedures for intermittently observed time-dependent covariates is
warranted.

An R package has been developed to implement the proposed estimator for the additive-
multiplicative rates model with intermittently observed time-dependent covariates, as well as the
estimators for the proportional rates model and the additive rates model with such covariates.
The R package rectime is available at www.github.com/TianmengL/rectime.

Supplementary Material
The supplementary material includes the R code that implements the proposed methods. It also
includes an example file to illustrate how to simulate data and estimate model parameters using
the provided code files.

Appendix

Regularity Conditions

1. The observed data {Ni(t), Oi(t), Wi(t)dNi(t), Wi (t)dOi(t), Ci; 0 � t � Ci, i = 1, . . . , n} are
assumed to be independent and identically distributed.

2. Ni(τ) is bounded. Define λc(t)dt = E{dNi(t)}, and λc(·) is of bounded variation.
3. The true parameter θ0 is in a compact set � ⊂ Rp and the baseline rate function λ0(t) is

absolutely continuous.
4. For each element in the covariate vector Wi (t), the covariate process Wij (t) has uniformly

bounded total variation, namely,
∫ τ

0 |dWij (t)| + |Wij (0)| � M for some M > 0 for all i and j .
Without loss of generality, we assume Wij (t) � 0.

5. The censoring time Ci is independent of N∗
i (·) conditional on Wi (·) in the sense that

E{dN∗
i (t)|Wi (t), Ci � t} = E{dN∗

i (t)|Wi (t)}, and G(τ) = P(Ci � τ) > 0.
6. The functions sz2x(t, β) = E[Yi(t)Zi (t)

⊗2 exp{−βᵀXi (t)}], szx(t) = E[Yi(t)Xi(t)Zi (t)
ᵀ], s(k)

z (t) =
E[Yi(t)Zi (t)

k], and s(k)
x (t, β) = E[Yi(t)Xi(t)

k exp{βᵀXi (t)}], k = 0, 1, have bounded second
derivatives for t ∈ [0, τ ].

7. The observation time process Oi(·) is independent of {Wi (·), Ni(·), Ci} and is bounded. More-
over, its rate function m(t) is positive and has bounded second derivative for t ∈ [0, τ ].

8. The matrix A(θ0) = −E
{

∂U(θ)

∂θ

∣∣
θ=θ0

}
is nonsingular.

9. The kernel function K(·) is a symmetric density function with bounded support on [−1, 1]
which satisfies:

∫ 1
−1 K(t)dt = 1,

∫ 1
−1 tK(t)dt = 0, and

∫ 1
−1 t2K(t)dt is a positive constant.

10. The bandwidth h = cn−v, where 1/4 < v < 1/2 and c > 0 is some constant.

http://www.github.com/TianmengL/rectime
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Proof of Consistency

To show the consistency of θ̂h, it is sufficient to prove that the processes that constitute the esti-
mating function Û (θ), including n−1

∑n
i=1

∫ τ

0 Zi (u) exp{−βᵀXi (u)}dNi(u), n−1
∑n

i=1

∫ τ

0 Xi(u)dNi(u),
n−1

∑n
i=1 dNi(u), Ŝ

(k)
z,h(t), Ŝ

(k)
x,h(t, β), k = 0, 1, Ŝz2x,h(t, β) and Ŝzx,h(t), converge to their limits uni-

formly. We know θ0 = (γ
ᵀ
0 , β

ᵀ
0 )ᵀ where γ 0 is a m × 1 vector, β0 is a q × 1 vector and m + q = p.

Since θ0 is in a compact set � in Rp by assumption 3, β0 is contained in a compact set B in Rq .
The function classes Fz,k = {∫ t

0 Y (u)Z(u)⊗kdO(u) : t ∈ [0, τ ]}, Fzx = {∫ t

0 Y (u)X(u)Z(u)ᵀdO(u) :
t ∈ [0, τ ]} are monotone and Fx,k = {∫ t

0 Y (u)X(u)⊗k exp{βᵀX(u)}dO(u) : β ∈ B, t ∈ [0, τ ]},
Fz2x = {∫ t

0 Y (u)Z(u)⊗2 exp{−βᵀX(u)}dO(u) : β ∈ B, t ∈ [0, τ ]} have bracketing number of poly-
nomial order.

According to Theorem 2.14.9 in Van Der Vaart and Wellner (1996) and following sim-
ilar steps in the Appendix of Li et al. (2016), we can show that supt∈[h,τ ] |Ŝ(k)

z,h(t) − E{Ŝ(k)
z,h(t)}|,

supβ∈B,t∈[h,τ ] |Ŝ(k)
x,h(t, β)−E{Ŝ(k)

x,h(t, β)}|, supβ∈B,t∈[h,τ ] |Ŝ(k)
z2x,h(t, β)−E{Ŝ(k)

z2x,h(t, β)}|, supt∈[h,τ ] |Ŝ(k)
zx,h(t)−

E{Ŝ(k)
zx,h(t)}| converge in probability to 0 when nh2 → ∞.
It can be seen that

sup
t∈[h,τ ]

|E{Ŝ(k)
z,h(t)} − s(k)

z (t)m(t)| = O(h2),

sup
β∈B,t∈[h,τ ]

|E{Ŝ(k)
x,h(t, β)} − s(k)

x (t, β)m(t)| = O(h2),

sup
β∈B,t∈[h,τ ]

|E{Ŝ(k)
z2x,h(t, β)} − s

(k)
z2x(t, β)m(t)| = O(h2),

sup
t∈[h,τ ]

|E{Ŝ(k)
zx,h(t)} − s(k)

zx (t)m(t)| = O(h2),

and

sup
t∈[0,h)

|s(k)
z (t)m(t) − s(k)

z (h)m(h)| = O(h),

sup
β∈B,t∈[0,h)

|s(k)
x (t, β)m(t) − s(k)

x (h, β)m(h)| = O(h),

sup
β∈B,t∈[0,h)

|s(k)
z2x(t, β)m(t) − s

(k)
z2x(h, β)m(h)| = O(h),

sup
t∈[0,h)

|s(k)
zx (t)m(t) − s(k)

zx (h)m(h)| = O(h).

Then the uniform consistency of Ŝ
(k)
z,h(t), Ŝ

(k)
x,h(t, β), k = 0, 1, Ŝz2x,h(t, β) and Ŝzx,h(t) have been

proved. By the law of large numbers, we can show that n−1 ∑n
i=1 Ni(t), n−1 ∑n

i=1

∫ τ

0 Zi (u) ×
exp{−βᵀXi(u)}dNi(u), and n−1 ∑n

i=1

∫ τ

0 Xi(u)dNi(u) converge in probability to E{Ni(t)},∫ τ

0 E{Zi (t) exp{−βᵀXi(t)}dNi(t)}, and
∫ τ

0 E{Xi (t)dNi(t)}, respectively.
Therefore, the proposed estimator θ̂h converges to the true parameter θ0 in probability.



628 Lyu, T. et al.

Proof of Asymptotic Normality

We prove the asymptotic normality of
√

nÛ(θ0) = (
√

nÛ1(θ0)
ᵀ,

√
nÛ2(θ0)

ᵀ)ᵀ. We show that√
nÛ1(θ0) has the form

√
nÛ1(θ0) = 1√

n

n∑
i=1

∫ τ

0
Zi (u) exp{−β

ᵀ
0 Xi (u)}dNi(u) − 1√

n

∫ τ

0

Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

{
n∑

i=1

dNi(u)

}

− 1√
n

∫ τ

0

n∑
i=1

Yi(u)

{
Ŝz2x,h(u, β0)

Ŝ
(0)
z,h(u)

}
duγ 0

+ 1√
n

∫ τ

0

n∑
i=1

Yi(u)

{
Ŝ

(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

(
Ŝ

(1)
z,h(u)

Ŝ
(0)
z,h(u)

)ᵀ}
duγ 0

def= I1 + I2 + I3 + I4.

Then we have

I2 = − 1√
n

∫ τ

0

Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

{
n∑

i=1

dNi(u)

}

= − √
n

∫ τ

0

s(1)
z (u)

s
(0)
x (u, β0)

d

{
1

n

n∑
i=1

Ni(u) − E{Ni(u)}
}

− √
n

∫ τ

0

Ŝ
(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

dE{Ni(u)}

+ op(1)

= − 1√
n

n∑
i=1

∫ τ

0
Yi(u)

(
Zi(u) − s(1)

z (u)

s
(0)
x (u, β0)

exp{βᵀ
0 Xi(u)}

)
λc(u)

s
(0)
x (u, β0)m(u)

dOi(u)

− 1√
n

n∑
i=1

∫ τ

0

s(1)
z (u)

s
(0)
x (u, β0)

dNi(u) + op(1),

I3 = − 1√
n

∫ τ

0

n∑
i=1

Yi(u)

{
Ŝz2x,h(u, β0)

Ŝ
(0)
z,h(u)

}
duγ 0

= − √
n

∫ τ

0

sz2x,h(u, β0)

s
(0)
z (u)

{
1

n

n∑
i=1

Yi(u) − s(0)
z (u)

}
duγ 0 − √

n

∫ τ

0

{
Ŝz2x,h(u, β0)

Ŝ
(0)
z,h(u)

}
s(0)
z (u)duγ 0

+ op(1)

= − 1√
n

n∑
i=1

∫ τ

0
Yi(u)

(
Zi (u)⊗2 exp{−β

ᵀ
0 Xi(u)} − sz2x,h(u, β0)

s
(0)
z (u)

)
1

m(u)
dOi(u)γ 0

− 1√
n

n∑
i=1

∫ τ

0
Yi(u)

sz2x(u, β0)

s
(0)
z (u)

duγ 0 + op(1),
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and

I4 = 1√
n

∫ τ

0

n∑
i=1

Yi(u)

{
Ŝ

(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

(
Ŝ

(1)
z,h(u)

Ŝ
(0)
z,h(u)

)ᵀ}
duγ 0

=√
n

∫ τ

0

{
1

n

n∑
i=1

Yi(u) − s(0)
z (u)

}{
s
(1)
z,h(u)

s
(0)
x,h(u, β0)

(
s
(1)
z,h(u)

s
(0)
z,h(u)

)ᵀ}
duγ 0

+ √
n

∫ τ

0
s(0)
z (u)

{
Ŝ

(1)
z,h(u)

Ŝ
(0)
x,h(u, β0)

(
Ŝ

(1)
z,h(u)

Ŝ
(0)
z,h(u)

)ᵀ}
duγ 0 + op(1)

= 1√
n

n∑
i=1

∫ τ

0

s(1)
z (u)

s
(0)
x (u, β0)

Yi(u)

{
Zi (u)ᵀ −

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
1

m(u)
dOi(u)γ 0

+ 1√
n

n∑
i=1

∫ τ

0
Yi(u)

(
Zi(u) − s(1)

z (u)

s
(0)
x (u, β0)

exp{βᵀ
0 Xi(u)}

) (
s(1)
z (u)

s
(0)
z (u)

)ᵀ
s(0)
z (u)

s
(0)
x (u, β0)m(u)

dOi(u)γ 0

+ 1√
n

n∑
i=1

∫ τ

0
Yi(u)

{
s(1)
z (u)

s
(0)
x (u, β0)

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
duγ 0 + op(1).

Thus we have
√

nÛ1(θ0) = 1√
n

n∑
i=1

φ
(1)
i (θ0) + op(1),

where φ
(1)
i (θ0) = ∫ τ

0 Zi(u) exp{−β
ᵀ
0 Xi(u)}dNi(u) + φ

(1)
2i (θ0) + φ

(1)
3i (θ0) + φ

(1)
4i (θ0) + op(1) and

φ
(1)
2i (θ0) = −

∫ τ

0
Yi(u)

(
Zi(u) − s(1)

z (u)

s
(0)
x (u, β0)

exp{βᵀ
0 Xi(u)}

)
λc(u)

s
(0)
x (u, β0)m(u)

dOi(u)

−
∫ τ

0

s(1)
z (u)

s
(0)
x (u, β0)

dNi(u),

φ
(1)
3i (θ0) = −

∫ τ

0
Yi(u)

(
Zi (u)⊗2 exp{−β

ᵀ
0 Xi (u)} − sz2x,h(u, β0)

s
(0)
z (u)

)
1

m(u)
dOi(u)γ 0

−
∫ τ

0
Yi(u)

sz2x(u, β0)

s
(0)
z (u)

duγ 0,

φ
(1)
4i (θ0) =

∫ τ

0

s(1)
z (u)

s
(0)
x (u, β0)

Yi(u)

{
Zi(u)ᵀ −

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
1

m(u)
dOi(u)γ 0

+
∫ τ

0
Yi(u)

(
Zi(u) − s(1)

z (u)

s
(0)
x (u, β0)

exp{βᵀ
0 Xi(u)}

) (
s(1)
z (u)

s
(0)
z (u)

)ᵀ
s(0)
z (u)

s
(0)
x (u, β0)m(u)

dOi(u)γ 0

+
∫ τ

0
Yi(u)

{
s(1)
z (u)

s
(0)
x (u, β0)

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
duγ 0.

Similarly, it can be shown that
√

nÛ2(θ0) = 1√
n

∑n
i=1 φ

(2)
i (θ0) + op(1), where φ

(2)
i (θ0) =
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∫ τ

0 Xi (u)dNi(u) + φ
(2)
2i (θ0) + φ

(2)
3i (θ0) + φ

(2)
4i (θ0) + op(1), and

φ
(2)
2i (θ0) = −

∫ τ

0
Yi(u)

(
Xi(u) − s(1)

x (u, β0)

s
(0)
x (u, β0)

)
exp{βᵀ

0 Xi(u)} λc(u)

s
(0)
x (u, β0)m(u)

dOi(u)

−
∫ τ

0

s(1)
x (u, β0)

s
(0)
x (u, β0)

dNi(u),

φ
(2)
3i (θ0) = −

∫ τ

0
Yi(u)

(
Xi(u)Zi (u)ᵀ − szx(u)

s
(0)
z (u)

)
1

m(u)
dOi(u)γ 0

−
∫ τ

0
Yi(u)

szx(u)

s
(0)
z (u)

duγ 0,

φ
(2)
4i (θ0) =

∫ τ

0

s(1)
x (u, β0)

s
(0)
x (u, β0)

Yi(u)

{
Zi (u)ᵀ −

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
1

m(u)
dOi(u)γ 0

+
∫ τ

0
Yi(u)

(
Xi(u) − s(1)

x (u, β0)

s
(0)
x (u, β0)

)(
s(1)
z (u)

s
(0)
z (u)

)ᵀ
s(0)
z (u) exp{βᵀ

0 Xi (u)}
s
(0)
x (u, β0)m(u)

dOi(u)γ 0

+
∫ τ

0
Yi(u)

{
s(1)
x (u, β0)

s
(0)
x (u, β0)

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
duγ 0.

Define φi(θ0) = (φ
(1)
i (θ0)

ᵀ, φ(2)
i (θ0)

ᵀ)ᵀ, then we have
√

nÛ(θ0) = 1√
n

∑n
i=1 φi(θ0) + op(1).

Define A(θ) = E{− ∂U(θ)

∂θ
} =

(
E{− ∂U1(θ)

∂γ
} E{− ∂U1(θ)

∂β
}

E{− ∂U2(θ)

∂γ
} E{− ∂U2(θ)

∂β
}

)
=

(
A11(θ) A12(θ)

A21(θ) A22(θ)

)
. We define

s
(2)
z2x(t, θ) = E[Yi(t)Zi (t)Xi(t)

ᵀ{γ ᵀZi(t)} exp{−βᵀXi(t)}] and s(2)
x (t, β) = E

[
Yi(t)Xi (t)

⊗2 ×
exp{βᵀXi (t)}

]
, then we have

A11(θ) =
∫ τ

0
s(0)
z (u)

{
sz2x(u, β)

s
(0)
z (u)

− s(1)
z (u)

s
(0)
x (u, β)

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ
du

}
,

A12(θ) =E
[∫ τ

0
Zi (u)Xi (u)ᵀ exp{−βᵀXi (u)}dNi(u)

]
−

∫ τ

0

s(1)
z (u)

s
(0)
x (u, β)

(
s(1)
x (u, β)

s
(0)
x (u, β)

)ᵀ
λc(u)du

−
∫ τ

0
s(0)
z (u)

{
s
(2)
z2x(u, θ)

s
(0)
z (u)

− s(1)
z (u)

s
(0)
x (u, β)

(
s(1)
x (u, β)

s
(0)
x (u, β)

)ᵀ
γ ᵀ s(1)

z (u)

s
(0)
z (u)

}
du,

A21(θ) =
∫ τ

0
s(0)
z (u)

{
szx(u)

s
(0)
z (u)

− s(1)
x (u, β)

s
(0)
x (u, β)

(
s(1)
z (u)

s
(0)
z (u)

)ᵀ}
du,

A22(θ) =
∫ τ

0

{
s(2)
x (u, β)

s
(0)
x (u, β)

−
(

s(1)
x (u, β)

s
(0)
x (u, β)

)⊗2
}

λc(u)du

−
∫ τ

0
s(0)
z (u)

{
s(2)
x (u, β)

s
(0)
x (u, β)

−
(

s(1)
x (u, β)

s
(0)
x (u, β)

)⊗2
}

γ ᵀ s(1)
z (u)

s
(0)
z (u)

du.

Also, we have Â(θ) = − ∂Û(θ)

∂θ
=

(
− ∂Û1(θ)

∂γ
− ∂Û1(θ)

∂β

− ∂Û2(θ)

∂γ
− ∂Û2(θ)

∂β

)
=

(
Â11(θ) Â12(θ)

Â21(θ) Â22(θ)

)
. By Taylor expansion,

we have Û (̂θh)−Û (θ0) = Â(θ∗)(̂θh−θ0), where θ∗ is on the line segment between θ0 and θ̂h. Since
we can show that Â(θ∗) converges to A(θ0), we have

√
n(̂θh − θ0) converges to a normal distri-

bution with mean zero and variance A(θ0)
−1V (θ0){A(θ0)

−1}ᵀ, where V (θ0) = E{φ1(θ0)φ1(θ0)
ᵀ}.
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