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Abstract

There are many methods of scoring the importance of variables in prediction of a response but
not much is known about their accuracy. This paper partially fills the gap by introducing a
new method based on the GUIDE algorithm and comparing it with 11 existing methods. For
data without missing values, eight methods are shown to give biased scores that are too high
or too low, depending on the type of variables (ordinal, binary or nominal) and whether or not
they are dependent on other variables, even when all of them are independent of the response.
Among the remaining four methods, only GUIDE continues to give unbiased scores if there are
missing data values. It does this with a self-calibrating bias-correction step that is applicable to
data with and without missing values. GUIDE also provides threshold scores for differentiating
important from unimportant variables with 95 and 99 percent confidence. Correlations of the
scores to the predictive power of the methods are studied in three real data sets. For many
methods, correlations with marginal predictive power are much higher than with conditional
predictive power.
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1 Introduction
The question of how to quantify the relative importance of variables has intrigued researchers
for years. While it was largely of academic interest early on, the question has attracted much
interest in the last two decades, due to the availability of data with large numbers of variables
and the desire to interpret “black box” machine learning models; see, e.g., Bring (1994), Bi
(2012), and Wei et al. (2015). Ribeiro et al. (2016) (see also Lundberg and Lee, 2017) argue that
interpretability of a model and its predictions is important in gaining a user’s trust. Clearly,
such trust can only be won if the interpretations themselves are not incorrect.

A well-known black-box model is random forest (RF, Breiman, 2001), which consists of hun-
dreds of unpruned regression trees. It uses a permutation-based scheme to generate importance
scores that has been widely copied. Some researchers have observed, however, that RF score
orderings do not always agree with those based on traditional methods. For example, Bureau
et al. (2005) used RF to identify single-nucleotide polymorphisms (SNPs) predictive of disease
and found that while SNPs that are highly associated with disease (measured by Fisher’s exact
test) tend to have high RF scores, the two orderings do not match. Díaz-Uriarte and Alvarez de
Andrés (2006) selected genes in microarray data by iteratively removing 20% of the genes with
the lowest RF scores at each step. They found that this yielded a smaller set of genes than linear
discriminant analysis, nearest neighbor and support vector machine methods, and that the RF
results were more variable.
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Table 1: Variables in COVID data.
died Died while hospitalized (0=no, 1=yes)
agecat Age group (0=18–50, 1=50–59, 2=60–69, 3=70–79, 4=80–90 years)
race White, Black or African American, Asian, Native Hawaiian or other Pacific

Islander, American Indian or Alaska Native, Unknown
sex Gender (male, female)
aids AIDS/HIV (0=no, 1=yes)
cancer Any malignancy, including lymphoma and leukemia, except malignant

neoplasm of skin (0=no, 1=yes)
cerebro Cerebrovascular disease (0=no, 1=yes)
charlson Charlson comorbidity index (0, 1, . . . , 20)
CHF Congestive heart failure (0=no, 1=yes)
CPD Chronic pulmonary disease (0=no, 1=yes)
dementia Dementia (0=no, 1=yes)
diabetes Diabetes mellitus (0=no, 1=yes)
hemipara Hemiplegia or paraplegia (0=no, 1=yes)
metastatic Metastatic solid tumor (0=no, 1=yes)
MI Myocardial infarction (0=no, 1=yes)
mildliver Mild liver disease (0=no, 1=yes)
modsevliv Moderate or severe liver disease (0=no, 1=yes)
PUD Peptic ulcer disease (0=no, 1=yes)
PVD Peripheral vascular disease (0=no, 1=yes)
RD Rheumatic disease (0=no, 1=yes)
renal Renal disease (0=no, 1=yes)

The differences in orderings may be demonstrated on a data set from Harrison et al. (2020)
of 31,461 patients aged 18–90 years diagnosed with the COVID-19 disease between January 20
and May 26, 2020, in the United States. Table 1 lists the 21 variables, which consist of death
during hospitalization, age group, sex, race, 16 comorbidities, and Charlson comorbidity index
(risk score computed from the comorbidities). The authors estimated mortality risk by fitting a
multiple linear logistic regression model, without Charlson index, to each age group. They found
10 variables statistically significant at the 0.05 level (without adjusting for multiplicity), namely,
race, sex, and histories of myocardial infarction (MI), congestive heart failure (CHF), dementia,
chronic pulmonary disease (CPD), mild liver disease (mildliver), moderate/severe liver disease
(modsevliv), renal disease (renal), and metastatic solid tumor (metastatic).

Figure 1 shows the importance scores of the top 10 variables obtained from 12 methods
discussed below. There is substantial variation in the orderings, although agecat, charlson,
and renal are ranked in the top 3 by 7 of the 12 methods. Of the variables that Harrison
et al. (2020) found statistically significant, CPD is not ranked in the top 10 by any method, and
mildliver and metastatic are ranked in the top 10 only thrice and once, respectively. On the
other hand, the non-significant variables cancer, cerebro, diabetes, hemipara, and PVD are
ranked in the top 10 by 5, 10, 7, 3, and 9 methods, respectively. Thus statistical significance is
not necessarily consistent with the importance scores.

What is one to do in the face of such disparate results? One solution is to average the ranks
across the methods, but this assumes that the methods are equally good. Strobl et al. (2007),
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Figure 1: Top 10 variables for COVID data; LASSO, RANGER, RF, RFSRC, and RLT scores
are averages over 100 trials with different random seeds.

Sandri and Zuccolotto (2008), and others have shown that RF scores are unreliable because
they are biased towards certain variable types. A method is said to be “unbiased” if all predictor
variables have the same mean importance score when they are independent of the response
variable. One goal of this paper is to find out if there are other methods with such bias.

For a given data set, bias may be detected by estimating the mean scores over random
permutations of the response variable, keeping the values of the predictor variables fixed. Let
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Figure 2: Mean importance scores VI and 2-SE bars from 1000 random permutations of the
dependent variable for COVID data. Variables ordered by increasing mean scores. CTREE and
RPART returned trees with no splits (hence no importance scores) for all permutations.

VIj (X) (j = 1, 2, . . . , J ) denote the importance score of variable X in the jth permutation.
Figure 2 plots the values of VI(X) = J−1

∑
j VIj (X) in increasing order and their 2-standard

error bars, for J = 1000. An unbiased method should have all its error bars overlapping. The
plots show that only CFOREST2, GUIDE, and RANGER have this property.
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The remainder of this article is organized as follows. Section 2 describes the GUIDE method
of calculating importance scores. Section 3 reviews the other 11 methods. Section 4 presents the
results of simulations to show how bias affects their importance scores. Section 5 examines the
extent to which the scores of each method are consistent with two measures of predictive power
of the variables. One problem closely related to importance scoring is obtaining a threshold
for distinguishing the important from unimportant variables. There have been few attempts at
solving this problem, despite its being central to variable selection, particularly if the number
of variables exceeds the sample size. Section 6 describes a general procedure incorporated in
GUIDE for producing thresholds such that, with high probability, variables independent of the
response will score below the thresholds. Section 7 shows how the GUIDE method applies to
data with missing values and Section 8 concludes the article with some remarks.

2 GUIDE Scoring Method
The core GUIDE algorithm for constructing regression and classification trees is described in Loh
(2002) and Loh (2009), respectively. It differs from CART (Breiman et al., 1984) in every respect
except tree pruning, where both employ the same cost-complexity cross-validation technique.
Whereas CART uses greedy search to select the split that most decreases node impurity, GUIDE
uses a two-step procedure that (i) selects the split variable most highly associated with the
response and (ii) then finds the best set of split values of the chosen variable to maximally
decrease node impurity. This paradigm change started in Loh and Vanichsetakul (1988) and
evolved principally through Chaudhuri et al. (1994), Loh and Shih (1997), and Loh (2002, 2009).
Besides reducing computation, the technique saves GUIDE from biases in variable selection due
to greedy search. Another important difference between GUIDE and CART is how each deals
with missing values in predictor variables. CART uses surrogate splits to pass observations with
missing values through each split, but this has been shown to be another source of selection
bias (Kim and Loh, 2001). GUIDE, on the other hand, treats missing values as qualitative
observations and sends them at each split to the node that yields more reduction in node
impurity (Loh et al., 2019, 2020).

An earlier GUIDE importance scoring method was proposed in Loh (2012) but it has two
weaknesses: (i) it is not unbiased if there is a mix of ordinal and categorical variables and (ii) it is
not sensitive to local pairwise interactions. We now introduce an improved version that removes
these deficiencies. As in the earlier method, it uses a weighted sum of chi-squared statistics
obtained from a short (four-level) unpruned tree, but it adds conditional tests for pairwise
interactions and a permutation-based step for bias correction. It is presented here for regression
for simplicity, although it is applicable to classification as well.

Given a node t of a regression tree, let nt denote the number of observations in t . The
following steps are performed recursively, starting with the root node, until a tree with four
levels of splits is obtained. Values of parameters m and dk are chosen to control the probability
of small cell counts in the contingency tables.
1. Fit a constant to the response values in t and compute the residuals.
2. Define a class variable Z such that Z = 1 if the observation has a positive residual and Z = 2

otherwise.
3. Define m = 3 if nt < 60 and m = 4 otherwise.
4. For each ordinal variable Xk, let dk denote the number of its distinct values (including missing

value indicator) in t .
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(a) If dk � 4 or if dk = 5 and Xk has missing values in t , define X′
k to be the categorical

variable with nominal values being those of Xk (with a separate value for missing Xk

values).
(b) Otherwise, define q(0, k) = −∞.

i. If Xk has missing values in t , let q(i, k) be the sample i/(m − 1)-quantile of the
nonmissing values of Xk, for i = 1, 2, . . . , (m − 2). Define categorical variable X′

k with
nominal values

X′
k =

⎧⎨
⎩

q(i, k), if Xk is nonmissing and q(i − 1, k) < Xk � q(i, k)

q(m − 2, k) + 1, if Xk is nonmissing and Xk > q(m − 2, k)

q(m − 2, k) + 2, if Xk is missing

for i = 1, 2, . . . , (m − 2).
ii. If Xk has no missing values, let q(i, k) be the sample i/m-quantile of the values of Xk,

for i = 1, 2, . . . , (m − 1). Define categorical variable

X′
k =

{
q(i, k), if q(i − 1, k) < Xk � q(i, k)

q(m − 1, k) + 1, if Xk > q(m − 1, k)

for i = 1, 2, . . . , (m − 1).
5. Define X′

k = Xk for each categorical variable Xk.
6. For k = 1, 2, . . . , K, where K is the number of variables, perform a contingency table chi-

squared test of X′
k versus Z and denote its p-value by p1(k, t).

7. Initialize j ′ = k′ = 0 and p2(j, k, t) = 1 for j, k = 1, 2, . . . , K. If mink p1(k, t) � 0.10/K (first
Bonferroni correction), carry out the following interaction tests.
(a) Transform each ordinal Xk to a 3-level categorical variable X′

k. If Xk has no missing values,
X′

k is Xk discretized at the 33rd and 67th sample quantiles. If Xk has missing values, X′
k

is Xk discretized at the sample median with missing values forming the third category. If
Xk is a categorical variable, let X′

k = Xk.
(b) For every pair (X′

j , X
′
k) with j < k, perform a chi-squared test with the Z values as rows

and the (X′
j , X

′
k) values as columns and let p2(j, k, t) denote its p-value.

(c) Let (X′
j ′, X′

k′) be the pair of variables with the smallest value of p2(j, k, t). If p2(j
′, k′, t) <

0.20{K(K − 1)}−1 (second Bonferroni correction), set p1(j
′, t) = p1(k

′, t) = p2(j
′, k′, t).

8. If min1�j,k�K p2(j, k, t) < 0.20{K(K−1)}−1, split node t on either Xj ′ or Xk′ , whichever yields
the larger decrease in node impurity (sum of squared residuals). Otherwise, split t on Xk∗ ,
where k∗ is the smallest value of k such that p1(k

∗, t) = mink p1(k, t).
Unadjusted importance score of Xk is given by

v(Xk) =
∑

t

√
nt χ

2
1 (k, t) (1)

where the sum is over the intermediate nodes and χ2
1 (k, t) denotes the (1 − p1(k, t))-quantile of

the chi-squared distribution with 1 degree of freedom.
The unadjusted scores v(Xk) are slightly biased due partly to p-value differences between

ordinal and categorical variables and partly to conditional step 7. To remove the bias, we stan-
dardize the scores by their expected values under the hypothesis that the response variable (Y ) is
independent of the X variables. Specifically, we randomly permute the Y values B times (B = 300
in the examples and simulations here) with the X values fixed and obtain the importance scores
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from each permuted data set. Let v∗
b(Xk) be the value of (1) in permutation b = 1, 2, . . . , B, and

define v̄(Xk) = B−1
∑

b v∗
b(Xk). The GUIDE bias-adjusted variable importance score of Xk is

VI(Xk) = v(Xk)/v̄(Xk). (2)

3 Eleven Other Methods
This section briefly reviews 11 other importance scoring methods.
RPART. This is an R implementation of CART (Therneau and Atkinson, 2019b). Let s = {X ∈

A} denote a split of node t for some variable X and set A, and let tL and tR denote its left and
right child nodes. Given a node impurity function i(t) at t , let �(s, t) = i(t)− i(tL)− i(tR) be
a measure of the goodness of the split. For regression trees, i(t) = ∑

i∈t (yi − ȳt )
2, where ȳt is

the sample mean at t . CART partitions the data with the split s(t) that maximizes �(s, t).
To evaluate the importance of the variables and to deal with missing values, CART finds the
surrogate split s̃k(t) based on each Xk that best predicts s(t). The importance score of Xk

is measured by
∑

t �(s̃k(t), t), with the sum over the intermediate nodes of the pruned tree
(Breiman et al., 1984, pp. 141–147).
RPART measures importance differently from CART (Therneau and Atkinson, 2019a). Given
a split s(t) and a surrogate s̃(t), let j (s(t), s̃(t)) be the total number of observations in
tL and tR correctly sent by s̃(t). Let nL and nR denote the numbers of observations in
tL and tR, respectively. The “adjusted agreement” between s and s̃ is a(s, s̃) = {j (s, s̃) −
max(nL, nR)}/ min(nL, nR). Xk is called a “primary” variable if it is in s and a “surrogate”
variable if it is in s̃. Let P(k) and S(k) denote the sets of intermediate nodes where Xk is the
primary and surrogate variable, respectively. RPART defines VI(Xk) = ∑

t∈P(k) �(s(t), t) +∑
t∈S(k) a(s(t), s̃(t))�(s̃(t), t) as the importance score of Xk. The simulation results in Section 4

below show that the scores are biased, because maximizing the decrease in node impurity
induces a bias towards selecting variables that allow more splits (White and Liu, 1994; Loh
and Shih, 1997). Additionally, if there are missing values, selection of the surrogate variables
is biased too (Kim and Loh, 2001).

GBM. This is gradient boosting machine (Friedman, 2001). It uses functional gradient descent
to build an ensemble of short CART trees. For a single tree, the importance score of a
variable is the square root of the total decrease in node impurity (squared error in the case of
regression) over the nodes where the variable appears in the split. For an ensemble, it is the
root mean squared importance score of the variable over the trees (Friedman, 2001, p. 1217).
We use the R function gbm (Greenwell et al., 2019) to construct the GBM models and the
varImp function in the caret package (Kuhn, 2020) to calculate the importance scores.

RF. This is an R implementation of random forest (Liaw and Wiener, 2002). It has two measures
for computing importance scores. The first is decrease in accuracy of the forest in predicting
the “out-of-bag” (OOB) data before and after random permutation of the predictor variable,
where the OOB data are the observations not in the bootstrap sample. The second uses
decrease in node impurity, which is the average of the total decrease in node impurity of
the trees. Partly due to CART’s split selection bias, the second measure is known to be
unreliable (Strobl et al., 2007; Sandri and Zuccolotto, 2008). The results reported here use
the first measure.

RANGER. Sandri and Zuccolotto (2008) used pseudovariables to correct the bias in RF’s
decrease in node impurity measure. (Pseudovariables were employed earlier by Wu et al.,
2007.) Given K predictor variables X = (X1, X2, . . . , XK), another K pseudovariables Z =
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(Z1, Z2, . . . , ZK) are added where the rows of Z are random permutations of the rows of X.
The RF algorithm is applied to the 2K predictors and the importance score of Xk is adjusted
by subtracting the score of Zk for k = 1, 2, . . . , K. This approach requires more computer
memory and increases computation time (a forest has to be constructed for each generation
of Z). To partially circumvent this, Nembrini et al. (2018) proposed using only a single
generation of Z and storing only the permutation indices rather than the values of Z. Their
method is implemented in the ranger R package (Wright and Ziegler, 2017). The cost of
using a single generation of Z is that the RANGER scores are even more random than the
original RF scores which are themselves random (unless the random seed is locked). As a
result, there are no savings in computation time in real applications because RANGER must
be applied multiple times to stabilize the average importance scores. In the examples here,
the RANGER scores are averaged over 100 replications.

RFSRC. This is another ensemble method based on RF (Ishwaran, 2007; Ishwaran et al.,
2008). The importance of variable X is the difference between the prediction error of the
OOB sample before and after X is “noised up”. “Noising up” here means that if an OOB
observation encounters a split on X at a node t , it is randomly sent to the left or right branch,
with equal probability, at t and all its descendent nodes. Missing values in a predictor variable
are imputed nodewise, by replacing each missing value with a randomly selected non-missing
value in the node. The results for RFSRC here are obtained with the randomForestSRC R
package (Ishwaran and Kogalur, 2007).

RLT. This method may be thought of as “RF within RF.” Called “reinforcement learning trees”
(Zhu et al., 2015), it constructs an ensemble of trees from bootstrap samples, but uses the
RF permutation-based importance scoring method to select the most important variable to
split each node in each tree. After the ensemble is constructed, the final importance scores
are obtained once more using the RF permutation scheme. The results here are produced by
the RLT R package (Zhu, 2018).

CTREE. This is the “conditional inference tree” algorithm of Hothorn et al. (2006). It follows
the GUIDE approach of using significance tests to select a variable to split each node of a tree.
But unlike GUIDE, CTREE uses linear statistics based on a permutation test framework
and, instead of pruning, it uses Bonferroni-type p-value thresholds to determine tree size.
Further, each significance test employs only observations with non-missing values in the X

variable being evaluated. Observations with missing values are passed through each split by
means of surrogate splits as in CART. Importance scores are obtained as in RFSRC, except
that an OOB observation missing the split value at a node is randomly sent to the left
or right child node with probabilities proportional to the samples sizes of the non-missing
observations in the two child nodes. The results here are obtained with the partykit R
package.

CFOREST. This is an ensemble of CTREE trees from the partykit package. Instead of
bootstrap samples, it takes random subsamples (without replacement) of about two-thirds
of the data to construct each tree. Strobl et al. (2007) showed that this removes a bias in
RF that gives higher scores to categorical variables with large numbers of categories. It is
the default option in partykit, which we denote by CFOREST1. Another option, which we
denote by CFOREST2, is conditional permutation of the variables, which Strobl et al. (2008)
recommended for reducing the bias in RF towards correlated variables.

LASSO. This is linear regression with the lasso penalty. The importance score of an ordinal
variable is the absolute value of its coefficient in the fitted model and that of a categorical
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Table 2: Simulation models Y = μ(X) + ε, with ε independent standard normal.

Model Expected highest scoring variables

E0 μ(X) = 0 None; equal expected scores
E1 μ(X) = 0.2N2 N2 followed by N3 and N4

E2 μ(X) = 0.1(N1 + N2) N1 and N2, followed by N3 and N4

E3 μ(X) = 0.2B1 B1

E4 μ(X) = 0.2B2 (= 0.2I (C2 � 5)) B2 and C2

E5 μ(X) = 0.5{I (B1 = 0, C1 � 5) + I (B1 = 1, C1 > 5)} B1 and C1

variable is the average of the absolute values of the coefficients of its dummy variables. All
variables (including dummy variables) are standardized to have mean 0 and variance 1 prior
to model fitting. We use the implementation in the glmnet R package (Friedman et al.,
2010).

BARTM. This is bartMachine (Bleich et al., 2014), a Bayesian method of constructing a
forest of regression trees based on the BART algorithm (Chipman et al., 2010). It models
the response variable as a sum of regression tree models plus homoscedastic Gaussian noise.
Prior distributions must be specified for all unknown parameters, including the set of tree
structures, terminal node parameters, and the Gaussian noise variance. Following Bleich et al.
(2014), the importance of a variable is the relative frequency that it appears in the splits
in the trees. The results here are obtained from the bartMachine R package with default
parameters.

4 Simulation Experiments
We performed 6 simulation experiments (E0–E5) involving 11 predictor variables (B1, B2, C1,
C2, N1, N2, N3, N4, S1, S2, S3) to compare the performance of the 12 methods. Variable sets
{B1}, {C1}, {B2, C2}, {N1, N2, N3, N4}, and {S1, S2, S3} are mutually independent. Variable B1 is
Bernoulli with P(B1 = 1) = 0.50, and C1, C2 are independent categorical variables taking values
1, 2, . . . , 10 with equal probability 0.10. Variable B2 = I (C2 � 5) is a binary variable derived
from C2. Variable N1 is independent standard normal and (N2, N3, N4) is multivariate normal
with zero mean, unit variance, and constant correlation 0.90. The triple (S1, S2, S3) is obtained
by setting S1 = min(U1, U2), S2 = |U1 − U2|, and S3 = 1 − max(U1, U2), where U1 and U2 are
independent and uniformly distributed variables on the unit interval, so that S1 + S2 + S3 = 1
and cor(Si, Sj ) = −0.50 (i �= j).

Table 2 shows the models used to generate the dependent variable Y = μ(X) + ε, where
μ(X) is a function of the predictor variables and ε an independent standard normal variable.
The purpose of null model E0, where Y is independent of the X variables, is identification of
methods with biased importance scores. The other models have one or two important variables
each; they show how bias suppresses the scores of these variables. For each model, importance
scores are obtained from 1000 simulation trials, with random samples of 400 observations per
trial.

Figure 3 shows the average scores and their 2-SE (simulation standard error) bars for model
E0. The 2-SE bars should overlap if there is no selection bias. We see that only CFOREST2,
CTREE, GUIDE, and RANGER have this property. The RANGER scores of the binary variables
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Figure 3: Average importance scores with 2-SE error bars for model E0, where predictor variables
are independent of Y .

B1 and B2 are much less variable than those of the other variables. BARTM, CFOREST1 and
RF are biased towards correlated variables N2, N3 and N4. BARTM is also biased towards
binary variables. GBM, RLT and RPART are biased towards multi-category variables C1 and C2.
RFSRC is biased against all categorical variables and LASSO is biased towards B1 but against B2.

Figures 4–8 show boxplots of the simulated scores for models E1–E5, with darker color
indicating important variables. The results may be summarized as follows.
E1. The model is μ(X) = 0.2N2, but the response is also associated with N3 and N4 through

their correlation with N2. Therefore these variables should have the three highest expected
scores. Figure 4 shows that all but one method give their highest median scores to these
three predictors. The exception is GBM, whose bias towards variables C1 and C2 frequently
makes them appear more important than N2, N3 and N4.

E2. The model is μ(X) = 0.1(N1 + N2), where N1 is independent of N2 but the latter is highly
correlated with N3 and N4. We expect N1 and N2 to have equal and highest expected scores,
with those of N3 and N4 close behind. Figure 5 shows that this is true of all methods except
GBM, RF, RLT, and RPART. For RF and RPART, the presence of N3 and N4 raises the
median score of N2 above that of N1. GBM again tends to incorrectly score C1 and C2

highest.
E3. The model is μ(X) = 0.2B1. Because B1 is independent of the other predictors, we ex-

pect it to have the highest median scores. All except CTREE, GBM, LASSO, RF, RFSRC,
and RPART show this. CTREE and LASSO fail because they have median scores of 0 for
all variables. GBM and RPART fail due to bias towards C1 and C2. RF fails due to the
high correlation among N2, N3 and N4. RFSRC fails due to bias towards continuous vari-
ables.
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Table 3: Causes of inaccuracies in scoring methods for Models E0–E5. (a) biased towards
correlated variables N2, N3, N4 and against independent variable N1; (b) biased against non-
dichotomous categorical variables C1, C2; (c) biased towards non-dichotomous categorical vari-
ables C1 and C2; (d) biased against dependent categorical variable C2; (e) biased towards di-
chotomous variables B1, B2; (f ) biased against dichotomous variables B1, B2; (g) biased towards
B1 and against B2; (h) biased against all categorical variables; (z) median scores of zero for all
variables.

Method E0 E1 E2 E3 E4 E5

BARTM a,e d,e
CFOREST1 a,b d
CFOREST2
CTREE z z z z
GBM c,f c c c,f c,f c,f
GUIDE
LASSO g z z z
RANGER
RF a,h a a a
RFSRC h h h h
RLT c,f c c,f c,f c,f
RPART c,f c c,f c,f c,f

E4. The model is μ(X) = 0.2B2 but because B2 = I (C2 � 5), variables B2 and C2 should
have the highest expected scores. Only GUIDE, RANGER and possibly CFOREST2 have
this property. BARTM and CFOREST1 give the highest median score to B2 but middling
median scores to C2. GBM and RLT, due to their strong bias towards high-level categorical
variables (Figure 3), give highest median score to C2 but low or middling median score to B2.
As in model E3, CTREE and LASSO cannot reliably identify B2 or C2 as important because
they have median scores of 0 for all predictors.

E5. The model is μ(X) = 0.5{I (B1 = 0, C1 � 5) + I (B1 = 1, C1 > 5)}, which has an in-
teraction between B1 and C1. BARTM, CFOREST1, CFOREST2, GUIDE, and RANGER
correctly give these two predictors the highest median scores. On the other hand, GBM
and RPART give B1 the lowest median score due to their bias against binary variables. RF
ranks with high frequency the correlated variables N2, N3, N4 as most important. RFSRC
also gives B1 and C1 low scores due to its bias against all categorical variables. RLT gives
C1 and C2 the highest median scores due to its bias towards these two variables. As in E3
and E4, CTREE and LASSO are ineffective because both have median scores of 0 for all
variables.
Table 3 lists the main reasons why some methods fail to correctly identify the important

variables across the models. GBM, RFSRC, RLT, and RPART are highly unreliable if categor-
ical variables are present. RF is highly unreliable if there are categorical variables or correlated
continuous variable. CTREE and LASSO are often useless due to their high frequency of pro-
ducing scores of 0 for all variables. CFOREST2, GUIDE, and RANGER are the only unbiased
methods and therefore the most likely to correctly identify important variables.
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Figure 4: Boxplots of importance scores over 1000 trials for model E1, where μ(X) = 0.2N2 and
N2, N3, N4 are highly correlated. Important variables are in darker color.

Figure 5: Boxplots of importance scores over 1000 trials for model E2 where μ(X) = 0.1(N1 +N2)

and N2, N3, N4 are highly correlated. Important variables are in darker color.
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Figure 6: Boxplots of importance scores over 1000 trials for model E3, where μ(X) = 0.2B1.
Important variables are in black.

Figure 7: Boxplots of importance scores over 1000 trials for model E4, where μ(X) = 0.2B2 and
B2 = I (C2 � 5). Important variables are in darker color.
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Figure 8: Boxplots of importance scores over 1000 trials for model E5, where μ(X) = 0.5{I (B1 =
0, C1 � 5) + I (B1 = 1, C1 > 5)}. Important variables are in darker color.

5 Predictive Importance
“Predictive importance” may be interpreted as the effect of a variable on the prediction of a
response, but it is not known which methods produce scores that reflect the concept. BARTM
scores variables by their frequencies of being chosen to split the nodes of the trees. GBM and
RPART base their scores on decrease in node impurity. LASSO uses absolute values of estimated
regression coefficients. CFOREST, CTREE, RANGER, RF, and RFSRC measure change in
prediction accuracy after random permutation of the variables—an approach that Strobl et al.
(2008) call “permutation importance.” Being based on chi-squared tests of association with the
response variable at the nodes of a tree, GUIDE scores are measures of “associative impor-
tance.”

To see how well scores reflect predictive importance, a precise definition of the latter is
needed. Given predictor variables X1, X2, . . . , XK , consider the four models,

Y = μ + ε (3)
Y = fj (Xj ) + ε (4)
Y = gj (X1, . . . , Xj−1, Xj+1, . . . , XK) + ε (5)
Y = h(X1, X2, . . . , XK) + ε (6)

where μ is an unknown constant, fj , gj , and h are unknown functions of their arguments, and
ε is an independent variable with zero mean and variance possibly dependent on the values of
the X variables. Equation (3) states that Y is independent of the predictors, (4) states that Y

depends only on Xj , (5) states that Y depends on all variables except Xj , and (6) allows Y to
depend on all variables. Let μ̂, f̂j , ĝj , and ĥ denote estimates of μ, fj , gj , and h, respectively,



Variable Importance Scores 583

obtained from a training sample. Define

S0 = E(Y − μ̂)2

Sj = E(Y − f̂j (Xj ))
2

S−j = E(Y − ĝj (X1, . . . , Xj−1, Xj+1, . . . , XK))2

S = E(Y − ĥ(X1, . . . , XK))2

where the expectations are computed with μ̂, f̂j , ĝj , and ĥ fixed. Call (S0 − Sj ) the marginal
predictive value of Xj because it is the difference in mean squared error between predicting Y

with and without Xj , ignoring the other predictors. Call (S−j − S) the conditional predictive
value of Xj because it is the difference in mean squared error between predicting Y without and
with Xj , with the other predictors included.

Correlations between the importance scores and marginal and conditional predictive values
indicate how well the former reflects the latter. To compute the correlations for a given data
set, we need first to estimate μ, fj , gj , and h. Here we use the average of 5 ensemble methods,
namely, CFOREST, GBM, GUIDE forest, RANGER, and RFSRC to do so. This ensures that
no scoring method has an unfair advantage. We use leave-one-out cross-validation to estimate
S0, Sj , S−j , and S. Specifically, given a data set {(yi, xi1, . . . , xiK), i = 1, 2, . . . , n}, define the
vectors and matrices

xj = (x1j , x2j , . . . , xnj )
′

x(−i)
j = (x1j , x2j , . . . , xi−1,j , xi+1,j , . . . , xnj )

′

X = (x1, x2, . . . , xK)

X(−i) = (x(−i)
1 , x(−i)

2 , . . . , x(−i)
K )

X(−j) = (x1, x2, . . . , xj−1, xj+1, . . . , xK)

X(−i)

(−j) = (x(−i)
1 , x(−i)

2 , . . . , x(−i)
j−1 , x

(−i)
j+1 , . . . , x

(−i)
K )

where (x(−i)
j , X(−i), X(−i)

(−j)) is (xj , X, X(−j)) without the ith row and (X(−j), X(−i)

(−j)) is (X, X(−i))

without the jth column. Let (f̂
(−i)
j , ĝ

(−i)
j , ĥ(−i)) denote the function estimates of (fj , gj , h) based

on (x(−i)
j , X(−i)

(−j), X(−i)), respectively, obtained from the average of the 5 ensemble methods. Let
ȳ = n−1

∑
k yk, ȳ(−i) = (n − 1)−1

∑
k �=i yk and define the leave-one-out mean squared errors

Ŝ0 = n−1
n∑

i=1

(yi − ȳ(−i))2

Ŝj = n−1
n∑

i=1

{yi − f̂
(−i)
j (xij )}2

Ŝ−j = n−1
n∑

i=1

{yi − ĝ
(−i)
j (xi1, xi2, . . . , xi,j−1, xi,j+1, . . . , xiK)}2

Ŝ = n−1
n∑

i=1

{yi − ĥ(−i)(xi1, xi2, . . . , xiK)}2.

Denote the estimated marginal and conditional predictive values by MPVj = Ŝ0 − Ŝj and CPVj =
Ŝ−j − Ŝ, respectively. We compare them on the following three real data sets.
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Figure 9: CPV versus MPV and their correlations for three data sets.

Baseball. The data give performance and salary information of 263 North American Major
League Baseball players during the 1986 season (Denby, 1986). The response variable is log-
salary and there are 22 predictor variables; see Hoaglin and Velleman (1995) and references
therein for definitions of the variables. The plot on the left side of Figure 9 shows a rather
weak correlation of 0.318 between CPV and MPV. Variable Yrs (number of years in the major
leagues) has high values of MPV and CPV but Batcr (number of times at bat during career)
has a high value of MPV and a negative value of CPV. This suggests that Batcr is an excellent
predictor if it is used alone, but its addition after the other variables are included does not
increase accuracy.

Mpg. This data set gives the characteristics, price, and dealer cost of 428 new model year 2004
cars and trucks (Johnson, 2004). We use 14 variables to predict city miles per gallon (mpg).
The middle panel of Figure 9 shows that Hp (horsepower) has the highest values of MPV and
CPV. Variable Make (which has 38 categorical values) has the second highest CPV but its MPV is
below average, indicating that its predictive power is mainly derived from interactions with
other variables. The correlation between CPV and MPV is 0.378.

Solder. Chambers and Hastie (1992) use data from a circuit board soldering experiment to
demonstrate Poisson regression in R. The data, named solder.balance in the rpart R
package, give the number of solder skips in an unreplicated 3 × 2 × 4 × 10 × 3 factorial
experiment. Because not all scoring methods are applicable to Poisson regression, we use
least squares with square root of number of solder skips as dependent variable. The right
panel of Figure 9 shows that, due to the factorial design, CPV and MPV are almost perfectly
correlated.
Table 4 gives the correlations between the importance scores VI and MPV and CPV for each

method and Figure 10 shows them graphically. They yield the following observations.
Baseball. The importance scores are highly correlated with MPV for GUIDE and RANGER,

but not for LASSO where there is barely any correlation. On the other hand, the scores are
weakly correlated with CPV for all methods except BARTM and LASSO. This may be due
to many variables being correlated here.

Mpg. GUIDE and RANGER are again the two methods with importance scores most highly
correlated with MPV; the correlations for the other methods range from 0.54 for RF to 0.85
for BARTM and RPART. For CPV, GBM has the highest correlation of 0.88, followed by
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Table 4: Correlations between importance scores VI and marginal and conditional predictive
values MPV and CPV.

Baseball Mpg Solder
Method MPV CPV MPV CPV MPV CPV

BARTM 0.75 0.68 0.85 0.48 0.4 0.46
CFOREST1 0.87 0.1 0.82 0.28 1 1
CFOREST2 0.82 0.16 0.69 0.78 0.99 1
CTREE 0.4 0.07 0.65 0.54 0.99 1
GBM 0.8 0.14 0.62 0.88 0.99 0.98
GUIDE 0.99 0.3 0.94 0.24 0.9 0.92
LASSO 0.19 0.59 0.75 0.55 0.73 0.76
RANGER 0.97 0.18 0.96 0.33 1 1
RF 0.83 0.16 0.54 0.28 0.87 0.91
RFSRC 0.79 0.02 0.72 0.8 1 1
RLT 0.69 0 0.67 0.77 0.99 1
RPART 0.92 0.2 0.85 0.44 0.9 0.93

Figure 10: cor(VI, MPV) vs. cor(VI, CPV) for three data sets; B = BARTM, Cf1 = CFOREST1,
Cf2 = CFOREST2, Ct = CTREE, Gb = GBM, Gu = GUIDE, L = LASSO, Ra = RANGER, Rf
= RF, Rfs = RFSRC, Rl = RLT, Rp = RPART.

RFSRC (0.80) and CFOREST2 (0.78).
Solder. Owing to the almost perfect correlation between MPV and CPV, their correlations with

the importance scores are essentially the same. BARTM and LASSO are the only two meth-
ods with correlations substantially below 0.90, suggesting that they measure something be-
sides MPV and CPV.

Across the three data sets, the importance scores of all methods except for BARTM and LASSO
are consistent with MPV, with GUIDE, RANGER and RPART showing the highest consistency.
Consistency with CPV is weaker and more variable between data sets.
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Table 5: Important variables (in alphabetical order for BARTM, in decreasing importance for
GUIDE) for α = 0.05.

Data BARTM GUIDE

COVID diabetes, race=Black or African
American, race=Unknown, race=White

renal, charlson, agecat, MI, CHF,
dementia, PVD, cerebro, cancer,
diabetes, race, CPD, sex, metastatic,
hemipara, modsevliv, mildliver

Baseball Hitcr, Rbcr, Runcr, Yrs Batcr, Hitcr, Runcr, Rbcr, Wlkcr, Yrs,
Hrcr, Hit86, Rb86, Bat86, Wlk86,
Run86, Hr86, Pos86, Puto86

Mpg Cylin=3, Cylin=4, Enginsz, Hp,
Make=Honda, Make=Kia, Make=Toyota,
Type=car, Weight

Weight, Enginsz, Cylin, Hp, Dcost,
Rprice, Width, Whlbase, Drive, Type,
Make, Length, Region

Solder mask=B6, opening=small opening, mask, solder, padtype

6 Thresholding
It is useful to have a score threshold to identify variables that are independent of the response.
This is particularly desirable if the number of variables is large. Of the 12 scoring methods,
only BARTM and GUIDE currently provide thresholds. We call a variable “unimportant” if it
is independent of the response variable and “important” otherwise. Under the null hypothesis
H0 that all variables are unimportant, we define a “Type I error” as that of declaring at least
one variable important. To control the probability of this error at significance level α, Bleich
et al. (2014) randomly permute the Y values several times, keeping the X values fixed. They
construct a BARTM forest to each set of permuted data, derive several candidate thresholds
from the permutation distributions of the variable selection frequencies, and use cross-validation
to choose among them.

GUIDE similarly permutes the Y values, keeping the X values fixed. For j = 1, 2, . . . , 300,
let uj denote the maximum value of the GUIDE importance scores for the jth permuted data
set and let u∗(α) be the (1 − α)-quantile of the set {u1, u2, . . . , u300}. Under H0, the probability
that at least one score exceeds the value of u∗(α) is approximately α.

Bias adjustment of the importance scores defined in equation (2) requires one level of
permutation and calculation of u∗(α) requires another level. GUIDE uses an approximation
to skip the second level. In the permutations for bias adjustment, let vb = maxi v

∗
b(Xi), b =

1, 2, . . . , B, denote the maximum unadjusted score, where v∗
b(Xi) is defined above equation (2).

Let v∗(α) denote the (1−α)-quantile of {v1, v2, . . . , vB}. Let s(Xi) be the unadjusted score for the
unpermuted (real) data defined in (1). Finally, let k denote the number of values of s(Xi) greater
than v∗(α). Declare as important the variables with the top k values of the bias-adjusted scores
VI(Xi). Let ṽ(α) denote the average of the kth and (k + 1)th largest values of VI(Xi). GUIDE
reports the normalized importance scores VI(Xi)/ṽ(α), so that variables with normalized scores
less than 1.0 are considered unimportant.

Table 5 lists the variables found to be important by BARTM and GUIDE in the COVID,
Baseball, Mpg, and Solder data sets, using α = 0.05. GUIDE orders the important variables
by their VI values, but BARTM does not order them. The table shows that BARTM tends
to find fewer important variables than GUIDE. Besides, because it transforms each categorical
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Figure 11: Variables with 15 highest importance scores in CE data.

variable into several indicator variables, BARTM may find some indicators important and other
indicators unimportant. For example in the SOLDER data, BARTM finds only one of the four
levels of mask and one of the three levels of opening to be important.

7 Missing Values
Among the 12 scoring methods, only CFOREST1, GUIDE, RPART, and RFSRC accept data
with missing values. GUIDE importance scores are unbiased when there are missing values
because the latter are treated as a special type of observation as described in Section 2. To show
this and observe the effect of missing values on CFOREST1, RPART and RFSRC, we apply
the methods to a data set from a Bureau of Labor Statistics 2013 Consumer Expenditure (CE)
Survey that contains observations on more than 400 variables from 6464 respondents. We choose
as dependent variable the amount of interest and dividends from the previous year (INTRDVX).
About 25% of the values of INTRDVX are missing, either because the question is inapplicable
or the respondent refused to answer it. For this demonstration, we use the 4693 respondents
with non-missing INTRDVX to obtain importance scores for its prediction. Within this subset,
about 20% of the other variables have missing values, with 67 of them having more than 95%
missing, including STOCKX (value of directly-held stocks, bonds, mutual funds, etc.), which may
be expected to be a good predictor of INTRDVX. See Loh et al. (2019, 2020) for more information
on the variables.

Figure 11 shows barplots of the scores of the top 15 variables for each method. STOCKX is
ranked most important by GUIDE and second most important by RFSRC, but it is not ranked
in the top 15 by CFOREST1 and RPART. At least one of FINCBTAX (income before tax) or
FINCATAX (income after tax) is in the top 15 of all four methods. These two variables have no
missing values.

We can use the same procedure that produced Figure 2 to find out if there is bias in the
importance scores by randomly permuting the INTRDVX values while holding the values of the
predictor variables fixed. Let J be the number of permutations and mj(k) be the importance
score of variable Xk in permutation j (j = 1, 2, . . . , J ). Figure 12 plots m̄(k) = J−1

∑
j mj (k)

(arranged in increasing order) and their 2-SE error bars for each method, with J = 1000.
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Figure 12: Mean importance scores VI and 2-SE bars from 1000 random permutations of the
response variable for CE data. Variables ordered by increasing mean scores. GUIDE has fewer
variables because it combines missing-value flag variables with their associated variables.

GUIDE is the only method with unbiased scores as evidenced by its overlapping 2-SE bars. The
2-SE bars in the other three methods seldom overlap (some bars are too short to be visible).
CFOREST1 gives the lowest mean scores to categorical variables HHID (household identifier, 46
levels), PSU, (primary sampling unit, 21 levels), and STATE (39 levels)—due to its bias against
non-dichotomous categorical variables (see Table 3). On the other hand, RPART gives very high
mean scores to STATE, HHID, and categorical variables OCCUCOD1 (respondent occupation, 15
levels) and OCCUCOD2 (spouse occupation, 15 levels)—due to its bias towards non-dichotomous
categorical variables. Finally, RFSRC gives its highest mean scores to binary variable DIRACC
(access to living quarters) and continuous variable JFS_AMT (annual value of food stamps)—we
have no explanation for this.

8 Conclusion
We have presented an improved importance scoring method based on the GUIDE algorithm and
compared it with 11 methods in terms of selection bias and consistency with two measures of
predictive importance. We say that a method is unbiased if the expected values of its scores are
equal when all variables are independent of the response variable. We found that if the data do
not have missing values, only CFOREST2, CTREE, GUIDE, and RANGER are unbiased. RF
and RFSRC give lower scores to all categorical variables. GBM and RLT give higher scores to
high-level categorical variables and lower scores to dichotomous variables. RPART gives lower
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Figure 13: Average CPU times (sec.) for one set of importance scores; N is the sample size and
K is the number of variables; plot for baseball data is on logarithmic scale.

scores to dichotomous variables. BARTM, CFOREST1 and LASSO have biases that are not
easy to characterize. Only CFOREST1, GUIDE, RPART, and RFSRC are applicable to data
with missing values, with GUIDE the only one that is unbiased. Unbiasedness of GUIDE is
achieved through bias correction by random permutation of the values of the response variable.
The technique is applicable to any scoring method that is not highly biased, but it can increase
computational cost by an order of magnitude.

Figure 13 shows average computation times in seconds for each method to calculate one set
of importance scores for the four data sets without missing values. Computations were performed
on a 56-core Intel Xeon 2.40 GHz computer with 240 GB memory. The times are averages over
3 replications, to reduce the variability of randomized methods (CFOREST, GBM, LASSO,
RANGER, RF, RFSRC, RLT) that employ random number seeds. In real applications the
randomized methods will take much longer, because the number of replications need to be
increased to stabilize the mean scores. The barplot for the Baseball data is drawn on a log scale
due to the unusually long computation time for RANGER (we conjecture that this is due to the
presence of 3 categorical variables each with 23 levels). Although the computation times for the
Mpg and Solder data sets may not be large enough to be practically important, their relative
sizes would be important if the sample sizes were much larger.

We used three data sets to examine whether the importance scores correlate well with
two measures of predictive power, namely marginal predictive value (where other variables are
ignored) and conditional predictive value (where other variables are fitted first). We found that
the scores of many methods are highly correlated (> 0.80) with marginal predictive value, the
exceptions being BARTM, CTREE, and LASSO. Correlations with conditional predictive values
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Table 6: Score properties (�indicates the method possesses the property). U : unbiased scores;
C : 0.90 or higher correlation with marginal predictive values (MPV); T : threshold available; M :
missing values allowed.

Method U C T M

BARTM �
CFOREST1 �
CFOREST2 �
CTREE �
GBM
GUIDE � � � �
LASSO
RANGER � �
RF
RFSRC �
RLT
RPART �

are generally low, except for CFOREST2, GBM, RFSRC, and RLT, where the correlations range
from 0.77 to 0.88 in one data set.

Finally, we showed how GUIDE constructs 100(1 − α)% threshold scores for distinguishing
important from unimportant variables. The thresholds are constructed such that if all predictors
are independent of the response, the probability that at least one score exceeds the thresholds
is α. As with bias correction, the thresholding technique may be incorporated into other methods.
Table 6 lists the properties of each method.

Supplementary Material
Data files and simulation programs used in the article may be found in a supplementary file.
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