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Abstract

Machine learning methods are increasingly applied for medical data analysis to reduce human
efforts and improve our understanding of disease propagation. When the data is complicated and
unstructured, shallow learning methods may not be suitable or feasible. Deep learning neural
networks like multilayer perceptron (MLP) and convolutional neural network (CNN), have been
incorporated in medical diagnosis and prognosis for better health care practice. For a binary
outcome, these learning methods directly output predicted probabilities for patient’s health
condition. Investigators still need to consider appropriate decision threshold to split the predicted
probabilities into positive and negative regions. We review methods to select the cut-off values,
including the relatively automatic methods based on optimization of the ROC curve criteria and
also the utility-based methods with a net benefit curve. In particular, decision curve analysis
(DCA) is now acknowledged in medical studies as a good complement to the ROC analysis
for the purpose of decision making. In this paper, we provide the R code to illustrate how to
perform the statistical learning methods, select decision threshold to yield the binary prediction
and evaluate the accuracy of the resulting classification. This article will help medical decision
makers to understand different classification methods and use them in real world scenario.
Keywords deep learning; machine learning; net benefit; ROC; threshold

1 Introduction
Data science has expanded quickly due to the increase in data storage capacities and exploration
of computational technologies and algorithms. Medical researchers now can access large volume
of data and analyze them in real time. The data mining techniques help to obtain the significant
information from the patient health data and make promising predictions. In a particular clinical
investigation, we may follow a three-step procedure: (i) build a risk prediction model from
available data by using machine learning methods; (ii) decide a threshold value to split the
predicted probability into either a positive or a negative region; (iii) apply the trained model
and selected threshold for actual diagnosis and screening. We will provide a systematic review
on how to conduct steps (i) and (ii) in this paper.

To perform step (i), one may consider many machine learning methods. When data are
in the standard format, e.g., accessible via an Excel sheet, most shallow learning tools can be
readily applied, including the familiar logistic regression, and classification trees for example.
These methods are traditionally covered in the course curriculum in most graduate programs
for statistics and biostatistics. On the other hand, when the data become complicated, we may
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need deep learning neural networks such as multilayer perceptron (MLP) and convolutional
neural network (CNN). These more advanced learning can be used in clinical diagnostic tasks to
improve the prediction results of shallow learning methods or for analyzing unstructured data
such as medical imaging data. In fact medical images can come from computed tomography,
magnetic resonance, ultrasound, X-ray etc. Medical image segmentation, pattern recognition
and visualization has become vital for the early detection, diagnosis and treatment of many
diseases. In this study we illustrate the traditional shallow learning methods and the deep
learning methods on the Pima Indian diabetes dataset and the Malaria Blood smear image
dataset, respectively.

To perform step (ii), one may choose the decision threshold based on two types of con-
sideration. The first option is to directly optimize some criteria related to Receiver Operating
Characteristic (ROC) curve. ROC analysis has been frequently used for the evaluation of diag-
nostic models (Pepe et al., 2003; Zhou et al., 2009; Erkanli et al., 2006; Krzanowski and Hand,
2009; O’Malley and Zou, 2006; Zou et al., 2012; Li et al., 2019). The so-called ROC curve is a plot
of sensitivity against 1-specificity across all the possible decision thresholds from a diagnostic
model. Area under the ROC curve (AUC) is a commonly reported measure to summarize overall
accuracy of the diagnostic model. One may then select some “optimal” cut-off values from the
constructed ROC graphs when satisfactory levels of sensitivity and specificity are achieved.

The second option for deciding a threshold is via a utility-based analysis. In fact, despite
of its vast popularity, ROC curve fails to account for the clinical consequence and the practical
cost-utility of the learned models (Vickers et al., 2019). The cost of a decision could mean the
acquisition costs of the product, but also the costs of any additional tests or visits to health-care
professional that a patient needs to make. The benefit or utility from the decision is understood
as the gain in health a patient receives. It is usually difficult for medical practitioners to conduct
utility analysis without external data. Decision curve analysis (DCA; Vickers and Elkin, 2006)
is a formal statistical tool to overcome this problem by comparing the model with the default
strategies treating all patients and treating no one irrespective of the model. Net benefit function
(Vickers et al., 2012) is constructed to place net benefit and harm on the same scale for the
possible range of threshold probabilities of the disease (probability at which the decision to
undergo treatment or not; Zhang et al., 2018; Fitzgerald et al., 2015). DCA helps to compare
default strategies with the learned model for the range of thresholds in terms of model utility.
One can then make an informed decision by examining the net benefit graphs. Inference for net
benefit has been established in Sande et al. (2020).

This study is to provide a systematic review of statistical learning tools for predicting
patient’s medical conditions and decision thresholding methods for aforementioned purposes (i)
and (ii). To this end, the paper is organized as follows. Section 2 starts by introducing the data
setting assumed throughout this paper. In Section 3, we provide a comprehensive review of the
shallow supervised learning methods for binary classification. In Section 4, we provide a sketch of
crucial components involved in training a deep learning model. In Section 5, we discuss different
approaches to find the threshold probability. Then, in Section 6, we analyze two medical datasets
for an illustration. We conclude with some discussions in Section 7.

2 Set Up
Consider a set of predictors � = (X1, X2, . . . , Xm) such that Xj ∈ IR and Y be the binary
response variable which takes values 1 and 0 for diseased and non-diseased status respectively.



636 Sande, S.Z. et al.

Let the prevalence of the disease be π = Pr(Y = 1). Suppose we have a training sample X =
{xij ; 1 � i � n, 1 � j � m} where the covariate vector for the ith row is denoted by Xi =
(xi1, xi2, . . . , xim). The columns denote the m predictor variables where the jth predictor is
denoted by Xj = (x1j , x2j , . . . , xnj )

T , 1 � j � m. We also observe the corresponding response
variable Y = (Y1, Y2, . . . , Yn)

T for the sample. We train a model M based on a subset of predictors
⊆ {X1, X2, . . . , Xm} using any of the techniques to be reviewed in this section. We can then obtain
the model-based predictive probability as p = Pr(Y = 1|M). For a sample {X, Y }, the predicted
probability for the ith individual is given as pi = Pr(Yi = 1|M). Denote p = (p1, p2, . . . , pn)

T

as the predicted probabilities for the n individuals in the sample. If we consider a risk threshold
c ∈ (0, 1) for assessment, the binary decision rule is: the ith subject with pi � c will be assigned
into class 1; otherwise in class 0.

In the next two sections we consider different statistical learning methods to obtain p. We
will introduce how to select threshold c in the Section 5.

3 Shallow Learning Methods

3.1 Generalized Linear Model (GLM)

GLM (Nelder and Wedderburn, 1972) include many widely used statistical models. Let μ =
E(Y |X1, X2, . . . , Xm) be the mean function and adopt a link function g(·) such that

g(μ) = β0 + β1X1 + · · · + βmXm,

where βj ’s are the regression coefficients in the GLM. In this case with a binary response we
have μ = p. There are a few choices of link functions g(·) available for binary outcome. The
most popular choice in medical study is the logit link. We may consider the logistic regression
model by using such a link function as

g(p) = log

(
p

1 − p

)
= β0 + β1X1 + · · · + βmXm.

Equivalently, logistic regression computes the predictive probability p by

p = exp(β0 + β1X1 + · · · + βmXm)

1 + exp(β0 + β1X1 + · · · + βmXm)
. (1)

The model can be fitted by maximizing the log-likelihood function, or equivalently, minimizing
the negative log-likelihood given by

l

(
Yi, β0 +

m∑
j=1

xijβj

)
= −Yi

(
β0 +

m∑
j=1

xijβj

)
+ log

(
1 + exp

(
β0 +

m∑
j=1

xijβj

))
.

After fitting the model, we obtain regression coefficient estimates β̂ = {β̂0, β̂1, . . . , β̂m} and
then the estimate of predictive probability p̂ are obtained for all the subjects in the sample by
substituting βj ’s in (1) with β̂j ’s. In R, glm function can be used for binary logistic regression
by specifying family = binomial(link = “logit”) in the arguments.
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Another popular link function for GLM is the probit link under which we attain a probit
regression model. The probit link function is given as follows

g(p) = �−1(p) = β0 + β1X1 + · · · + βmXm,

where �(.) is a standard normal cumulative distribution function.
Implementing a probit model is similar to logistic regression in R, i.e. using the glm function

but with family = binomial(link = “probit”).

3.2 Regularized GLM
When the predictor dimension m is very large, GLM may be unstable or infeasible. Shrinkage
methods (Friedman et al., 2001) provide solution to this problem by adding penalty constraints
to the model fitting objective function. The following two types of estimators are used in the
literature by imposing L2 and L1 penalty functions, respectively:

Ridge: β̂ridge = argmin
β

{ n∑
i=1

l

(
Yi, β0 +

m∑
j=1

xijβj

)
+ λ

2

m∑
j=1

β2
j

}
,

LASSO: β̂lasso = argmin
β

{ n∑
i=1

l

(
Yi, β0 +

m∑
j=1

xijβj

)
+ λ

m∑
j=1

|βj |
}
,

where λ � 0 is a regularization parameter controlling the amount of shrinkage. Ridge regression is
a classical approach to reduce multicolinearity and reduce variance by shrinking the coefficients.
LASSO performs variable selection due to the property of the L1 penalty. The combination of
LASSO and Ridge leads to the elastic net:

β̂net = argmin
β

n∑
i=1

l

(
Yi, β0 +

m∑
j=1

xijβj

)
+ λ

[
0.5(1 − α)‖β‖2

2 + α‖β‖1
]
,

where 0 � α � 1 is a weight parameter. We note that α = 0 corresponds to ridge regression and
α = 1 corresponds to LASSO.

In R, regularized GLM is implemented by the package glmnet (Friedman et al., 2010). The
elastic net penalty is controlled by the option alpha, and bridges between LASSO (alpha = 1,
the default) and ridge regression (alpha = 0). The tuning parameter λ controls the overall
strength of the penalty and is usually selected by a cross-validation (CV) method. After obtaining
the regression coefficient β̂, we can compute the class probabilities p̂ for classification.

3.3 Generalized Additive Model (GAM)
Generalized additive model (GAM) was originally introduced by Trevor Hastie and Robert
Tibshirani (Hastie and Tibshirani, 1986) as a nonlinear extension of GLM. In many data ap-
plications, GAM has proven to be a powerful statistical learning method. Following a similar
structure to GLM, GAM (Hastie, 2017) can be given by

g(μ) = β0 + f1(X1) + f2(X2) + · · · + fm(Xm),

where f1(.), f2(.), . . . , fm(.) are unspecified smooth non-parametric functions. GLM can be un-
derstood as a special case of GAM when each f function is linear. Clearly, the main advantage
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of GAM over GLM is that the covariate effect is not necessary to be linear. Typically, for binary
response, we have μ = p and we may still use the logit link function g(p) = log(p/(1 − p)).

The building blocks of GAM is to estimate the functional effects for individual covari-
ates. These functions are usually assumed to be smooth with derivatives. The most commonly
adopted smoothers in the literature are running line smoother, locally estimated scatterplot
smoother (loess), Regression splines and Smoothing splines. We offer more detailed review in
the supplementary file.

In R, Generalized additive models are fitted by using gam package (Hastie, 2020a) or mgcv
(Wood, 2003) package. gam package uses AIC criterion for the model selection while mgcv package
uses any of the GCV/UBRE/REML/AIC criterion available in option method of the function
gam().

3.4 Support Vector Machine (SVM)
Support vector machine (SVM; Cortes and Vapnik, 1995) has been successful for many com-
plicated classification tasks. An SVM solution constructs a decision boundary that explicitly
separates the data into different classes. This boundary is referred as ‘separating hyperplane’,
living in the multi-dimensional covariate space. Support vectors are data points closer to the
hyperplane which impact the position and orientation of the hyperplane. Using these support
vectors, we maximize the margin of the classifier.

Conventionally, the outcome is coded as −1 and 1, which is slightly different from the
0-1 coding for all other sections of this paper. To avoid confusion with what was defined at
the beginning of Section 2, we denote the outcome in this subsection as Y ∗

i ∈ {−1, 1} and
Y ∗ = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )T . The feature data for ith subject is transformed from his/her original
covariate Xi . Let the hyperplane be given as

Wψ(X) + B = 0,

where B is a bias term, W is weight vector and ψ(.) is a fixed transformation function such that
ψ : X → Z where X is an m-dimensional input space and Z is a p-dimensional feature space.
The objective is to classify the data points in such a way that the distance between the two
classes is as wide as possible.

Instead of maximizing the margin, we can equivalently minimize the euclidean norm of the
weight vector W with a constraint that the SVM predicted value and the actual response value
share the same sign:

min
W,B

1

2
‖W‖2,

subject to Y ∗
i

(
Wψ(Xi) + B

)
� 1, i = 1, . . . , n.

We solve the above optimization problem by the Lagrangian method which is given by

L(W , B, α) = 1

2
W T W −

n∑
i=1

αi

[
Y ∗

i

(
Wψ(Xi) + B

) − 1
]
.

The solution W ∗ is given by

W ∗ =
n∑

i=1

α∗
i Y

∗
i ψ(Xi),
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where α∗
i are the optimal Lagrange multipliers. We define a real valued kernel function K(Xi ,Xj )

K : X×X → IR with the property K(Xi ,Xj ) = ψ(Xi)
T ψ(Xj ). Hence, we do not need the explicit

coordinates in the feature space Z or the transformation function ψ(.). The kernel function
directly calculates the value of the dot product of the transformed data points in the feature
space. The following are some common kernel functions used in SVM.

Linear Kernel: K(Xi ,Xj ) =
m∑

k=1

xikxjk.

Radial/Gaussian Kernel: K(Xi ,Xj ) = exp

[
−γ

m∑
k=1

(xik − xjk)
2

]
.

Polynomial Kernel: K(Xi ,Xj ) =
(

b0 + γ

m∑
k=1

xikxjk

)d

.

Sigmoid Kernel: K(Xi ,Xj ) = tanh

(
b0 + γ

m∑
k=1

xikxjk

)
.

SVM can be implemented in R using several packages. For example, one can use the e1071
package (Meyer et al., 2019) where the svm() function provides a rigid interface to libsvm
(Chang and Lin, 2011) along with visualization and parameter tuning methods. Package kernlab
(Karatzoglou et al., 2004) features a variety of kernel-based methods and includes a SVM method
based on the optimizers used in libsvm and bsvm (Hsu and Lin, 2002). It aims to provide a
flexible and extensible SVM implementation. Package klaR (Weihs et al., 2005) includes an
interface to SVMlight, a popular SVM implementation that additionally offers classification
tools such as Regularized Discriminant Analysis. Another package svmpath (Hastie, 2020b)
provides an algorithm that fits the entire path of the SVM solution. We have used the function
svm() from the package e1071 for the numerical works in this paper.

3.5 Decision Tree

As the name suggests, decision tree (Safavian and Landgrebe, 1991) is a tree-like algorithm
to express the decision visually explicit. Decision tree can be used for both regression and
classification. In classification trees, class label is assigned to the leaf while the conditions on
features are represented by branches. This algorithm works upside-down by choosing a variable
that splits the data with some decision rule. There are various tree algorithms developed such
as ID3 (Iterative Dichotomiser 3), C4.5 (Salzberg, 1994), CART (classification and regression
tree) (Breiman, 2017), CHAID (Chi-square automatic interaction detection) (Kass, 1980) and
conditional inference tree (Hothorn et al., 2006). To avoid overfitting, a common strategy is to
grow the tree until each node contains a small number of instances then use pruning to remove
nodes that do not provide additional information. There are different prunning methods available
such as cost complexity prunning (Breiman et al., 1984), minimum error prunning (Niblett and
Bratko, 1987), pessimistic pruning (Quinlan, 1993), error based pruning (Quinlan, 1993) and
minimum description length pruning (Mehta et al., 1995).

There are two types of splitting criteria – Univariate and multivariate. Univariate trees
test only one attribute at a time while multivariate decision trees test more than one attributes
at a node. A large portion of the multivariate splitting criteria is dependent on the linear
combination of input predictors. It chooses not the best attribute but the best linear combination
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of that attribute. This is usually done by greedy search, direct customizing, or direct discriminate
dissection.

Different methods have been proposed to improve the accuracy of the posterior probabili-
ties, including smoothing methods, specialized trees, combined methods (decision trees combined
with other methods such as Naive Bayes), fuzzy methods and ensemble methods (Bagging and
Boosting). Some of these make drastic changes in the fundamental properties of trees and com-
pute probabilities by modifying the tree itself. Distance based probability estimates (Alvarez
et al., 2007) have also been provided.

To implement classification tree in R, we may use rpart package (Therneau and Atkinson,
2019) and we can obtain posterior probabilities by using predict() function. This package
implements univariate splitting. There are other R packages which implement the multivariate
splitting, such as mvpart (Breiman et al., 1984), optpart (Roberts, 2020), partDSA (Molinaro
et al., 2010) and party (Hothorn et al., 2006). We can perform the complexity pruning used
with the prune() function in the same package by choosing an optimal complexity parameter
(cp).

3.6 Random Forest

To improve the performance of decision trees, ensemble techniques are used where results from
multiple classifiers are aggregated. Two well known methods are Bagging (Breiman, 1996) and
Boosting (Schapire et al., 1998). In bagging multiple independent trees are constructed on the
basis of bootstrap data points. Such bagging algorithms aim to reduce the complexity of tree
models that overfit the training data. In contrast, boosting is an approach to increase the com-
plexity of weak models that suffer from high bias, that is, models that underfit the training
data.

Random Forest (RF) is actually a bagging method which comprises of large number of
weak trees trained from different resampled data (Breiman, 2001). Every individual tree selects
splitting variables (features) differently by randomization and hence reduces the chance of cor-
relation among trees. This phenomenon is called ‘feature bagging’. Each tree predicts the class
and the class with maximum votes gives the final prediction.

To implement RF in R, we may use randomForest() function from randomForest package
(Liaw and Wiener, 2002) and obtain posterior probabilities by predict() function.

3.7 Gradient Boosting Machine (GBM)

Gradient Boosting Machine (GBM; Friedman, 2001) is another ensemble learning approach.
Boosting is a process that uses a set of machine learning algorithms to combine weak learners
such as trees to form strong learner in order to increase the prediction accuracy of the model.
In fact, bagging algorithm constructs models in parallel. Consequently, one model is not more
superior than another and the final prediction of the bagged model is based on a majority
vote of the individual predictions of the ensemble members. Boosting, on the other hand, uses a
sequential approach i.e. each model tries to correct the mistakes made by the previous one. There
are several variants of boosting: Adaptive boosting (AdaBoost), GBM and Extreme Gradient
boosting (XGBoost). In AdaBoost, after evaluating the first weak learner (decision tree) with
equal weights, we attach higher weights to misclassified subjects in the successive iterations
until all the data points are correctly classified. In GBM, we do not put higher weights on
misclassifications but choose to optimise the loss function. While XGBoost, an advanced version
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of GBM, is designed to focus on computational speed and model efficiency. Gradient boosting
also allows one to optimise a user specified cost function, instead of a loss function that does
not essentially correspond with real world applications.

Owing to its better performance over other boosting methods, we only implement extreme
gradient boosting algorithm. To implement Extreme Gradient boosting in R, we may use xgboost
package (Chen et al., 2021). We prepare training and test data by creating xgb.DMatrix()
objects with the feature and label data. The model is fitted on the training set by using
xgb.train() function.

3.8 K-Nearest Neighbor (KNN)
The K-Nearest Neighbour (KNN; Keller et al., 1985) has a long history in statistics and was
originally proposed as a local nonparametric learning algorithm. In the classification setting,
the KNN algorithm essentially boils down to forming a majority vote between the K most
similar instances to a given unseen observation. The KNN algorithm is a robust and versatile
classifier that is often used as a benchmark for more complex classifiers such as Artificial Neural
Networks and SVM. Despite its simplicity, KNN can outperform more powerful classifiers and
is used in a variety of applications such as economic forecasting, data compression and genetics.
The key parameter ‘K’ specifies the number of nearest neighbours used for the approximation.
Practitioners often prefer to setting an odd number to avoid ties in the voting scores. When
defining neighbors, KNN algorithm can adopt all kinds of distance metrics such as Euclidean
distance, Hamming distance, and correlation, among others.

KNN is usually implemented in R using knn() function from class package (Venables and
Ripley, 2002). This function outputs the maximum predicted probabilities only. Another package
caret (Kuhn, 2020) in R provides more flexible implementation of KNN model which also gives
the training and predicting setup as the other models in this tutorial.

3.9 Naive Bayes Classifier

Naive Bayes (Chen et al., 2009) is a well-known Bayesian classification method. Assume that
the predictors are conditionally independent in each class, we have

Pr(Y |X1, . . . , Xm) ∝ Pr(Y )

m∏
j=1

Pr(Xj |Y ).

Through the computation of individual terms in the product, we obtain the posterior probabil-
ities as the predicted probabilities. Different versions of naive Bayes classifiers differ mainly by
the assumptions they make regarding the distribution of Pr(Xj |Y ). This probability distribution
can be Gaussian, multinomial or Bernoulli.

To implement Naive Bayes in R, we will use the package e1071 (Meyer et al., 2021) in this
paper. We can use naiveBayes() function from the package to fit the model and then obtain
the predictive probabilities by the predict() function. One may use other R packages such as
naivebayes (Majka, 2019) which allows more distribution options.

3.10 Linear Discrimination Analysis (LDA)
Linear Discriminant Analysis (LDA; Mika et al., 1999) is one of the oldest approaches for clas-
sification and could be more stable than logistic regression for normally distributed data. LDA
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assumes the density functions of the two classes are multivariate normal distribution and directly
uses the density ratio to form classifiers. LDA further assumes a condition called ‘homoscedas-
ticity’ where the covariance matrices for the two classes are equal. If we relax this condition and
allow �0 �= �1, we may derive the quadratic discrimination analysis (QDA).

LDA can be implemented in R by using MASS package (Venables and Ripley, 2002). lda()
function in the package is used to train the model and predict() is used for the predictions.

4 Deep Learning (DL)
An Artificial Neural Network (ANN; Schalkoff, 1997) is a computational model that is inspired
by the way neural networks in the human brain process information. ANN have generated a
lot of excitement in Machine Learning research and industry, thanks to many breakthrough
results in speech recognition, text processing and computer vision. A neuron (also referred as
a node) is a basic unit of computation in neural networks. It receives inputs from the other
neurons or the source and produces output. Every input is assigned the weight (w) and bias
(b) and then is transformed by an activation function (φ(.)) which is non-linear, differentiable
and monotonous. There are several activation functions used in practice. Some commonly used
activation functions are:

Sigmoid function: φ(x) = 1

(1 + e−x)
.

Tanh function: φ(x) = 2 Sigmoid(2x) − 1.

Rectified Linear Unit (ReLU) function: φ(x) = max(0, x).

The three activation functions are displayed in Figure 1. If we do not apply an activation function,
the output signal would simply be a linear function. A linear equation is easy to solve but they
are limited in their complexity and have less power to learn complex functional mappings from
data.

ANN is a feed-forward neural network in which information moves in only one direction
(forward) as input → hidden layer → output and there are no cycles and loops in the network.
As an representative case of ANN, multilayer perceptron (MLP; Gardner and Dorling, 1998)

Figure 1: Activation functions.
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Figure 2: Neural Network Architecture.

consists of at least three layers of nodes: an input layer, a hidden layer and an output layer.
Figure 2 gives a graphical illustration of MLP where we consider three hypothetical input features
passing through N hidden layers.

We may consider a recursive formula to describe the DL process. In particular, the ith
neuron in the Lth layer is given by

Z
(L)
i = φ

(∑
j

w
(L−1)
j,i Z

(L−1)
j + b

(L−1)
i

)
,

where Z
(L−1)
j is the jth neuron in the (L − 1)th hidden layer. w

(L−1)
j,i and b

(L−1)
i are the weight

and bias associated with the neuron Z
(L−1)
j and Z

(L)
i respectively.

In multiclass classification problems, we often use a softmax function as the activation
function in the output layer to ensure that the outputs are probabilities which add up to 1. The
softmax function is similar to the Sigmoid function in binary classification problem.

A cost function provides the error between the predicted outcome and the true outcome.
Let Ŷi be the prediction for Yi , the outcome value for the ith subject. For binary outcome, there
are different cost functions used in practice such as

Cross-Entropy Loss: C(Yi, Ŷi) = −[
Yi log(Ŷi) + (1 − Yi) log(1 − Ŷi)

]
.

Hinge Loss: C(Yi, Ŷi) = max(0, 1 − ŶiYi).

Squared Hinge Loss: C(Yi, Ŷi) = max(0, 1 − ŶiYi)
2.

Cross-Entropy is widely used for logistic regression or GAM type of learning tasks. Hinge loss
or Squared Hinge cost functions are primarily designed for SVM type of learning tasks. For
Cross-Entropy loss the outcome should be coded as {0, 1} while for hinge and squared hinge loss
the outcome should be coded as {−1, 1}.

A key computation step for DL is to repeatedly optimize the cost function at the current
layer to obtain the updated weight coefficients. Cost function is usually a non-convex function for
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these parameters with multiple local minima and we usually have to adopt the backpropagation
method to optimize it.

Any ANN is learned by an algorithm called backpropagation (backward propagation of
errors) which requires the use of optimizing algorithm. Initially all the weights and biases are
randomly assigned. For every input in the training dataset, the ANN may be activated to yield
the observed output. This output is compared with the desired output with a cost function, and
the error is propagated back to the previous layer. Optimizers calculate the gradient of the cost
function with respect to all the parameters (weights and biases) to minimize the cost function.
Once the cost function is minimized, we have a ‘learned’ neural network algorithm which, we
consider is ready to work with ‘new’ inputs. We can optimize the cost function with one of the
following optimisers:
• Gradient Descent: Gradient Descent is the most important technique and the foundation

of how we train and optimize ANN (Bengio, 2012; Andrychowicz et al., 2016). The gradient
can be easily derived using the chain rule for differentiation. Updation of weights or bias in
neural network takes place as

θt = θt−1 − η 	 C(θt−1),

where θt is the updated weight (or bias parameter), θt−1 is the previous weight (or bias
parameter) while 	C(θt−1) is a gradient of a cost function and η is a learning rate.

• Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) on the other hand
performs a parameter update for each training record (Bottou, 1991, 2010). Due to these
frequent updates, it has high variance and causes the cost function to fluctuate with different
intensities. This helps to discover new and possibly better local minima but sometimes it
could prohibit the convergence to the exact minimum.

• Mini batch gradient Descent: To complement SGD and Gradient Descent, Mini Batch
Gradient Descent (Khirirat et al., 2017; Ruder, 2016) is often used as it chooses the best of
both techniques and performs a parameter update by dividing the entire training sample into
mini-batches with the provided batch size. It reduces the variance in the parameter updates,
which can ultimately lead us to a much better and stable convergence.

• AdaGrad: This optimiser uses a different learning rate for every parameter θ at a particular
step based on the past gradients which are already computed for that parameter (Duchi et al.,
2011; Dean et al., 2012). Its main weakness is that its learning rate η is always decreasing
and decaying. The learning rate shrinks and eventually becomes so small, that the model
just stops learning entirely and stops acquiring new additional information.

• Adadelta: This is an extension of AdaGrad which tends to correct the decaying learning
rate problem (Zeiler, 2012; Schaul et al., 2013). Instead of accumulating all previous squared
gradients, Adadelta limits the window of accumulated past gradients to some fixed size.

• Adam: Adaptive Moment Estimation (Adam) is another method that computes adaptive
learning rates for each parameter (Kingma and Ba, 2014; Reddi et al., 2019). In addition
to storing an exponentially decaying average of past squared gradients like AdaDelta, Adam
also keeps an exponentially decaying average of past gradients, similar to momentum. It is
considered as the most efficient optimization algorithm so far.
Any optimization or learning algorithm has a number of hyperparameters to monitor the

DL process. Two important hyperparameters are the batch size and number of epochs. Both
are integer values. We need them when the data volume is too big and we cannot pass all the
data to the computer at once. The batch size is a hyperparameter that defines the number
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of samples of training data to work through before updating the internal model parameters.
A training dataset can be divided into one or more batches. When all training samples are used
to create one batch, the learning is usually called batch gradient descent. When the batch is
the size of one sample, the learning is the stochastic gradient descent. When the batch size is
more than one sample and less than the size of the training dataset, the learning is the mini-
batch gradient descent. The number of epochs is the number of complete passes through the
training dataset. As the number of epochs increases, the weights are changed more frequently
in the ANN and the learning architecture develops from underfitting, to optimal, and then to
overfitting phases.

The learning rate is a configurable hyperparameter used in the training of neural networks,
and has a small positive value, often in the range between 0.0 and 1.0. It controls how quickly
the model is adapted to the problem. Smaller learning rates require more training epochs given
the smaller changes made to the weights during each update, whereas larger learning rates result
in rapid changes and require fewer training epochs. A learning rate that is too large can cause
the model to converge too quickly to a sub-optimal solution, whereas a learning rate that is too
small can cause the process to slow down and get stuck. The challenge of training DL neural
networks involves carefully selecting the learning rate or equivalently, the number of epochs.

4.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is also a type of feed forward artificial neural network in
which the connectivity pattern between its neurons is inspired by the organization of the animal
visual cortex. The inputted 2D colored image has dimension in the form of height × width ×
depth, where height × width are the dimensions of the 2D image while depth corresponds to
the number of channels in the image, for instance, in colored 2D image, the three channels are
Red (R), Green (G), Blue (B) or simply called RGB.

CNN compares the image in a piecewise manner. The pieces are usually also called features.
By finding rough feature matches, CNN gives better performance than whole image matching
frameworks. CNN incorporates mainly three layers: Convolution + ReLU layer, Pooling layer
and Fully Connected layer. Figure 3 illustrates the computation steps involved in a typical CNN
framework.

Fully connected feed-forward neural network would need large number of neurons which in-
creases the number of parameters in computation. Convolution provides solution to this problem
by reducing the number of neurons in subsequent layers. The functional element involved in car-
rying out convolution operation is called filter or kernel. A kernel should have the same depth as
the input image and moves through the image with certain stride value to generate the dot prod-
uct between the kernel and the image portion that it strides on. For example, in Figure 3, after
mapping the 3×3 kernel on the highlighted patch of the figure gives the value in the upper right
corner 0.69 = 1×0.79+0×0.55−1×0.75+1×0.30+0×0.81−1×0.42+1×0.99+0×0.56−1×0.77.
After that we use an activation function such as ReLU to achieve the output at this layer. The
convolution layer is used to extract the high level features as edges, lines, and color gradient
orientation etc.

Pooling layer reduces the dimension of the convoluted feature. There are two types of
pooling functions. One is MAX pooling which returns the maximum value from the slice of
the convoluted feature and other is AVERAGE which returns average value of the slice of the
convoluted feature. Pooling also helps in noise reduction and extracts dominant features which
are rotational and positional invariant from the input image.
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Figure 3: CNN Architecture.

Now the input image has been converted into a suitable form for MLP which is a fully
connected layer for CNN, we can transform the output from the last pooling layer into a column
vector (flattening) which is fed to a feed-forward neural network and backpropagation applied
to every iteration of training. Over a series of epochs, the model is able to distinguish between
dominating and certain low-level features in images and classify them using the Softmax as the
final output.

In R, we may implement CNN by using ‘keras’ for R interface (Chollet et al., 2017). The
code to implement CNN in R, is given in the Appendix.

5 Medical Decision Threshold
We now proceed to discussing the central question on the determination of decision threshold.
After attaining the outputted predicted probability (cf. Figure 4) from any of the aforementioned
classification methods, one may then choose a threshold value c ∈ (0, 1) for medical diagnosis.
If the predicted value is above c, we declare a positive condition for the subject; otherwise, the
condition is declared to be negative. We may denote the outcome of the decision as a binary test
result T (c) = 1{p � c}. At a given threshold, c, the test sensitivity se(c) and the test specificity
sp(c) are

se(c) = Pr
(
T (c) = 1|Y = 1

)
,

sp(c) = Pr
(
T (c) = 0|Y = 0

)
.

(In the case of SVM, se(c) = Pr(T (c) = 1|Y ∗ = 1) and sp(c) = Pr(T (c) = 0|Y ∗ = −1).) We
consider two types of statistical approaches, based on ROC analysis and decision curve analysis,
respectively, to determine the c value in practice.
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Figure 4: Sorted predicted probabilities for Pima Indian diabetes data obtained from a random
forest classifier.

5.1 ROC Analysis
Receiver operating characteristic (ROC) analysis is a common tool to investigate accuracy of a
prediction model (Zhou et al., 2009; Zou et al., 2012; Pepe et al., 2003; Krzanowski and Hand,
2009). An ROC curve is a plot of sensitivity (se(c)) vs 1-specificity (sp(c)) across different thresh-
old probabilities c. Area Under ROC curve (AUC) is usually reported as an overall accuracy
measure. Classification model with AUC equal to 0.5 does not have the discrimination ability
while a model with AUC equal to 1 perfectly classifies all the subjects. In addition to AUC,
there are many other alternative summary measures associated with ROC curve such as partial
AUC, weighted AUC and sensitivity at fixed specificity (Pepe et al., 2003; Li and Zhou, 2009;
Li and Fine, 2010; Yu et al., 2017; Li et al., 2019). Based on ROC curve, we can consider three
criteria to determine the threshold. The following three methods may each lead to an optimal ĉ.
• Maximizing Youden Index: The Youden index is a simple summary measure for evalu-

ating the classifier (Youden, 1950; Nakas et al., 2010, 2012) given by

J (c) = se(c) + sp(c) − 1.

We denote ĉJ to be the optimal threshold obtained by maximizing J (c). Mathematically, ĉJ

is equivalent to the point on the ROC curve with the largest vertical distance to the diagonal
from the lower left corner to the upper right corner.

• Closest to (0,1) criterion: Another idea is to maximize sensitivity and specificity to the
extent that both are closest to 100%. Hence, the point closest to the upper left corner point
(0, 1) in an ROC plot corresponds to an optimal threshold (Pepe et al., 2003; Perkins and
Schisterman, 2006). The Euclidean distance from the point (0,1) is given by

D(c) =
√(

1 − se(c)
)2 + (

1 − sp(c)
)2

.

By minimizing D(c) we obtain (ĉD).
• Equal se and sp criterion: The third principle to determine a best threshold from an ROC

curve is to find the point where sensitivity and specificity are equivalent (Sanchez, 2016). We
denote this threshold by (ĉT F ) obtained by solving the following equation

se(c) = sp(c).
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The intersection between the ROC curve and the descending diagonal in the unit square
gives ĉT F . Recall that se(c) is a decreasing function of c while sp(c) is an increasing function
of c. This choice of threshold thus achieves a balance between true positive and false positive
fractions.

5.2 Decision Curve Analysis (DCA)
Vickers and Elkin (2006) proposed decision curve analysis as a simple approach to quantify the
clinical utility of a risk prediction model. For a practical decision analysis, harms and benefits
need to be quantified, leading to an optimal threshold probability. It may however often be
difficult to define this threshold without sufficient information (Steyerberg et al., 2010). DCA
addresses the concerns between those solely interested in the accuracy and those solely interested
in the utility of a prediction model (Allyn et al., 2017; Talluri and Shete, 2016). Some studies
found the connection between ROC and DCA (Rousson and Zumbrunn, 2011; Baker and Kramer,
2007). The key building block of DCA is the incorporation of the utility function. We may define
a net benefit function of threshold probability as follows:

φ(c) = se(c)π − (
1 − sp(c)

)
(1 − π)

c

1 − c
,

where se(c) and sp(c) are sensitivity and specificity at threshold probability c respectively, π

denotes the disease prevalence in the population. Net benefit considers the consequences of the
decisions based on a threshold. The construction of decision curve incorporates default strategies
“treat none” and “treat all” in the analysis and the model is compared against such references.
This gives the significance of a model over default strategies and we can decide whether to
consider the model for analysis or not. The net benefit for “treat none” is zero while that for
“treat all” strategy (φ1(c)) is

φ1(c) = π − (1 − π)
c

1 − c
.

DCA is decision analytic method and incorporates the physician or patient’s preferences (Fitzger-
ald et al., 2015; Van Calster et al., 2013; Sande et al., 2020). We usually inspect a decision curve
and look for which strategy leads to the greatest net benefit (i.e., the curve above others). In
R, we can draw decision curve using the package dca (Sjoberg, 2021) after obtaining predicted
probabilities from the classifier. We note that this package is not available at the CRAN site yet
and has to be downloaded from Github using the remotes package (Hester et al., 2021). Note
that the updated package is dcurves and the new function dca() works differently.

Based on the plotted decision curve, one can decide an appropriate threshold corresponding
to a desired net benefit value. For example, if we intend to achieve φ(c) = 0.1, the corresponding
ĉφ(c)=.1 is found to be 0.472 using the PIMA data (cf. Figure 5(b)). In practice the risk threshold c

can be selected by the policy makers and then used to compute the net benefit at that threshold
assuming that the risk threshold accurately summarizes the costs and benefits of intervention
(Kerr et al., 2016; Van Calster et al., 2018).

We illustrate all decision thresholds in an ROC curve in Figure 5(a) where ĉJ = 0.478, ĉD =
0.374, ĉT F = 0.424 and ĉφ(c)=.1 = 0.472. We can see that thresholds obtained by different methods
are quite close to each other with similar sensitivity values but slightly different specificity values
in this example. We also mark all four thresholds in the same decision curve in Figure 5(b). The
net benefit values for all the thresholds are close to 10% in this case. The threshold ĉD appears
to yield a larger net benefit 0.138 than other thresholds.
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Figure 5: Different decision thresholds plotted in ROC and Decision curves by random forest
model for Pima Indian Diabetes Dataset.

6 Case Studies

6.1 Pima Indian Diabetes Dataset

This dataset (Smith et al., 1988) is originally from the National Institute of Diabetes and Di-
gestive and Kidney Diseases. All patients are females at least 21 years old of Pima Indian
heritage. The purpose of this study is to diagnostically predict whether or not a patient has
diabetes, based on her demographic and clinical measurements. This is a public dataset avail-
able in the Kaggle datasets repository (https://www.kaggle.com/uciml/pima-indians-diabetes-
database?select=diabetes.csv). The data include diagnosis results of 768 women with 9 variables
summarized in Table 1.

Table 1: Information of Variables in the Pima Indian Diabetes dataset (more information for
the calculation of Diabetes Pedigree Function can be found in Smith et al., 1988).

Variable Summary

Mean ± SD
Pregnancies 3.84 ± 3.36

Diabetes Pedigree Function 0.47 ± 0.33
Age (years) 33.24 ± 11.76

Glucose (mg/dl) 121.51 ± 30.55
Diastolic Blood Pressure (mmHg) 72.43 ± 12.30
Triceps skin fold thickness (mm) 28.67 ± 10.34

Insulin (mu U/ml) 149.68 ± 108.56
BMI (kg/m2) 32.44 ± 6.91

Proportion
Diabetes Yes: 34.9%

https://www.kaggle.com/uciml/pima-indians-diabetes-database?select=diabetes.csv
https://www.kaggle.com/uciml/pima-indians-diabetes-database?select=diabetes.csv
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Table 2: Training and test set (with 7:3 proportion) AUC for all the classification methods along
with 95% Confidence Interval.

Methods Training (70%) Test (30%)

AUC Confidence Interval AUC Confidence Interval

GLM-Logit 0.8472 (0.8145, 0.8798) 0.8430 (0.7920, 0.8941)
GLMNET-LASSO 0.8453 (0.8126, 0.8781) 0.8425 (0.7914, 0.8935)

GAM 0.8453 (0.8122, 0.8784) 0.8430 (0.7917, 0.8944)
LDA 0.8468 (0.8141, 0.8795) 0.8431 (0.7920, 0.8942)

Naive Bayes 0.8209 (0.7858, 0.8560) 0.8210 (0.7670, 0.8750)
XGBoost 1.0000 (1.0000, 1.0000) 0.8180 (0.7622, 0.8738)

Decision Tree 0.8679 (0.8353, 0.9005) 0.7767 (0.7138, 0.8397)
SVM 0.7084 (0.6815, 0.7353) 0.6701 (0.6153, 0.7249)
RF 1.0000 (1.0000, 1.0000) 0.8391 (0.7872, 0.8910)

KNN 0.8617 (0.8310, 0.8924) 0.8250 (0.7709, 0.8791)
MLP 0.8262 (0.7914, 0.8611) 0.8195 (0.7648, 0.8742)

The full data was divided into training and test data with the ratio of 7:3. We trained all
the classification models described previously on the training set and then obtain the predicted
probabilities for the training and test sets separately. The classification was repeated for different
randomly partitioned training and test sets for 100 times and then average AUC values for
training and test sets were calculated. We reported the results in Table 2. For this data set
XGBoost and random forest (RF) achieves 100% accuracy to predict the diabetes status for the
training sample. However for the test set XGBoost is not as good as LDA.

We plotted ROC and decision curves for the test data as shown in Figures 6(a) and 6(b)
respectively for a single sample set for the purpose of illustration. Specifically, the ROC plot is
obtained using the ROCR package (Sing et al., 2005). Next, we produced decision curves for all
the classification methods using the dca package (Sjoberg, 2021). In general all methods yield
similar but distinct ROC curves and decision curves. One may select a sensible threshold based
on the methods introduced in the preceding section for all these methods.

We note that decision curves offer more valuable information on utility on top of the usual
accuracy assessment provided in ROC curves. If the risk threshold preferred by physician or
patient lies within a range where a certain classifier has higher net benefit compared to others,
then the treatment decision should be based on the predicted risks from this classifier.

6.2 Malaria Parasite Detection in Thin-blood Smear Images

While the Pima Indian diabetes data allow shallow learning, we next focus on a case study with
deep learning. Malaria is a mosquito-borne infectious disease caused by the Plasmodium parasites
transmitted through the bite of female Anopheles mosquito. Physicians commonly examine thick
and thin blood smears to diagnose disease and compute parasitemia. Their accuracy depends
on blood smear quality and expertise in classifying and counting parasitized and uninfected
cells. Such examinations could be arduous for large-scale diagnoses resulting in poor quality.
Convolutional Neural Networks (CNN) promise highly scalable and superior results with end-
to-end feature extraction and classification. Automating malaria screening using deep learning
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Figure 6: Test Set ROC and Decision curves for Pima Indian Diabetes Dataset.

Figure 7: Sample thin blood smear slide images of parasitized and uninfected cells.

methods could serve as an effective diagnostic aid. The segmented cells from the thin blood
smear slide images for the parasitized and uninfected classes are open-source and made available
at (https://ceb.nlm.nih.gov/repositories/malaria-datasets/). The data contains a total of 27,558
cell images with equal instances of parasitized and uninfected cells. Sample images of parasitized
(Y = 1) and uninfected (Y = 0) cells are shown in Figure 7.

In this case shallow learning methods are no longer applicable. We used Keras for R inter-
face (Chollet et al., 2017) with Tensorflow backend to apply CNN (Please refer Supplementary
Material for the R Code). The images were available in random pixel sizes between 100 ∼ 150
pixels in height and width. We first processed the image data by resizing (100 × 100 pixels) and
organizing the image data as required for CNN model in Keras for which we used the R package
EBImage (Pau et al., 2010). Then the dataset was divided into training and test sets randomly
with the ratio 8:2. The training data contains 22056 thin blood smear slide images while test
data contains 5502 images after a random splitting. We then fitted CNN model to the train-
ing data (CNN model we used contains 2 sets of two convolution-pooling layers plus dropout
layer and then the fully connected layer) and then predicted the disease outcome on test data.

https://ceb.nlm.nih.gov/repositories/malaria-datasets/
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Figure 8: ROC and DCA curves for the CNN model on Malaria thin blood smear image dataset.

Performance of the CNN model was evaluated for classifying parasitized and uninfected cells
with ROC and DCA. The ROC curve and decision curve are presented in Figures 8(a) and 8(b)
respectively. The overall AUC is 0.977, suggesting a very accurate classification results for the
test data.

To make a dichotomous classification for individual subjects, we may apply the methods
introduced in Section 5 to select an appropriate decision threshold. In this case, we have ĉJ =
0.068, ĉD = 0.068, ĉT F = 0.005 based on the ROC curve (Figure 8(a)). We can also choose a
threshold based on the decision curve analysis. In fact, eyeballing Figure 8(b), we note that the
net benefit function remains relatively flat around the wide range of threshold values, essentially
suggesting that all these threshold values lead to a net benefit value between 0.4 and 0.5. In
particular, the threshold corresponding to φ(c) = 0.46 is at 0.307 for which the sensitivity and
specificity are 0.93 and 0.96. The three cut-off values identified from the ROC curve all have
similar benefit values 0.47.

7 Discussion
Machine learning and deep learning has created lot of buzz in science. To appreciate such ad-
vanced algorithms, basic understanding of machine learning and neural networks is necessary.
In this paper we provided a brief review of the machine learning methods for clinical predictive
analytics. It is important to evaluate these different methods in practical conditions and acknowl-
edge the limitations of the currently available methods and research topics that are needed by
the field. In particular, GLM and regularized GLM depend on linearity assumption and may be
more restrictive than other nonparametric classifiers; decision tree is usually quite a weak classi-
fier and needs to be coupled with bagging and/or boosting to achieve a satisfactory performance;
LDA and Bayes methods rely on the distribution assumptions such as normality and may not
be valid when the distribution is mis-specified; SVM and deep learning, though enjoying supe-
rior performance most of the time, may require the specification of a lot of hyper parameters.
Furthermore, there is no theoretical guarantee that one method is consistently more predictive
than other methods. We need to be mindful in choosing appropriate methods for the problems.
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Sometimes using a single algorithm or method can mislead the decision. It is often more
effective to consider multiple models and assess the prediction jointly. All the methods reviewed
in our paper can serve as potential candidates for addressing the prediction issues in medicine
and other scientific fields. Through this study, it is also helpful to note that a complex model
is not always better. A simple shallow learning model like logistic regression and LDA can also
perform quite well with high AUC values when their assumptions are met in an application.
On the other hand, when dealing with complicated data sets such as the brain images, almost
all shallow learning methods could fail and we have to invoke a well-designed deep learning
computation to achieve reasonable risk predictions. Arranging accurate and reliable learning
procedures for a real data will lead to more sensible decision threshold selection, using the
methods we reviewed in this paper.

Supplementary Materials
Supplementary material online include: The review of different smoothers used in Generalized
additive models, Installation details for R interface for Keras and Tensorflow, data and R code
needed to reproduce the results.
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