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Abstract

Large-scale genomics studies provide researchers with access to extensive datasets with extensive
detail and unprecedented scope that encompasses not only genes, but also more experimental
functional units, including non-coding microRNAs (miRNAs). In order to analyze these high-
fidelity data while remaining faithful to the underlying biology, statistical methods are neces-
sary that can reflect the full range of understanding in contemporary molecular biology, while
remaining flexible enough to analyze a wide range of data and complex phenomena. Leveraging
multiple omics datasets, miRNA-gene targets as well as signaling pathway topology, we present
an integrative linear model to analyze signaling pathways. Specifically, we use a mixed linear
model to characterize tumor and healthy tissue, and execute statistical significance testing to
identify pathway disturbances. In this paper, pan-cancer analysis is performed for a wide range
of signaling pathways. We discuss specific findings from this analysis, as well as an interactive
data visualization available for public consumption that contains the full range of our analytic
findings.

Keywords hypothesis testing; integrative statistical learning; large-scale inference; multi-view
data integration

1 Introduction
Modern large-scale genomic data is unprecedented not only in breadth, but also depth: in ad-
dition to omics measurements on thousands of genes across multiple data collection platforms,
observations from non-gene cellular functional units are now collected as a matter of routine.
These data offer insight into larger processes in systems biology, and the opportunity for struc-
tural statistical modeling of molecular processes is particularly promising.

In order to use these novel data types to more fully characterize the human genome, valid
statistical methods are critical to harnessing this bioinformatic resource. One important class of
molecular entities are microRNAs (miRNAs), small non-coding RNAs that are understood to
regulate gene expression in a targeted fashion. miRNAs have gained visibility in recent work that
situates genetic activity in a larger, systems context that includes miRNAs, but the sophistication
of existing analytic methods varies. A typical clinical approach considers miRNAs individually
and the impacts of specific miRNAs on cellular processes. For instance, Hamilton et al. (2013)
identified a co-active group of specific miRNAs that contribute to a wide range of cancerous
tumors. Likewise, Kim et al. (2017) offered a meta-analysis of the degree to which activity in
certain miRNAs can be used as a prognostic tool to differentiate types of osteosarcoma. Sun
et al. (2017) performed experiments on a single miRNA in colorectal samples, and compared
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their findings with samples drawn from a sample of colon cancer tumors from a large-scale
omics study. miRNAs have also been considered from the perspective of treatment: Gurbuz
and Ozpolat (2019) discussed miRNA-targeted therapy for treatment of pancreatic cancer, and
performed a meta-analysis of a variety of specific results.

More comprehensive analyses situate miRNAs within a broader biological context, often
with an emphasis on integration of multiple data types. Dhawan et al. (2018) performed a pan-
cancer analysis of miRNA contributions to gene activity. They integrated gene-level methylation
and copy number with miRNA expression and estimated a penalized regression model for gene
expression. Falzone et al. (2018) took a different approach to integration, by considering inter-
actions between miRNAs and gene networks. The massive scale of miRNA data, encompassing
several thousand distinct entities, has also motivated open-access, interactive databases, often
implemented as web applications. These expand the scope of miRNA analysis: Wong et al. (2017)
produced a pan-cancer analysis, with exploratory analysis available through a web application
interface. Interactive analysis has benefited from these methods, as well. Backes et al. (2016)
published a database of miRNAs that play regulatory roles for gene pathways.

Integrating multi-omics data with network topology for network analysis plays an important
role in understanding complex diseases and biological systems. For instance, Zhang et al. (2017)
integrates gene expression, copy number variations, methylation data with network topology
to dissect pathway disturbances. In this paper, we integrate observations of miRNA profiles,
gene expression, methylations and copy number variations to analyze pathway disturbance and
differential activity between tumor and healthy tissue for 14 cancer types. The paper proceeds
as follows. We summarize the datasets used for our analysis in Section 2, and introduce the
functional relationships between miRNAs and genes. In Section 3, we introduce the integrative
pathway model, with a focus on miRNA-gene integration in a graphical model. Section 4 gives
an overview of our pan-cancer pathway analysis, specific results of pathway disturbances, and
outlines the interactive data visualization. Finally, we summarize and discuss our findings in
Section 5.

2 Data
Our approach to integration and joint modeling of multivariate omics observations is motivated
by real-world, large-scale omics studies. We used data collected and published by The Cancer
Genome Atlas (TCGA) (Tomczak et al., 2015), which includes omics measurements across more
than 30 cancers. We considered two sample populations, one of cancerous tissue samples col-
lected from primary tumor tissues, and the other matched healthy tissue, that is, healthy tissue
collected from the corresponding anatomical site as the relevant tumor. We downloaded the
data from the NCI Genomic Data Commons (Grossman et al., 2016) using the TCGA-Assembler
software package for R, version 2.0.0 (Zhu et al., 2014; Wei et al., 2017).

For each tissue sample, we considered observations measured on two distinct functional
units, non-coding miRNAs and genes. For the miRNAs, we obtained expression values, collected
using the RNASeqV2 platform. Likewise, we obtained RNASeq expression for genes, as well
as copy number variation and methylation data. For the expression data, we used normalized
values for both miRNAs and genes. We used normalized values provided by TCGA, namely,
reads per million (RPM) for miRNAs, and fragments per kilobase per mission reads mapped,
upper quartile (FPKM-UQ) for genes. Both methods are conventional normalizations for gene
expression values, and the application of gene expression transformations to miRNA expression is
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widespread in the literature—see, for example, Stokowy et al. (2014). We verified the empirical
similarity between RPM and FPKM-UQ values for both miRNAs and genes, by calculating
each ourselves, but we used the TCGA normalized values to ensure maximal data coherence and
alignment with the exact data published by TCGA. To the normalized values of miRNA and gene
expression, we applied a log2 transformation. Copy number, with germline copy number variants
omitted, was measured using the Affymetrix Genome-Wide Human SNP Array 6.0 platform.
To aggregate the copy number observations collected by DNA region, we took the average copy
number value across all regions corresponding to a given gene. Methylation was collected using
the HumanMethylation450 BeadChip platform, and we aggregated CpG site-level observations
using the average methylation beta value across all CpG sites for a given gene.

After formatting and transformation, the TCGA datasets contained 47548 omics measure-
ments across the four data platforms of miRNA expression, gene expression, gene copy number,
and gene methylation. In particular, this included 20502 genes and 1870 miRNAs. Because our
data analysis is oriented towards signaling pathways, we also downloaded the NCI Pathway
Interaction Database (PID), published by Schaefer et al. (2008). The database consists of 212
signaling pathways, specified as directed graphs giving functional relationships between genes.
Subsequently, we considered only those genes in the TCGA dataset that occurred in at least one
of the PID pathways. This produced 2363 genes for analysis, as well as the corresponding copy
number and methylation observations for each gene.

The final components of our integrative pathway analysis are miRNAs. These non-coding
functional units are widely understood to target genes (Lewis et al., 2005), possibly serving a
regulatory role for gene activity. However, because of the large numbers of both miRNAs and
genes, exhaustive experimental validation of miRNA-gene target relationships is computationally
costly to the point of prohibitive (Agarwal et al., 2015). To partially address this combinatoric
hurdle, databases have been assembled of experimentally-validated miRNA-gene targets, as well
as computational predictions of miRNA-gene interactions. To complete our dataset, we down-
loaded the mirDIP database published by Tokar et al. (2017). The database aggregates more
than 30 sources of miRNA-gene targets, and assigns to each pairing a confidence score intended
to capture the cumulative support across the literature for the presence of a target. The mirDIP
authors also stratified these scores into “confidence classes,” the strongest of which is relation-
ships for which the evidence is “very confident” of the target interaction. Therefore, we used as
the basis for our omics miRNA dataset the set of all miRNAs with a “very confident” target
among the 2363 genes in both the TCGA dataset and the PID pathways. This yielded a total
of 510 miRNAs in our integrative dataset.

3 Methods
We build the integrative pathway model in three stages: first, we specify a directed graph to
represent a signaling pathway in terms of genes; second, we extend the graph to include miRNA-
gene targeting; and third, we again augment the graph, to integrate the secondary data on copy
number and methylation for genes.

3.1 Network Construction
We start with a signaling pathway that consists of p genes. Denote a set of graph vertices by
VE, where each vertex v ∈ VE corresponds to a gene, and the subscript “E” emphasizes that
each vertex corresponds to an observation of gene expression. We assume the topology of the
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Figure 1: A toy example. The graph consists of a root node (G1) with two children (G2, G3),
one of which (G2) has a child of its own (G4). Associated with each gene are copy number
and methylation vertices. The toy graph includes three miRNAs, two of which (mi1, mi3) each
target two genes, and one (mi2) which targets all four genes. In total, the graph contains g = 15
vertices.

signaling pathway is known, as is the case with the PID pathways introduced in Section 2. This
topology is specified as a set of directed edges EE between the elements of VE. We then define
the signaling pathway as the graph GE = {VE, EE}.

Next, we introduce a set of vertices that correspond to observations of miRNA expression.
Denote the set of miRNA vertices by Vmi, and without loss of generality, we suppose that each
element in Vmi targets at least one gene in VE. Denote the number of miRNAs by m, i.e.,
|Vmi| = m. We consider known the miRNA-gene target relationships between elements of VE and
Vmi, as is the case with the mirDIP database introduced in Section 2. We encode the miRNA-
gene targeting as a set of directed edges Emi, where each edge e ∈ Emi leads from a miRNA vertex
in Vmi to a gene vertex in VE. This yields a graph GmiE = {VmiE, EmiE} where VmiE = VE ∪ Vmi
and EmiE = EE ∪ Emi.

Finally, we integrate copy number and methylation into the graph, following the EMC
integration method of Zhang et al. (2017). We consider two sets of p vertices VC and VM,
corresponding to observations of copy number and methylation for each of the p genes in the
signaling pathway, respectively. Define sets of edges EC and EM, each containing p directed edges,
one leading from each vertex to the corresponding gene expression vertex in EE for the gene on
which copy number or methylation is observed. Then, we define the fully integrated graph as G ≡
GmiEMC = {VmiEMC, EmiEMC}, where VmiEMC = VE∪Vmi∪VM∪VC and EmiEMC = EE∪Emi∪EM∪EC.

Without loss of generality, we suppose that VmiEMC contains g = 3p + m vertices. In real-
world datasets like the TCGA data we used in our analysis, it is often the case that copy
number or methylation observations are unavailable for some genes in VE. Moreover, because
of the recency and experimental nature of identifying miRNA-gene targets, it is possible that
Vmi is incomplete. We remedy these potential issues by dropping the relevant copy number or
methylation vertices, and observing that the directed nature of the integration scheme means
that missing vertices in Vmi, VC, or VM may be removed without altering the topology of G with
respect to the signaling pathway itself.

As an illustrative example, we show in Figure 1 a toy network with the integration scheme
described above. The signaling pathway consists of four genes: a root node with two child nodes,
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one of which also has its own child node. We include three miRNAs, two that target two genes
each, and one that targets all four genes. We also include separate graph vertices for copy number
and methylation. The fully-integrated graph consists of g = 15 vertices.

Having defined an integrative graph for the four omics data types, we pivot to the task of
representing the graph in a mathematically accessible fashion, which can be conveniently used
as the basis for a linear statistical model. We start with the unweighted graph adjacency matrix
A�, a g × g matrix with elements αjk ∈ {0, 1}, j, k = 1, . . . , g. The elements of the unweighted
adjacency matrix are defined as an indicator function:

αjk =
{

1 if EmiEMC contains a directed edge from graph vertex k to vertex j

0 otherwise
(1)

We can decompose A� into the three integrative pieces described above, for (1) the signaling
pathway, (2) miRNA-gene targets, and (3) gene-level copy number and methylation:

A� =
(

A�
E A�

mi A�
M A�

C
O(2p+m)×p O(2p+m)×m O(2p+m)×p O(2p+m)×p

)
(2)

Here, A�
E is an indicator matrix for the signaling pathway; A�

mi indicates the miRNA-gene targets;
A�

C = A�
M = Ip indicate the copy number and methylation integration, respectively; and Oq×s is

a q × s matrix of zeros. The elements of each block submatrix are all defined as in Equation 1,
and the zero matrices reflect that we do not include any interaction between the secondary omics
features (miRNAs, gene copy number, gene methylation), nor do we include any feedback from
genes to omics features.

Within the context of Gaussian graphical models, graph dependence is parameterized as
conditional dependence. From this perspective, we may characterize αjk as an indicator for
conditional dependence of vertex j on vertex k, given the remaining (g − 2) vertices in the
fully-integrated graph G. Moreover, the strength of graph association is formalized as partial
correlation, and corresponds to the inverse of the covariance matrix of a multivariate Gaussian
distribution (Loh and Wainwright, 2012). The partial correlation between two variables X and
Y is defined conditionally with respect to a set of auxiliary random variables Z which may also
associate with X and Y . The partial correlation coefficient is calculated by first regressing X and
Y on all elements of Z, and obtaining the residuals X\Z , Y\Z . Here, we use the notation of the
orthogonal complement, defined as X\Z = X − PZX, where PZ is a linear projection onto the
elements of Z—that is, a linear regression Krämer et al. (2009). Then, the partial correlation
rXY is simply the Pearson correlation coefficient between the two residuals, i.e., corr(X\Z , Y\Z)

(Kim, 2015).
For our integrated pathway graph G, we consider observations y1, . . . , yN , where yi ∈ R

g

contains elements for each graph vertex, that is, gene and miRNA expression, gene copy number,
and gene methylation. The graph G and the unweighted adjacency matrix A�

miEMC then specify
functional relationships between the elements of yi , and we may use these observation vectors to
estimate the partial correlation coefficients rjk between graph vertices j and k. Then, we define
the weighted adjacency matrix to be A ≡ AmiEMC, which has elements ajk = rjkαjk, where
αjk ∈ {0, 1} is the corresponding element of A�

miEMC.

3.2 Network Differential Expression Analysis
In order to build a linear statistical model, we extend the NetGSA (Shojaie and Michailidis, 2009)
and EMC-NetGSA (Zhang et al., 2017), which defined the influence matrix � to express the
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mutual, cumulative network effects of the elements of yi induced by the graph structure of G. In
particular, they found that � = (Ig −A)−1 in the special case of a directed acyclic graph (DAG).
This condition was relaxed by Shojaie and Michailidis (2010), who found the relationship holds
for all adjacency matrices with eigenvalues smaller than 1 in magnitude. Moreover, they offered
an approximation to the influence matrix that induces the spectral constraint on A for any
directed graph, which permits application of the linear model to arbitrary signaling pathways.
Without loss of generality, we consider the base case of the DAG influence matrix, with the
understanding that when the adjacency matrix does not satisfy the constraints, we use instead
the approximation of Shojaie and Michailidis (2010).

Given the correspondence between the graph topology of G and the covariance of a multi-
variate Gaussian random variable noted above, the NetGSA model uses the influence matrix as
a design matrix in a linear regression model, that is, Eyi = �β. Here, β is an unknown regression
parameter that we may interpret as the network-adjusted mean activity for the elements of yi .
Moreover, to account for correlated deviations from the mean within each subject, the NetGSA
model is a mixed model, with the form

yi = �β + �γi + εi , i = 1, . . . , N (3)
γi ∼ Ng(0, σ 2

γ Ig) (4)
εi ∼ Ng(0, σ 2

ε Ig) (5)

Here, γi is a sample-level random effect, with the consequence that the covariance of yi is given
by σ 2

γ ��′ + σ 2
ε Ig.

In addition to a linear model, the NetGSA framework also provides for hypothesis testing
between two populations, generically labeled as “treatment” and “control” which correspond
in our analysis to “tumor” and “healthy” tissue, respectively. For each sample yi , a class label
ci ∈ {T, C} is available, indicating the sample population as treatment or control. The sample
sizes NC and NT are such that NC + NT = N , i.e., every sample can be categorized as either
control or treatment. Then, the model in Equation (3) is parameterized with separate adjacency
and influence matrices Ac and �c, as well as population-specific activity parameters βc, c = T, C.

The model is easily estimated using restricted maximum likelihood, using results for the
classical mixed model. The final component to permit significance testing for differences in
subsets of the activity parameters βT, βC is the network contrast � = (−b ·b�C, b ·b�T), where
· denotes an element-wise product. It accounts for the cumulative effect of nodes in the signaling
pathway graph. Here, b is a vector of length g with elements in {0, 1} that indicate which features
in the elements of yi should be included in a test for inequality of network-adjusted means. The
test statistic T ∝ �β, where β = (βC′

, βT′
)′, follows a Student’s t distribution, with degrees of

freedom estimated using the Satterthwaite approximation.

4 Results
In preparation for pan-cancer pathway analysis, we obtained observations of gene expression,
miRNA expression, methylation, and copy number from TCGA, as described in Section 2.
As additional pre-processing, we imputed missing values in the matrix formed by all available
samples across all four data modalities, using the full data matrix of all gene expression, miRNA
expression, copy number, and methylation features for any gene in the 212 pathways of the
NCI Pathway Interaction Database (Schaefer et al., 2008) (PID), or miRNAs present in the
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Figure 2: Number of pathways that change significance at the α = 0.05 level between the fully-
integrated miEMC-NetGSA analysis and the baseline NetGSA performed on expression data
only. p-values are Benjamini-Hochberg adjusted to control the false discovery rate. Cancers are
labeled according to the TCGA abbreviation codes, which are listed with the full cancer name
in Table 1.

mirDIP database that target those genes. For imputation, we applied the iterative integrated
imputation (I3) method proposed by Linder and Zhang (2019), a low-rank procedure adapted
from the structured matrix completion method introduced by Cai et al. (2016).

After separate imputation on the data matrix for each of 29 TCGA cancer studies, we
considered the subset of cancers for which all 10 BRAF pathway genes were observed, and
for which more than 10 samples were available in both the tumor and normal tissue sample
populations. This yielded 14 cancers for integrative pathway analysis. Of the 212 pathways
included in the PID, we analyzed 173 pathways, based on the availability of gene expression
observations for all genes in the pathway.

Within each cancer, we performed four pathway analyses: a fully-integrated analysis in-
cluding miRNAs, methylation, and copy number with gene expression (“miEMC-NetGSA”);
integration of miRNA and gene expression only (“miE-NetGSA”); integration of methylation,
copy number, and gene expression only (“EMC-NetGSA”); and an expression-only baseline anal-
ysis (“E-NetGSA”, or simply “NetGSA”). Within each combination of cancer and integration
scheme, we applied the p-value adjustment method of Benjamini and Hochberg (1995) (BH) to
control the false discovery rate.

Figure 2 gives counts for each of the 14 cancers of the number of pathways that were insignif-
icant at the α = 0.05 level for the baseline expression-only pathway analysis, but were significant
in the miEMC-NetGSA analysis. The cancers are labeled using the TCGA abbreviation codes,
which are listed along with the corresponding, full cancer name in Table 1. As the figure makes
clear, miRNA integration consistently leads to increased statistical significance in the pathway
analyses. A risk is that this systematically elevates the significance of the same pathways across
cancers, not due to a true biological pathway disturbance, but instead deterministically because
of an increased number of genomic features. However, this is apparently not the case: Figure 3
shows an indicator matrix for changes in significance by pathway across all cancers. Despite
some overlap in the pathways that change significance, the pathways that develop significance
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Table 1: Cancer names and abbreviation codes for the 14 cancers included in the pan-cancer
analysis.

Name Code

Bladder urothelial carcinoma BLCA
Breast invasive carcinoma BRCA
Cholangiocarcinoma CHOL
Colon adenocarcinoma COAD
Esophageal carcinoma ESCA
Head and neck squamous cell carcinoma HNSC
Kidney chromophobe KICH
Kidney renal clear cell carcinoma KIRC
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Ovarian serous cystadenocarcinoma OV
Pancreatic adenocarcinoma PAAD
Thymoma THYM
Uterine corpus endometrial carcinoma UCEC

Figure 3: Indicator matrix for the pathways that change significance between expression-only
NetGSA and the fully-integrated miEMC-NetGSA, counted in Figure 2. Rows correspond to
cancers, columns correspond to pathways. A black cell indicates the pathway changed significance
in the cancer.

in concert with the miRNA integration are not consistent across cancers. This suggests the sig-
nificance changes are due to differential contributions of the various miRNA and omics features
across cancers, with varying effects that depend on the individual cancer in question.

Figure 4 shows the results of significance tests for colon adenocarcinoma (COAD) for the
pathways that change significance between the expression-only and fully-integrated analyses. The
figure shows the − log10 transformation of the BH-adjusted p-values for each full pathway under
the four integration schemes for the pathway analysis. The analyses exhibit several different
patterns.

For some pathways, integration of any variety increases the significance substantially from
the expression-only analysis. One such pathway is IL23-mediated signaling events, which in-
creases in significance somewhat after integration of methylation and copy number, and in-
creases more substantially after integration of miRNAs. For other pathways, such as signaling
events mediated by PRL, integration of miRNAs alone increases the significance substantially,
whereas full integration with methylation and copy number dampens the increase in signifi-
cance. In general, this pattern is widespread: other pathways with smaller significance in the
miEMC-NetGSA analysis compared with the miE-NetGSA analysis include EGFR-dependent
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Figure 4: Significance test results for the 20 pathways that changed significance between
expression-only and fully-integrated miEMC-NetGSA analyes in colon adenocarcinoma (COAD).
Plotted are − log10(p)-values for the four pathway analyses: miEMC-NetGSA integrated miRNA
expression, gene expression, methylation, and copy number; miE-NetGSA integrates miRNA and
gene expression; EMC-NetGSA integrates gene expression, methylation, and copy number; and
E-NetGSA is expression-only NetGSA. p-values were adjusted using the Benjamini-Hochberg
method to control the false discovery rate.

endothelin signaling events, integrin-linked kinase signaling, and the validated nuclear estrogen
receptor beta network.

On the other hand, there is sometimes a synergistic effect to integration of miRNA with
the methylation and copy number. One such pathway is cellular roles of anthrax toxin, which



564 Linder, H. and Zhang, Y.

has substantially stronger significance after integration of both miRNAs with methylation and
copy number, compared with either the miRNA or gene-level omics features alone. In other
cases, such as signaling events mediated by HDAC Class I and syndecan-3-mediated signaling
events, the integration of miRNAs increases the significance substantially, and that significance
increases further after integration of the gene-level features. Finally, in other pathways, including
ALK2 signaling events, the Arf1 pathway, and the S1P1 pathway, any integration with miRNAs
markedly increases the significance, but integration of methylation and copy number does not
have a strong effect.

To illustrate the analytic advantage of the fully-integrated analysis, we considered the Notch
signaling pathway in cholangiocarcinoma. Kwon et al. (2017) found that DNA methylation
inhibited expression of the miR-34a, which in turn targets components of the Notch pathway,
which contributes to tumorigenesis.

In our analysis, the p-value for the Notch pathway was significant in expression-only and
EMC analyses, at the α = 0.05 level, but the miE-NetGSA analysis was not significant. How-
ever, joint integration of miRNA, gene expression, methylation, and copy number observations
resulted in highly significant pathway disturbance in cholangiocarcinoma tumors.

Figure 5 shows parameter estimates for the healthy and tumor tissue in the TCGA dataset.
Although many of the parameter estimates remain the same across the integration schemes—for
instance, WNT7A in the tumor population, and FZD2 in the healthy population—some pa-
rameters exhibit substantial changes in magnitude or sign. These include LRP6 in the tumor
population, IGFBP4 in the healthy population, WNT5A in the tumor population, and DKK1
in the healthy population. The variability and sign changes observed in these parameters in-
dicate strong structural changes implied by the various integration schemes, and reinforce the
importance of biologically-founded statistical analysis.

Taken together, these results suggest real effects due to miRNA integration that are not
uniform in character: sometimes, miRNA integration clarifies weak significance, other times it
supplements information in a gene-level analysis, and in still others, it exaggerates significance
and is regulated by methylation and copy number integration. Moreover, we confirm known
pathway disturbance that relates to a specific miRNA, miR-34A, in cholangiocarcinoma, and
identify substantial effects on the parameter estimates due to the different integration schemes.

The results discussed above represent only a small subset of our overall analysis across the
full sets of cancers and pathways. In order to promote access to and exploration of the results
of our analysis, we also built an interactive data visualization, which we published online for
public access at:

https://zhang-lab.shinyapps.io/pathway-analysis-mirna/

Figure 6 gives screenshots from the data visualization, which permits dynamic interaction with
the graph topology of each signaling pathway, as well as plots of the significance and test statistics
for each full pathway as well as individual features, and coefficient estimates for the integrative
pathway model.

5 Discussion
In this paper, we constructed an integrative pan-cancer network analysis with observations of
gene expression, copy number, and methylation, as well as miRNA expression across 14 cancers
and more than 170 signaling pathways. We found that integration of miRNAs has a differential

https://zhang-lab.shinyapps.io/pathway-analysis-mirna/
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Figure 5: Network-adjusted activity parameters for genes in the Notch pathway and miR-34a,
in cholangiocarcinoma, healthy tissue (top) and tumorous tissue (bottom).

impact depending on the pathway under consideration. This indicates real biological changes
in interpretation when estimating models using different sets of omics features. We also gave
details of a comprehensive, interactive data visualization for the full set of testing results.

Our analysis reflects current trends in molecular biology and functional genomics, and
leverages the large volumes of omics data to provide insight into the biological processes and
signaling events that contribute to a range of different cancer types. Our model incorporates
known biological functions, and permits principled analysis of these omics data. Our findings
support the value of integrative analysis, and provide a novel tool for comparisons of populations
to obtain better understanding of the mechanisms that give rise to complex diseases. For future
work, it would be worth considering integrative models with more types of biological data.
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Figure 6: Screenshots of interactive data visualization of the pan-cancer pathway analysis. The
interface includes dynamic visualization of signaling pathway graph topology (top), results of
inference for the full pathway and individual features (middle), and coefficient estimates (bot-
tom).
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Supplementary Material
Supplementary Materials include descriptions for data and software.
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