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Abstract

Ensemble techniques have been gaining strength among machine learning models, considering
supervised tasks, due to their great predictive capacity when compared with some traditional
approaches. The random forest is considered to be one of the off-the-shelf algorithms due to its
flexibility and robust performance to both regression and classification tasks. In this paper, the
random machines method is applied over simulated data sets and benchmarking datasets in order
to be compared with the consolidated random forest models. The results from simulated models
show that the random machines method has a better predictive performance than random forest
in most of the investigated data sets. Three real data situations demonstrate that the random
machines may be used to solve real-world problems with competitive payoff.

Keywords bagging; ensemble; support vector machines

1 Introduction
Ensemble methods are machine learning algorithms that use multiple models in order to combine
them and build a stronger one (Dietterich, 2000). In general, the strategy of combination of the
models is made can be defined by two types of ensembles: i) the bagging approach (Breiman,
1996) based on independent bootstrapping models aggregated by the majority vote (classifica-
tion tasks), or using the average of models predictions (regression tasks), and ii) the boosting
approach (Freund and Schapire, 1997) which generates sequentially aggregated models using
different weights based on their previous errors.

The bagging procedure is widely used in many real-world applications and there are sev-
eral studies showing the effectiveness of this approach (Liang et al., 2011; Syarif et al., 2012;
Zareapoor et al., 2015; Bhavan et al., 2019). When Breiman (1996) first introduced the bagging
procedure, he emphasizes that the success of this method relies on the strength and the insta-
bility of single models that compose the bagging algorithm. The strength of the model can be
explained as the predictive capacity of each model. The instability concept was also explored
by Breiman et al. (1996). This characteristic is defined through the idea that if small changes
in bootstrap replications of a sample of observations produce large changes in the bootstrap
models, then, it can be considered unstable.

Although both of these characteristics are important to obtain robust results through the
bagging procedure, it is not simple to optimize them simultaneously. Ho (1998) presents this
trade-off between the strength and instability of models. Generally, strong models, i.e.: high
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accuracy, are more stable, which implies a greater correlation between models of this type, and
vice versa. Considering this aspect, Ho (1998) proposed the use of a random subspace method
for constructing decision forests, where a random selection of features to split each node is made.
Her work showed that it was possible to reduce the correlation of tree models without reducing
their accuracy.

Later, this main idea of using random subspace was formalized by Breiman (2001), who
presented the random forest (RF) method. Breiman (2001) showed that RF procedure creates
base models which were strong (i.e.: high predictive power) and uncorrelated, resulting in a
robust and consistent ensemble model (Scornet et al., 2015). The flexibility is also shown through
the articles that present the use of random forests in handling missing data (Tang and Ishwaran,
2017), and its robustness to estimate class’ probabilities (Sage et al., 2020). The effectiveness
of RF is also demonstrated in literature with diverse real-world applications (Pal, 2005; Bosch
et al., 2007; Statnikov et al., 2008; Futoma et al., 2015; Rodriguez-Galiano et al., 2015; Ouedraogo
et al., 2019).

Support vector machines (SVM) are very efficient and popular tools for classification and
regression with several perks. SVMs are rooted in the statistical learning theory (Vapnik, 1999)
and this method has a globally optimal solution which is obtainable by solving a convex op-
timization problem, while the problems of local minima disrupt other common contemporary
approaches, such as neural networks. A SVM also handles high-dimensional data since it con-
siders non-linearity inherent in data through incorporation of kernel functions (Moguerza and
Muñoz, 2006; Shivaswamy et al., 2007; Land and Schaffer, 2020; Kim and Kim, 2020). Despite
its great efficiency, the choice of kernel function is crucial in SVM applications, and also it can
be overlapped by ensemble models as random forest (Fernández-Delgado et al., 2014; Huo et al.,
2016).

Inspired by this concept of random subspace from random forests, the ensemble approach
random machines (RM) was designed. The RM method is a new ensemble procedure which
uses the SVM as a base learner and applies an innovative random sampling of kernel functions
to add instability and benefit the bagging structure. Ara et al. (2021) demonstrated that this
algorithm successfully reduced the correlation between base learners while maintaining their
strength, resulting in a better predictive performance than the traditional SVM and ensemble
of SVMs.

In this paper, the RM were compared with RF, to show that this recent ensemble approach is
competitive and can even result in better predictive performance than a robust and consolidated
method such as RF in classification and regression tasks. In Section 2, an overview of the
methodology of each algorithm is presented. In Section 3 and Section 4, both methods are
applied and compared over simulated and benchmarking datasets, respectively. Section 5 reports
the application of RM to solve successfully three real-world problems. Section 6 section closes
the paper with the final comments.

2 Methodology

2.1 Random Forests

The RF predictor is composed of multiple tree models fi(x), i = 1, . . . , B, where fi is a tree
estimated based on a random subset of size m, m < p, of a p-dimensional base-learner vector
x ∈ Rp for an outcome variable y. Each tree is built on a bootstrap sample and B is the total
number of them. Breiman (2002) refers to m as mtry and suggests that these values should be
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equal to p/3 for regression tasks and √
p to classification tasks. Other parameters are nodesize

– the minimum number of observations inside a terminal node – and number of trees B – also
named as ntree – that compose the model.

The final prediction of the random forest is given by the collection of trees, and changes
depending on prediction task. For the regression context, the final prediction to a new observation
is given by

F(x) = 1

B

B∑
i=1

fi(x, θ).

For the classification context, it is given by

F(x) = mode {fi(x, θ)}Bi .

2.2 Random Machines
The RM method (Ara et al., 2021) uses SVMs (Cortes and Vapnik, 1995; Drucker et al., 1997) as
base learners in the bagging procedure with a random sample of kernel functions to build them.
The methodology of this ensemble procedure differs for regression and classification assignments.
For a classification task, given the observations {xi, yi}ni=1, with yi ∈ {−1, 1}, i = 1, . . . , n,
where n is the sample size, SVM (Cortes and Vapnik, 1995) calculates an optimal hyperplane
that separate the observation’s classes. Its coordinates w are given by the minimization of the
Equation (1),

min
1

2
||w||2 + C

1

n

n∑
i=1

εi, (1)

with the constraints yi(w ·xi + b) − (1 − εi) � 0, εi = max {0, 1 − yi(w · xi + b)} for i = 1, . . . , n,
and where C > 0 is a regularization parameter.

The solution using the Lagrangian dual optimization for the soft margin problem (Fletcher,
2013), is given by

max
α

⎛
⎝ n∑

i

αi − 1

2

n∑
i

n∑
j

αiαjyiyjxi · xj

⎞
⎠ , (2)

s.t =
{∑n

i αiyi = 0,

0 � αi � C.

The predictions values for new observations x∗ are given by,

f (x∗) = sgn
(

n∑
i=1

αiyixi · x∗ − b

)
,

where sgn(.) is the sign function.
To deal with the non-linearity in support vector models, the kernel trick is used to transform

the data from the input space into a high-dimensional space where the observations are linearly
separable. This transformation is made through the kernel functions K(x, y) = φ(x) · φ(y). The
most common kernel functions in SVM applications were used in this paper, and are presented
in the Table 1, where γ ∈ R

+, d ∈ N.
The use of different kernel functions is one of the main ideas that support the efficiency

of RM and differentiates it from traditional ensemble approaches. Through random sampling,
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Table 1: Kernel functions.
Kernel K(x, y) Parameters
Linear Kernel γ (x · y) γ

Polynomial Kernel (γ (x · y))d γ , d

Gaussian Kernel e−γ ||x−y||2 γ

Laplacian Kernel e−γ ||x−y|| γ

it is possible to have a broader representation of the data, since each kernel visits different
feature spaces during the bagging procedure. Also, the proportions of visits to these feature
spaces are defined by weights based on the predictive capacity of every single kernel. Finally,
a model averaging is realized using the weights based on out-of-bag accuracy. Therefore, the
random selection of feature spaces increases the diversity of the base learners without decrease
its accuracy. The idea of increase in diversity and maintaining the accuracy in bagging was also
demonstrated in works that use kNN classifiers as base models (Gul et al., 2018). In the following
we explain in detail the entire process used by RM.

The classification RM algorithm initializes generating support vectors models hr(x), where
r = 1, . . . , R is the number of different kernels functions that will be used over a training set
{(xi, yi)}ni=1. Afterwards, each model will be validated over a test set {(xi, yi)}Ti=1, and an accuracy
vector, ACC ∈ R

R, is obtained. So, each coordinate refers to the predictive performance of the
support vector machine model with the respective kernel function. For instance, in this paper
we consider the four kernel functions presented in Table 1 (R = 4), and then the vector ACC

would be given by ACC = {ACCLin., ACCPol., ACCGau., ACCLap.}.
Subsequently, a vector of probabilities λ ∈ R

R is calculated using Equation (3) in order to
weight a random selection of the kernel functions that will be used in the bootstrap SVM base
learners. Each term of λ is given by,

λr = max

⎧⎨
⎩0,

log
(

ACCr

1−ACCr

)
∑R

j=1 log
(

ACCj

1−ACCj

)
⎫⎬
⎭ , ∀r = 1, . . . , R. (3)

In order to model the base learners that compose the RM, B bootstrap samples are generated
and B support vector models gb(x) are estimated based on these samples using the weighted
random kernel functions sampled with probability λr . The probabilities λr are higher if some
kernel function used in hr(x) predicted correctly observations from test set. Therefore, the kernel
functions with higher accuracy will appear often when the random kernel selection for each
bootstrap model is made. If any kernel function applied in hr(x) does not do better than a
random choice, then ACCr will be closer to 0.5 in binary cases and the probability of select that
kernel function is near to zero.

Using the out-of-bag samples as test set, the predictive performance of each classifier gb(x) is
evaluated, with b = 1, . . . , B, which generates a new vector of accuracy � = (�1, . . . , �B) ∈ R

B .
Therefore, a weight is calculated to each model prediction using the Equation (4),

wb = 1

(1 − �b)2
, b = 1, . . . , B. (4)
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The final classification is given by Equation (5),

G(xi) = sgn
(

B∑
b

wbgb(xi)

)
, i = 1, . . . , N. (5)

Considering the multi-class case, where K is the number of classes, the final decision model
is given by

G(xi) = arg max
k

(
B∑
b

wb1[gb(xi)=k]

)
, i = 1, . . . , N,

where 1[x] it the indicator function.
In the regression tasks, the target variable is no longer categorical, but continuous. There-

fore, the RM’s approach needs some modifications in the general procedure. Thus, the support
vector regression (SVR) method (Drucker et al., 1997) is used as a base learner, and the measure
used to evaluate is no longer the accuracy, but the root mean square error (RMSE). The equa-
tion that defines the probabilities vector of sample a kernel function becomes � = (	1, . . . , 	R)

and is now given by Equation (6),

	r = e−βδr∑R
j=1 e−βδj

, (6)

with ∀r = 1, . . . , R. The δ = (δ1, . . . , δR) represents the standardized (i.e.: divided by its standard
deviation) RMSE from the support vector regression models hr(x) over the test set, and β is
the correlation coefficient that tunes the penalty of the generalization error of each model. The
probabilities 	r are higher if determined kernel function used in hr(x) has lower generalization
error measured from the calculated RMSE over the test set. Consequently, the models with
lower δr will frequently appear when the random kernel selection for each bootstrap model is
performed.

Algorithm 1 Random machines algorithm.
Input: Training Data, Test Data, B, Kernel Functions
for each KernelFunctionr do

Calculate the model hr ;
Calculate the accuracy ACCr or RMSEr .

Calculate the probabilities λr ;
Generate B bootstrap samples;
for b in B do

Model gb(x) by sampling a kernel function with probability λr or 	r ;
Assign the weight using OOBGb samples.

Calculate G(x)

Both approaches are summarized in pseudo-codes to classification and regression tasks in
Algorithm 1. The random selection of kernel functions enables visiting multiple kernel spaces,
improving the representation of algorithm’s learning, and turning out RM as a different ensemble
method when compared with traditional SVM ensemble approaches.
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3 Artificial Data Application
To compare RM and RF concerning their predictive capacity, both methods were applied to
different simulated scenarios. The validation technique used was a repeated holdout, with thirty
repetitions and a split ratio of 70%–30% of the training-test. This validation setting was selected
to measure the generalization capacity to predict new observations consistently (Larsen and
Goutte, 1999). Also, in order to achieve the best of each algorithm, a grid search was realized to
select the best hyperparameters. For the RF method, the elements that were selected to compose
the grid search were:
• mtry: number of variables randomly sampled as candidates at each split.

– Classification: mtry ∈ {0.25
√

p; 0.5
√

p;√
p; 2

√
p; 4

√
p}

– Regression: mtry ∈ {0.25p

3 ; 0.5p

3 ; p

3 ; 2p

3 ; 4p

3 }
• nodesize ∈ {5; 10; 25}; as the minimum size of observations in terminal nodes.
• ntree ∈ {100; 500; 1000}; as the number of tree collections in a random forest.

The choice of these hyperparameters was justified regarding with Probst et al. (2019), which
evaluated that they were the most influential parameters in the RF algorithm. Concerning
the RM grid search, the hyperparameters range in C = {0.1; 0.5; 1; 5} (i.e.: cost parameter),
γGau. = {0.1; 0.5; 1; 5} (i.e.: γ parameter for the Gaussian kernel presented in Table 1) and
γLap. = {0.1; 0.5; 1; 5}. The other parameters as the polynomial degree d = 2 and SVR parameter
ε = 0.1 and β = 2 were chosen as default, since those values yielded reasonable good results for
most of datasets, being not necessary to use a grid search to select them.

3.1 Classification Task

In classification context, three scenarios were generated with the objective to experiment different
data behaviors. Simulation 1 regards a binary classification problem, were y ∈ {1, −1} and each
class is sampled from a different multivariate normal distribution. The Class 1 observations are
sampled from a distribution with mean vector μ1 = 0p, with 0p as p-dimensional zero vector, and
covariate matrix �1 = 4Ip. The Class −1 observations are sampled from a normal multivariate
that has mean vector μ−1 = 4 × 1p, with 1p as p-dimensional vector of ones, and covariate
matrix �−1 = Ip. The Simulation 1 configuration presents a setting where the two groups are
easily linearly separable. The Simulation 2 follows the same pattern as Simulation 1, however
the parameters of normal multivariate distribution from each class are different. Considering the
Class 1 instances, they are sampled from a distribution with mean vector μ1 = 0p and covariate
matrix �1 = 4Ip and the Class −1 observations are sampled from a normal multivariate that has
mean vector μ−1 = 2×1p and covariate matrix �−1 = Ip. At this second scenario, the two classes
are no longer easily linearly separable by a hyperplane as was in the first one. The Simulation
3 data set explores the non-linearity behavior from a binary classification task through a circle
uniformly distributed inside in the middle a p-dimensional cube.

All of scenarios varied the parameters: n = {100, 500, 1000} number of observations, the
p = {2, 10, 50} dimension, and the r = {0.1, 0.5} ratio observations in each class. The evaluation
was realized considering the following metrics:
• Accuracy (ACC): estimates the ratio of correctly classified observations to total observa-

tions from the sample. From a standard binary confusion matrix, we would have the quantities
of true positives (T P ), true negatives (T N), false positives (FP ) and, false negatives (FN).
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Table 2: Summary of mean values of ACC and MCC on Simulation 1 Dataset.

RM RF

ACC MCC ACC MCC

n p r B = 25 B = 50 B = 100 B = 25 B = 50 B = 100

0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.968 ± 0.025 0.805 ± 0.2012 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.978 ± 0.028 0.957 ± 0.055
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.00010 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.1 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

100

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.996 ± 0.006 0.975 ± 0.0382 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.965 ± 0.015 0.929 ± 0.029
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.00010 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

500

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.991 ± 0.005 0.948 ± 0.0252 0.5 0.991 ± 0.002 0.990 ± 0.004 0.990 ± 0.002 0.983 ± 0.003 0.981 ± 0.001 0.981 ± 0.003 0.970 ± 0.008 0.941 ± 0.015
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.00010 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

1000

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

The calculation is given by

ACC = T P + T N

T P + T N + FP + FN
.

• Matthew’s Correlation Coefficient (MCC): introduced by Matthews (1975), is usually
used to measure the predictive capacity of a model and it is calculated by

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

.

This metric can be considered a more reliable coefficient since it penalizes the false positive
and false negative predictions, especially in cases of imbalanced data (Boughorbel et al., 2017).
The MCC range varies from [−1, 1], where 1 means a perfect prediction, 0 no better than a
random prediction, and −1 is a complete reverse classification.

The result for Simulation 1 was summarized in the Table 2, where the ACC and MCC of
the best hyperparameters (i.e.: resulted in maximum ACC and MCC) were obtained. From the
outcome it is possible to notice that since the simplicity of the classification task both methods
performed well with perfect predictions in most cases. Through this behaviour, RM did not
present a good performance when compared concerning the RF when the classes are unbalanced
with small sample size, as it can be seen in MCC from RM values in r = 0.1 and n = 100
scenarios, which is generally lower when compared with the RF.

The outcome for Simulation 2 is reported in Table 3. In this artificial data sets, the two
classes are no longer easily linearly separable, and this characteristic is reflected in the lower
values of ACC and MCC when compared with the first scenario. Despite that, in most cases, the
RM outperform the random forest approach. The RM seems few accurate by to MCC measure
only in cases where exists a great unbalance between the classes ratio = 0.1, and a small sample
size n = 100.

The result of the third scenario is presented in Table 4. Simulation 3 emphasizes a non-
linear classification problem, and it can be noticed from the evaluation metrics that the RM



600 Maia, M. et al.

Table 3: Summary of mean values of ACC and MCC using the RM and increasing the number
of base learners over the Simulation 2 Dataset.

RM RF

ACC MCC ACC MCC

n p r B = 25 B = 50 B = 100 B = 25 B = 50 B = 100

0.1 0.997 ± 0.013 1.000 ± 0.000 1.000 ± 0.000 0.979 ± 0.079 1.000 ± 0.000 1.000 ± 0.000 0.91 ± 0.032 0.383 ± 0.2982 0.5 0.947 ± 0.013 0.947 ± 0.022 0.948 ± 0.016 0.896 ± 0.027 0.896 ± 0.046 0.899 ± 0.033 0.871 ± 0.054 0.749 ± 0.104
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.967 ± 0.030 0.811 ± 0.2110 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.983 ± 0.023 0.967 ± 0.046
0.1 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 0.001 ± 0.001 0.962 ± 0.055 0.839 ± 0.216

100

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

0.1 0.955 ± 0.009 0.957 ± 0.007 0.957 ± 0.007 0.801 ± 0.044 0.812 ± 0.030 0.813 ± 0.034 0.958 ± 0.012 0.744 ± 0.0762 0.5 0.917 ± 0.006 0.918 ± 0.005 0.918 ± 0.005 0.835 ± 0.012 0.836 ± 0.010 0.837 ± 0.009 0.875 ± 0.025 0.753 ± 0.049
0.1 0.999 ± 0.003 0.998 ± 0.004 1.000 ± 0.000 0.994 ± 0.015 0.993 ± 0.017 1.000 ± 0.000 0.996 ± 0.005 0.978 ± 0.02610 0.5 1.000 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 0.982 ± 0.008 0.965 ± 0.015
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

500

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

0.1 0.946 ± 0.005 0.948 ± 0.006 0.949 ± 0.005 0.676 ± 0.035 0.691 ± 0.041 0.694 ± 0.034 0.951 ± 0.011 0.987 ± 0.0702 0.5 0.929 ± 0.004 0.927 ± 0.003 0.926 ± 0.003 0.858 ± 0.007 0.855 ± 0.006 0.853 ± 0.005 0.867 ± 0.013 0.738 ± 0.027
0.1 0.996 ± 0.004 0.994 ± 0.005 0.998 ± 0.002 0.972 ± 0.032 0.960 ± 0.039 0.988 ± 0.017 0.999 ± 0.002 0.992 ± 0.01110 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.994 ± 0.005 0.989 ± 0.009
0.1 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

1000

50 0.5 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 4: Summary of mean values of ACC and MCC on Simulation 3 Dataset.

RM RF

ACC MCC ACC MCC

n p r B = 25 B = 50 B = 100 B = 25 B = 50 B = 100

0.1 0.972 ± 0.041 0.969 ± 0.001 0.967 ± 0.046 0.618 ± 0.001 0.682 ± 0.028 0.692 ± 0.001 0.918 ± 0.059 0.461 ± 0.3442 0.5 0.887 ± 0.041 0.880 ± 0.036 0.872 ± 0.034 0.794 ± 0.074 0.783 ± 0.062 0.770 ± 0.057 0.894 ± 0.054 0.796 ± 0.103
0.1 0.995 ± 0.027 0.990 ± 0.001 0.987 ± 0.052 0.990 ± 0.002 0.991 ± 0.001 0.990 ± 0.002 0.889 ± 0.050 0.990 ± 0.00110 0.5 0.602 ± 0.056 0.609 ± 0.117 0.628 ± 0.045 0.565 ± 0.095 0.572 ± 0.040 0.589 ± 0.081 0.684 ± 0.079 0.537 ± 0.136
0.1 1.000 ± 0.000 0.990 ± 0.001 1.000 ± 0.000 0.992 ± 0.001 0.992 ± 0.002 0.992 ± 0.001 0.889 ± 0.050 0.993 ± 0.001

100

50 0.5 0.588 ± 0.146 0.598 ± 0.299 0.545 ± 0.102 0.516 ± 0.226 0.542 ± 0.097 0.505 ± 0.216 0.637 ± 0.084 0.687 ± 0.172

0.1 0.987 ± 0.005 0.892 ± 0.046 0.987 ± 0.008 0.892 ± 0.066 0.983 ± 0.007 0.883 ± 0.051 0.970 ± 0.015 0.811 ± 0.0852 0.5 0.975 ± 0.014 0.951 ± 0.028 0.976 ± 0.011 0.952 ± 0.021 0.929 ± 0.011 0.959 ± 0.021 0.951 ± 0.017 0.902 ± 0.034
0.1 0.930 ± 0.002 0.924 ± 0.096 0.930 ± 0.002 0.911 ± 0.002 0.901 ± 0.002 0.929 ± 0.004 0.904 ± 0.019 0.918 ± 0.07310 0.5 0.915 ± 0.025 0.832 ± 0.049 0.929 ± 0.016 0.829 ± 0.031 0.830 ± 0.011 0.872 ± 0.022 0.832 ± 0.036 0.874 ± 0.070
0.1 0.930 ± 0.001 0.921 ± 0.001 0.930 ± 0.001 0.921 ± 0.001 0.920 ± 0.001 0.928 ± 0.001 0.914 ± 0.018 0.901 ± 0.001

500

50 0.5 0.700 ± 0.018 0.735 ± 0.056 0.706 ± 0.015 0.439 ± 0.037 0.453 ± 0.043 0.497 ± 0.108 0.803 ± 0.037 0.618 ± 0.068

0.1 0.988 ± 0.003 0.933 ± 0.020 0.989 ± 0.003 0.937 ± 0.016 0.902 ± 0.003 0.941 ± 0.015 0.974 ± 0.008 0.846 ± 0.0442 0.5 0.980 ± 0.004 0.959 ± 0.008 0.980 ± 0.003 0.959 ± 0.006 0.940 ± 0.003 0.961 ± 0.005 0.960 ± 0.012 0.920 ± 0.023
0.1 0.932 ± 0.023 0.934 ± 0.301 0.939 ± 0.019 0.552 ± 0.258 0.548 ± 0.008 0.574 ± 0.063 0.907 ± 0.012 0.502 ± 0.11210 0.5 0.967 ± 0.007 0.934 ± 0.015 0.971 ± 0.007 0.942 ± 0.014 0.922 ± 0.004 0.944 ± 0.008 0.856 ± 0.019 0.715 ± 0.036
0.1 0.900 ± 0.001 0.901 ± 0.001 0.900 ± 0.001 0.900 ± 0.001 0.900 ± 0.001 0.901 ± 0.001 0.901 ± 0.012 0.901 ± 0.001

1000

50 0.5 0.840 ± 0.109 0.885 ± 0.072 0.917 ± 0.034 0.695 ± 0.202 0.773 ± 0.141 0.836 ± 0.068 0.841 ± 0.026 0.685 ± 0.052

surpassed the random forest in all cases. This outcome probably happens due to the support
vector classifier’s capacity to deal with the non-linearity through the kernel trick. Is important
to observe that both methods had difficulties to classify the setting with high dimensionality
(p = 50), unbalanced data (r = 0.1). This fact is reflected in both methods by lower MCC

values, which is an appropriate measure to evaluate unbalanced scenarios.
The predictive capacity of each algorithm also can be compared through the number of times

that a method won, i.e.: achieve higher or equal ACC or MCC, in thirty holdout repetitions.
The outcome of simulation experiments is graphically summarized by Figure 1. Is remarkable
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that the RM outperformed the RF in the majority of scenarios presented. Nonetheless, both
methods have a slightly underfit over small sample sizes in the non-linear classification problem
expressed by Simulation 3. Also, considering Simulation 2, the calculated MCC values for the RF
models are higher in particular cases where the data have simultaneously unbalanced between
the classes and small sample size. However, it is worth remembering that the ACC measure was
used during the RM training process, which does not exhibit this same behavior.

Tables 2, 3, and 4 also express the sensibility of the RM with respect to the number of
bootstrap samples B. From all simulation scenarios, it can be observed that, on average, the
RMSE tends to be smaller as we increase the number of base learners. However, the difference
seems to be smaller from 50 bootstrap samples and 100, showing the consistency of the algorithm.

3.2 Regression Task

The artificial data generation for regression tasks considered five different scenarios to evalu-
ate which algorithm would perform better. Simulations 1–3 are toy examples (Scornet, 2016),
Simulation 4 (Van der Laan et al., 2007) and Simulation 5 (Roy and Larocque, 2012) are also
simulation scenarios already tested and used in literature. All covariates X = (X1, . . . , Xp) from
Simulations 1–4 follow a uniform distribution [−1, 1]p. For the case of Simulation 5 each predic-
tor follows an independent standard normal distribution. To appraise how each model is affected
by the sample size, the values of n = {30, 100, 500, 1000} were chosen. Moreover, the RMSE was
the measure selected to analyze the performance of RF and RM.

The equations of each simulation scenario are described below
• model 1: p = 2, Y = X2

1 + e−X2
2 + N (0, 0.25)

• model 2: p = 8, Y = X1X2 + X2
3 − X4X7 + X5X8 − X2

6 + N (0, 0.5)

• model 3: p = 4, Y = − sin(X1) + X2
2 + X3 − e−X2

4 + N (0, 0.5)

• model 4: p = 6, Y = X2
1 + X2

2X3e
−|X4| + X6 − X5 + N (0, 0.5)

• model 5: p = 6, Y = X1 + 0.707X2
2 + 21X3>0 + 0.873 log(|X1|)|X3| + 0.894X2X4 + 21X5>0 +

0.464eX6 + N (0, 1)

The averages of RMSE are presented in Table 5. The result achieved in all scenarios gives
the evidence that the regression RM outperformed the RF, reinforcing the idea that the novel
ensemble approach is competitive. It is interesting to notice that the difference between RMSE

values of each method is lower when the sample size is equally small, in most cases. This be-
haviour maybe can be interpreted as the regression RM approach can benefit even more with
larger sample sizes. Figure 2 emphasizes the superiority of regression RM in that cases, where is
possible to see the proportion of the number of times that the RF have greater values of RMSE.

4 Benchmarking Applications
Simulations are interesting to study the performance of both methods under controlled situa-
tions. However, analysis over real data sets is a valuable and essential contribution. Therefore, the
comparison was also applied to real-world and benchmarking data. All data sets were retrieved
from the UCI Repository of Machine Learning (Dua and Graff, 2017), being fifteen classification
tasks and being fifteen regression tasks, summing up a total of thirty different data sets. All of
them were chosen in order to diversify the sample size, dimensionality, and domain application.
The validation technique, hyperparameter tuning, and metrics rating used in the benchmarking
application were the same as used in Section 3.
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Figure 1: Proportion of the number times that a method won, considering MCC and ACC, in
30 holdout repetitions, calculated for all scenarios.
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Table 5: Mean and standard deviation of RMSE for all simulation settings.

RM RF

n B = 5 B = 25 B = 50

30 0.573 ± 0.190 0.562 ± 0.166 0.556 ± 0.178 0.568 ± 0.289
100 0.509 ± 0.092 0.508 ± 0.082 0.502 ± 0.080 0.520 ± 0.103
500 0.515 ± 0.035 0.510 ± 0.035 0.510 ± 0.035 0.528 ± 0.050Simulation 1

1000 0.491 ± 0.019 0.490 ± 0.020 0.490 ± 0.020 0.498 ± 0.033

30 1.136 ± 0.393 1.102 ± 0.365 1.101 ± 0.359 0.877 ± 0.262
100 1.025 ± 0.140 1.000 ± 0.139 1.006 ± 0.142 0.964 ± 0.218
500 0.796 ± 0.062 0.781 ± 0.055 0.771 ± 0.054 0.959 ± 0.093Simulation 2

1000 0.762 ± 0.037 0.744 ± 0.034 0.741 ± 0.035 0.939 ± 0.070

30 0.896 ± 0.282 0.888 ± 0.304 0.885 ± 0.306 0.789 ± 0.332
100 0.845 ± 0.139 0.827 ± 0.117 0.824 ± 0.118 0.806 ± 0.220
500 0.736 ± 0.069 0.725 ± 0.056 0.723 ± 0.058 0.754 ± 0.083Simulation 3

1000 0.737 ± 0.039 0.732 ± 0.040 0.732 ± 0.041 0.779 ± 0.045

30 0.991 ± 0.332 0.932 ± 0.247 0.939 ± 0.262 1.085 ± 0.356
100 0.794 ± 0.131 0.799 ± 0.117 0.783 ± 0.121 0.822 ± 0.198
500 0.774 ± 0.052 0.763 ± 0.056 0.761 ± 0.052 0.793 ± 0.062Simulation 4

1000 0.754 ± 0.032 0.745 ± 0.029 0.744 ± 0.029 0.758 ± 0.038

30 2.626 ± 0.983 2.511 ± 0.908 2.552 ± 0.936 2.448 ± 1.301
100 2.125 ± 0.402 2.033 ± 0.401 2.021 ± 0.384 2.281 ± 1.021
500 1.730 ± 0.203 1.691 ± 0.190 1.681 ± 0.197 1.946 ± 0.271Simulation 5

1000 1.573 ± 0.122 1.547 ± 0.120 1.541 ± 0.122 1.730 ± 0.169

Table 6: Description of fifteen binary benchmarking.

Data Set n p Class Proportion Data Set n p Class Proportion

audit risk 774 24 305/470 ionosphere 351 33 126/225
banknote 1371 4 610/762 kidney disease 154 24 41/114
clean1 476 166 207/269 parkinson 194 22 48/147
column 2C 310 6 100/210 spirals 500 2 250/250
cryotherapy 90 6 42/48 thoraric 470 14 70/400
dataR2 116 9 52/64 vehicle 846 18 218/628
diabetes 769 8 268/500 whosale 440 6 142/298
german 1000 24 300/700

4.1 Classification Cases

The description of classification data sets is given in Table 6 with the number of observations
(n), that range from 90–1371, the number of predictors (p), that range from 2–166, and the
class proportion, i.e.: the ratio between the numbers of observations in each class. All of them
are cases of binary classification.
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Figure 2: Proportion the number times that a method won base on the RMSE for all simulation
scenarios (B = 25).

The average calculated values of ACC and MCC are presented in Table 7. Faced with
benchmarking considered scenarios, the RM had greater performance than the random forest
algorithm, since it achieved higher mean values of ACC and MCC in 12 of 15 data sets. Studying
the three cases (german, vehicle, thoraric) where the random forest obtained better MCC values,
can be noticed that all of them are cases of imbalance between the classes. Highlighting the
thoraric data set, it presents the largest difference of the MCC’s mean value between those three
and also have the smaller ratio class ratio. The RM’s efficiency can also be observed graphically
in Figure 3 which shows the proportion that a method won in thirty holdout repetitions.

4.2 Regression Cases

The characterization of regression benchmarking is featured in Table 8 that presents the number
of observations that ranges (n) from 23–4177, the number of predictors that ranges from 1–60.
Also, the mean value of the predictive variable is provided.

The values of Root Mean Squared Error obtained for regression RM and RF are in Table 9.
The result given by Table above reveals that the regression RM produced a lower generalization
error (i.e.: lower RMSE) in majority of data sets tested. Comparing both columns, it can be
noticed that regression RM column is, in average, 8.5% smaller than the random forest one.
Also, in absolute terms, regression RM won in 12 of 15 regression scenarios, losing only in:
friedman#3, pyrim, and triazine. Investigating deeply, the high ratio p/n value from these two
last data might be the reason of RF performed better since it can take more advantage of high
dimensionality, and small sample size than the regression RM. Despite these three cases, the
superiority of regression RM also is depicted in Figure 4.
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Table 7: Average values of the accuracy and Matthew’s Correlation Coefficient for benchmarking.

Dataset RM RF

ACC MCC ACC MCC

audit risk 1.000 ± 0.002 0.999 ± 0.005 0.999 ± 0.002 0.998 ± 0.005
banknote 1.000 ± 0.001 1.000 ± 0.001 0.991 ± 0.005 0.982 ± 0.010
clean1 0.920 ± 0.028 0.837 ± 0.057 0.883 ± 0.027 0.765 ± 0.054
column 2C 0.855 ± 0.027 0.658 ± 0.057 0.834 ± 0.031 0.612 ± 0.066
cryotherapy 0.931 ± 0.043 0.867 ± 0.085 0.886 ± 0.064 0.779 ± 0.133
dataR2 0.749 ± 0.063 0.505 ± 0.128 0.727 ± 0.073 0.457 ± 0.146
diabetes 0.771 ± 0.023 0.476 ± 0.036 0.766 ± 0.019 0.476 ± 0.039
german 0.766 ± 0.019 0.406 ± 0.044 0.768 ± 0.020 0.417 ± 0.043
ionosphere 0.947 ± 0.019 0.885 ± 0.040 0.926 ± 0.025 0.841 ± 0.053
kidney disease 1.000 ± 0.001 1.000 ± 0.001 0.999 ± 0.004 0.998 ± 0.010
parkinson 0.924 ± 0.041 0.796 ± 0.106 0.895 ± 0.047 0.718 ± 0.129
spirals 0.997 ± 0.009 0.963 ± 0.182 0.936 ± 0.032 0.853 ± 0.166
thoraric 0.853 ± 0.028 0.002 ± 0.038 0.853 ± 0.028 0.013 ± 0.084
vehicle 0.982 ± 0.007 0.955 ± 0.019 0.984 ± 0.007 0.959 ± 0.017
whosale 0.919 ± 0.020 0.814 ± 0.046 0.917 ± 0.022 0.808 ± 0.049

Figure 3: Proportion of the number times that a method won, considering MCC and ACC, in
30 holdout repetitions, calculated for all benchmarking.
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Table 8: Description of the fifteen regression benchmarking.

Data Set n p ȳ Data Set n p ȳ

abalone 4177 7 9.934 mpg 399 6 23.515
boston housing 506 13 22.533 ozone 330 8 11.776
cars 50 1 42.980 pyrim 74 27 0.659
friedman#1 500 10 14.417 slump 103 7 36.039
friedman#2 500 4 447.791 space ga 3107 6 −0.576
friedman#3 500 4 1.311 stormer 23 2 84.722
geysers 299 1 3.461 triazine 186 60 0.652
machines 209 7 99.330

Table 9: Average values of RMSE from regression RM and RF calculated on regression bench-
marking.

Data Set RMSE

RM RF

abalone 2.113 ± 0.058 2.159 ± 0.054
boston housing 3.284 ± 0.384 3.357 ± 0.474
cars 15.549 ± 3.472 15.712 ± 3.531
friedman#1 2.081 ± 0.107 2.315 ± 0.123
friedman#2 129.157 ± 7.484 134.394 ± 9.499
friedman#3 0.149 ± 0.017 0.138 ± 0.017
geysers 0.883 ± 0.039 0.967 ± 0.059
machines 34.982 ± 12.355 37.729 ± 22.943
mpg 2.722 ± 0.275 2.847 ± 0.273
ozone 3.926 ± 0.254 4.024 ± 0.283
pyrim 0.099 ± 0.038 0.091 ± 0.047
slump 1.896 ± 0.431 3.815 ± 0.740
space ga 0.106 ± 0.009 0.117 ± 0.010
stormer 19.572 ± 9.309 40.606 ± 12.222
triazine 0.136 ± 0.017 0.125 ± 0.014

5 Three Real-World Applications
In this section, the RM approach was used to solve three different novel real-world problems:
predict a defaulting status from companies, classify people’s gender from their definition of love,
and predict the rate of use of a Brazilian social assistance programme by municipality. The
result was also compared with Linear and Gaussian SVM, and the RF. The descriptive analysis
of these applications are shown in the Supplementary Material B.

5.1 Default Status from Business Companies

The dataset is composed of 66 observations where each instance represents a determined com-
pany. The outcome is a binary variable yi , where if yi = 1, this indicates that the corporation
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Figure 4: Proportion of the number times that a method won, considering RMSE, in 30 holdout
repetitions, calculated for all regression benchmarks.

is compliant with their salaries, on the other hand, if yi = −1, then it indicates a company in
default. There are seven continuous covariates that describes each company. Two of them are
the current liquid ratio (CLR) and the dry liquidity ratio (DLR), respectively. The other five
are Kanitz indexes (Callado, 2003) that can indicate the possibility of business bankruptcy.

The proportion ratio between the number of instances from categories yi = 1 and yi = −1
is 27/39. To validate the performance of RM, RF, and SVM, a 100 repeated holdout validation
was used with the split ratio of 70–30% of training-test set.

The tuning of the hyperparameters was also applied for all algorithms to achieve the better
results for each of them. A grid search was realized over all possible hyperparameters combination
for each method being respectively: RM: C = {0.1; 0.5; 1; 5}, γGau. = {0.1; 0.5; 1; 5}, γLap. =
{0.1; 0.5; 1; 5}; RF: mtry = {1; 3; 6}, nodesize = {5; 10; 25}, ntree = {100; 500; 1000}; Linear
Support Vector Machine, C = {0.1; 0.5; 1; 5}, γ = {0.1; 0.5; 1; 5}, γ = {0.1; 0.5; 1; 5}; Gaussian
Support Vector Machine, C = {0.1; 0.5; 1; 5}, γ = {0.1; 0.5; 1; 5}.

To evaluate the predictive capacity, ACC and MCC were calculated over the test set. The
result is given in Figure 5.

The mean of the average accuracy values for SVM.Lin, SVM.Gau, RF and RM are 80%,
85%, 90%, 90%, respectively. Considering the average MCC values are given by 65.51%, 66.66%,
77.87% and 77.20%, respectively. Interpreting these results, we can infer that RM surpassed the
support vector models, and obtained an equivalent performance when compared with the RF.

It is important to emphasize that the RM performed competitively with the robust ap-
proach of RF in this application, resulting in great values of ACC and MCC. The optimal
hyperparameters configuration were: mtry = 6, nodesize = 5 and ntree = 1000 for RF; C = 5,
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Figure 5: Violin-boxplots of the average values of ACC and MCC over the companies test set.

γGau. = 0.5, γLap. = 0.1 for RM; C = 1, γ = 5, for SVM with Linear Kernel and C = 5, γ = 0.5
for SVM with Gaussian Kernel.

5.2 Gender Prediction by the Love Interpretation

This database consists of a collection of statements gathered from 581 people, from different
gender and age groups, about associations and feelings about what is love. The data was gathered
in order to study and explore the concept of love based on a Brazilian sample (Td, 2017). The
transcripts of the responses were analyzed by psychologists and psychiatrists that created 14
different categories to indicate a specific type of love perception. Beside it, a score is associated
with each category to quantify how much of that feeling is present in the respective answer. For
this classification task, the outcome will be the biological gender of each person, which is defined
as a binary target yi ∈ {Male, Female}.

To state the model the 14 categories of love and the age were selected as independent
variables. The gender was defined as the dependent variable yi . Therefore, the RM, random
forest and, support vector models were applied in order to build a model capable to predict the
gender. To evaluate the performance a 100 repeated holdout validation was used with the split
ratio of 70–30% of training-test set.

The tuning of hyperparameters was also realized following the same grid search configuration
presented in the Section 4.5.1, with the exception of the range of mtry parameter that changed
to mtry = {1, 2, 4, 8}.

The results of models performance are summarized in Figure 6. From the violin-boxplots
of the average ACC values, it can be noticed that the performance of all models considering the
accuracy is almost the same. However, since the classes are unbalanced the evaluation of the
predictive capacity through MCC is more meaningful. When only MCC is observed is clear that
the Regression machines performed slightly better than the other models. The median of the
one hundred MCC means values for SVM.Lin, SVM.Gau, RF and RM are 0.162, 0.145, 0.163
and 0.186, respectively.

Counting the number of times that RM predicted better than RF (i.e.: yielded a lower
RMSE in a holdout repetition), we observed that occurred over 60 of 100 repetitions. The
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Figure 6: Violin-boxplots of the average values of ACC and MCC over test set.

optimal hyperparameters configuration were: mtry = 4, nodesize = 25 and ntree = 1000 for
random forest; C = 5, γGau. = 0.5, γLap. = 0.5 for RM; C = 5, γ = 5, for SVM with Linear
Kernel and C = 1, γ = 0.1 for SVM with Gaussian Kernel.

5.3 Forecasting the Rate of Use of a Brazilian Social Programme

Government public administration aims to provide support to its population through assistance
programs that promote the reduction of poverty and inequality. In this sense, the Brazilian gov-
ernment has a social program for direct income distribution. The database from this application
contains the collection of Brazilian cities and their rate of use of this benefit. This rate of use
(yi) is defined as the number of people who enjoy the assistance divided by the total population
of that city.

Is important to emphasize that the capacity of creating models that can help to predict the
rate of use social program like the Bolsa-Família can guide the Government to better manage
resources, and provide better support in directing public policies. The data was retrieved from
the Brazilian organizational site called Transparency Portal, and bring information about 5564
counties and their socioeconomic indexes.

Also, setting Y as target variable and the other variables as predictors, regression models
were applied using the regression RM, RF and support vector regression models using the Linear
and Gaussian kernel functions. Their performances were evaluated using the Root Mean Squared
Error which was calculated through a validation technique of 100 repeated holdouts with a split
ratio of 70–30% training-test. The tuning of hyperparameters was also realized following the
same grid search configuration presented in the Section 4.5.1. The ε = 0.1 parameter of SVR
models was set as default.

The average values of RMSE obtained in each algorithm are summarized in Figure 7. From
the result is clear that the regression RM outperforms all of models since it presents the lower
generalization error among them. The median of average values for SVM.Lin, SVM.Gau, RF
and RM are respectively 0.0156, 0.0150, 0.0150 and 0.0147. The behavior of RM shows that it
can be a competitive robust ensemble model as RF.
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Figure 7: Violin-boxplots of the average values of RMSE over test set.

Another way to compare and emphasizes the superiority of RM for this regression task is
through counting the number of times that the proposed algorithm produced a lower RMSE in a
holdout repetition. Regarding all the repetitions, for SVM.Lin that happened 100 times, for the
SVM.Gau 99 times, and for the RF 93 times. The optimal hyperparameters configuration were:
mtry = 6, nodesize = 25 and ntree = 1000 for random forest; C = 0.1, γGau. = 5, γLap. = 0.5 for
RM; C = 1, γ = 0.1, for SVM with Linear Kernel and C = 1, γ = 0.1 for Gaussian Kernel.

6 Final Comments
This paper proposes an empirical comparison between the recent ensemble learning approach
called RM, and the consolidated tree ensemble method called RF. Both models were evaluated
in classification and regression tasks over several simulated data sets and benchmark data. The
results obtained show that the new RM procedure is strong competitive and produce better
performance over the majority of the presented cases. Despite its good overall performance, the
computational cost of this approach still larger when compared with RF.

For both simulated and real databases RM generally has an overall better performance than
RF when classes are balanced or with not small samples. This behavior could be explained by the
transformation of the feature space provided by the kernel functions. The use of kernel trick in
support vector models leads to the different non-linear decision boundaries that may give a better
representation of the learning problem than linear split rules from treed models. Moreover, the
random sampling of kernel functions can increase the diversity necessary in ensemble approaches
more than the random subspace sampling of predictions from RF. Another key aspect that can
explain this phenomenon is the base learners that compose each ensemble approach, since SVM
are generally stronger, i.e.: have a better predictive capacity, than simple tree models (Huang
et al., 2003).
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Additionally, RM were considered in thirty benchmark datasets and in three novel real-
world applications, which were explored in this paper. In this case, the RM promoted better
results in two of them and presented similar results in one of them. These facts reinforcing the
predictive capacity the RM. On the other hand, the RM did not show a high predictive capacity
via MCC in some situations where exist imbalanced classes with small sample size. Traditionally,
SVM drops the predictive capacity in these cases (Wu and Chang, 2003). Some authors reported
modifications on traditional SVM models to deal with this problem, and obtain greater results
(Wang and Japkowicz, 2010; Batuwita and Palade, 2013).

RM and RF are considered ensemble learning methods, which different procedures based
on bagging modelling. A principal difference of them is the base learner, RM considers support
vector models as base learners and random forest considers decision trees as base model. Random
machines consider different kernel functions to map the complete feature space. Random forest
considers different feature subspace. In terms of the computational complexity, SVM has a time
complexity O(n3) and decision trees has a time complexity O(n × p2) (Al-Rajab et al., 2017).
For this reason the RM is more computational complex than RF, specially in situations with
large sample sizes. Our experience shows that a learning time with 60 seconds on random forest
is equivalent a 400 seconds on RM.

For future works, new procedures to accelerate the learning time of RM may be considered.
Also, may it interesting to use these adaptations jointly with its workflow to obtain better
results in more simulation scenarios, different kernels and different weighing functions as well as
an exhaustive investigation of the computational costs.

Supplementary Material A
The RM was also implemented in R language and it can be used through the rmachines pack-
age, available and documented at GitHub https://github.com/MateusMaiaDS/rmachines. To a
overall description of how to reproduce the results from this article just access the README at
https://mateusmaiads.github.io/rmachines_and_randomforest/.

Supplementary Material B
Exposes a descriptive analysis of the three real-world applications displayed in Section 5 and
additional results around the comparison of RM and RF.
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