
Detailed review on GAM Smoothers

The building blocks of GAM is to estimate the functional effects for in-
dividual covariates. These functions are usually assumed to be smooth with
derivatives. The following estimators are most commonly adopted in the liter-
ature.

• Bin smoother : This is also known as regressogram in which we partition
the predictor into disjoint regions and average the response variable in each
region. For a response variable Y , let a single predictor x is partitioned
with cutpoints at c0 < c1 < . . . cK such that c0 = −∞ and cK = ∞.
Indices of the data-points in each region are defined as

Rk = {i : ck ≤ xi < ck+1} k = 0, 1, . . . ,K − 1

Then the smooth function is estimated as f̂(x0) = avei∈Rk
Yi for x0 ∈

[ck, ck+1). This is a simplest form of smoother however the estimate is not
smooth due to sudden jump at the cut-points.

• Moving averages or Running mean smoother : This smoother aver-
ages the response variable in the neighbourhood of target predictor value
e.g. x0. The neighbourhood can be symmetric (equal number of points
on left and right sides of target x0) or Asymmetric (Just k number of
points near x0 regardless of which side they are). The level of smooth-
ness is defined by the width of the neighbourhood. Let’s say NS(x0)
denotes the indices of the data points in a neighbourhood of x0 then
f̂(x0) = avei∈NS(x0)Yi. This smoother is popular due to its simplicity but
it hardly gives a smooth curve due to lot of wiggliness. The running mean
is not a satisfactory smoother because it creates large biases at the end
points and doesn’t give a straight line when the data is in the straight
line.

• Running line smoother : The bias problem of running mean smoother
is resolved by a simple generalization - Running line smoother. We com-
pute least square line instead of a mean in each neighbourhood. Running
line smoother is defined by

f(x0) = α(x0) + β(x0)x0

where α(x0) and β(x0) are the regression parameters for the neighbour-
hood NS(x0) of x0. If we consider NS(x0) as a symmetric neighbourhood

1

around x0 with k number of points on the left and k number of points
on the right then the number of points in the neighbourhood NS(x0) is
equal to 2k + 1. Parameter k controls the smoothness of running line
smoothers. Large values of k produce a more smooth curves while small
values produce jagged curves. For convenience, we often consider propor-
tion of points in the neighbourhood or ‘span’ as a parameter denoted by
w = (2k + 1)/n where n is total number of observations. Running line
smoother captures the trend in data nicely but produces jagged fit.

• Locally Estimated Scatterplot smoother (loess) : Running line
smoothers can be improved by adding more smoothing i.e. instead of
only least square fits, we can use the weighted least square fits in the
neighbourhoods. In running line smoother, we give equal weights to the
data points in the neighbourhood and zero weights to the points outside
the neighbourhood. To avoid these discrete change, we give higher weights
to the data points near the target x0 and it gradually reduces as we go
far from x0 in the neighbourhood. This method is also called as locally
weighted running line smoother (loess).

• Kernel smoother : Kernels are used in this smoother as weights such
that weight reduces as we move away from the predictor target value. The
weight given to the predictor value x for producing the estimate at target
value x0 is

Kh(x0, x) =
1

h
K

(
||x0, x||
h

)

Here h is a bandwidth and needs to be estimated by using cross validation
for model fitting. There are different types of kernel functions K(.) such
as Guassian kernel (standard normal density), Epanechnikov kernel etc.

Epanechnikov Kernel : K(t) =
3

4
(1− t2)I(|t| ≤ 1)

Kernel function K(.) is an even and decreasing function in |t|. A typi-
cal way to estimate f(x) with kernel smoother is to use locally weighted
running line smoother with kernels as weights. Typically, we also use
Nadaraya-Watson estimator as

f̂(x0) =

∑n
i=1Kh(x0, xi)Yi∑n
i=1Kh(x0, xi)

• Regression Spline : The smoothers discussed so far are explicitly local
in nature. Regression splines are nothing but peicewise polynomials. The
regions are separated by knots ζ1, ζ2, . . . , ζk. The piecewise polynomials
join smoothly at the knots. Piecewise polynomial can be expressed as a
linear combination of a finite set of basis functions that do not depend

2

on the response variable Y . The function f(.) is assumed to be a spline
function as follows :

f(x) =

k+d+1∑
j=1

βjNj(x)

where Nj(.) are the basis functions and βk are the associated coefficients.
With k knots there are k + 1 polynomials of degree d along with d.k
constraints, leading to (d+1)(k+1)−d.k = d+k+1 parameters. Following
are some most popular basis functions :

Truncated power series basis : A simple choice of basis functions for
the peicewise spline is truncated power series basis which is given as

Nj(x) = xj−1 j = 1, 2, ..., d+ 1

Nj+d+1(x) = (x− ζj)d+ j = 1, . . . , k

For cubic spline d = 3. Hence, we get k + 4 basis functions. where a+
is the positive part of a. This spline has k + 4 basis functions. It has
two continuous derivatives and the third derivative jumps at the knots
as a step function. Even though algebraically this is good basis but it is
expensive.

B-spline basis : A B-spline basis is built with augmented knot sequence,

τ1 ≤ . . . τd ≤ τd+1 ≤ τd+2 ≤ . . . τd+k+1 ≤ τd+k+2 ≤ τd+k+3 ≤ · · · ≤ τ2d+k+2

where τd+2 = ζ1, . . . , τd+k+1 = ζk are the inner knots while τd+1 = ζ0
and τd+k+2 = ζk+1 are boundary knots. The choice of additional knots
τ1, . . . , τd and τd+k+3, . . . , τ2d+k+2 is arbitrary. A common strategy is to
set them equal to the boundary knots. B-spline basis can be built by
starting with a set of Haar basis functions,

Bi,0(x) =

{
1 if τi < x < τi+1

0 otherwise

and then applying a simple linear recursion relationship d times, yielding
the K + d+ 1 needed basis functions as

Bi,d(x) =
x− τi
ζi+d − τi

Bi,d−1(x) +
τi+d+1 − x
τi+d+1 − τi+1

Bi+1,d−1(x) i = 1, 2, . . . , k + d+ 1

This is a B-spline basis function of order d. If d = 0, this basis function is
just a step function while {Bi,3; i = 1, 2, . . . , k + 4} are the cubic B-spline
basis functions. The important feature of B-spline function is that it is
non-zero on a few adjacent knots span, more precisely, basis Bi,d(x) is
non-zero on d+ 1 knot-spans or d+ 2 knots. B-spline is computationally
efficient than truncated power series basis because it does not require
evaluating powers.

3

Natural cubic spline : An important variant of cubic spline is natural
cubic spline. They are the cubic splines that have an additional constraint
that the function is linear beyond the boundary knots i.e. we impose two
additional constraints f ′′′ = f ′′ = 0 in boundary regions.

Choosing the effective number of knots and their position is one of the
biggest drawbacks of regression splines. Also there are more than one
smoothing parameters to vary to attain smoothness.

• Smoothing Splines : In smoothing splines, instead of using knots, it
minimizes the penalized log likelihood in generalized additive models.
Here, the penalisation term handles the roughness of the fit. For instance,
for a single predictor x and binary response Y with the logit GAM model
log
(

p
1−p
)

= f(x) such that p = Pr(Y = 1|x), the function f(.) is fitted by
minimizing

n∑
i=1

[Yi log(pi) + (1− Yi) log(1− pi)] +
λ

2

∫
(f ′′(x))2dx

where the first term is log likelihood function and second term is penalty
term. λ is a non-negative smoothing parameter.

∫
(f ′′(x))2dx measures

the wiggliness of the function f . It turns out that the function that mini-
mizes the penalized sum of squares is a natural cubic spline with knots at
every data point.

4

