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Abstract: The present paper deals with the maximum likelihood and Bayes
estimation procedure for the shape and scale parameter of Poisson-exponential
distribution for complete sample. Bayes estimators under symmetric and
asymmetric loss function are obtained using Markov Chain Monte Carlo
(MCMC) technique. Performances of the proposed Bayes estimators have
been studied and compared with their maximum likelihood estimators on
the basis of Monte Carlo study of simulated samples in terms of their risks.
The methodology is also illustrated on a real data set.
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1. Introduction

In life testing, exponential distribution is one of the most discussed distri-
butions due to its simplicity and easy mathematical manipulations. However,
its use is inappropriate in those situations where associated hazard rate is not
constant. A number of life time distributions having non constant hazard rate
are available in the literature e.g., gamma, Weibull, exponentiated exponential,
etc. These distributions are generalization of exponential distribution and pos-
sess increasing, decreasing or constant hazard rate depending on the value of
the shape parameters and reduce to exponential distribution for their specific
choices. A modification in exponential distribution is proposed by Kug (2007)
to get a decreasing failure rate distribution. Barreto-Souza and Cribari-Neto
(2009) generalized the distribution proposed by Kus (2007) by including a power
parameter. Cancho et al. (2011) proposed a new family of distribution, called
Poisson-exponential (PE) distribution based having increasing failure rate. The
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motivation for the proposed family of distribution is related to the study of com-
peting risk (CR) problems in presence of latent risks (see, Louzada-Neto, 1999)
i.e., for those situations when only life-time values are observed but no informa-
tion is available about the factors responsible for component failures.

Louzada-Neto et al. (2011) studied the statistical properties of PE distribu-
tion and discussed about the Bayes estimators of its parameters under squared
error loss function (SELF), but paid no attention to the maximum likelihood esti-
mators. Further in life testing problems, over estimation and under estimation of
equal magnitude cannot be of equal consequence and hence, an asymmetric loss
seems to be more justified for life testing and reliability problems as compared to
SELF. Thus, our aim in this paper is to obtain the maximum likelihood estima-
tors and Bayes estimators of the parameters under symmetric and asymmetric
loss function for Poisson-exponential distribution and to compare the proposed
estimators with maximum likelihood estimators in terms of their risks.

The paper is organized as follows. In Section 2, we have discussed briefly the
PE distribution, giving its density along with associated failure rate and survival
functions. We have obtained the maximum likelihood estimators of the parame-
ters in Section 3. The prior distribution, loss functions and Bayes estimators of
the parameters using MCMC technique are presented in Section 4. Comparisons
of the estimators and analysis are given in Section 5. In this section the proposed
methodology is illustrated through a real data set. The Bayesian prediction is
discussed in Section 6 and finally the conclusions are presented in Section 7.

2. The Model

Let X be a non negative random variable denoting the life time of a com-
ponent /system. The random variable X is said to have a PE distribution with
parameter 6 and A, if its probability density function (pdf) is given by

0)\67)@76’6_)“”
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where A is the scale parameter, while 6 is shape parameter of the distribution. As
0 approaches zero, the PE distribution converges to an exponential distribution
with parameter . Its pdf is decreasing if 0 < § < 1 and unimodal for # > 1. The
modal value A\e~! is obtained at = = log(6/\)/A. As pointed out by Louzada-Neto
et al. (2011), the parameters 6 and X of the distribution have direct interpretation
in terms of CR. In fact 0 represents the mean of the number of CR, whereas A
denotes the lifetime failure rate.
The survival (or reliability) function of the PE distribution is given by

x>0, (1)
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x>0, (2)



Bayesian Estimation for the Parameters of Poisson-Exponential Distribution 159

and the hazard function is
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x> 0. (3)

The hazard function (3) is increasing. The initial and long term hazard values
are finite and are given by h(0) = M/(e? — 1) and h(cc) = A. For other details
about PE distribution see Risti¢ and Nadarajah (2010).

3. Maximum Likelihood Estimators

Suppose that Xq, Xo,---,X,, be a random sample of size n drawn from a
population having pdf (1). Then the likelihood function can easily be obtained
as follow:

L(O,\| X) =exp {nlog(@)\) - )\in - GZ e i —plog(l— 6_9)} .4
i=1 i=1
The log of likelihood (4) is
log L = nlog(6X) — A Zmz —0 Z e i —nlog(l—e?). (5)
i=1 i=1

Differentiating (5) w.r.t. (with respect to) to # and A and equating the deriva-
tives to zero, we get the following normal equations:

n -6

5L e = ()
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The normal equations (6) and (7) are implicit system of equations in 6 and
A. It can not be solved analytically. Therefore, we propose to use fixed point
iteration method for solving these equation numerically, for maximum likelihood
estimate (mle) of # and A. For details about the proposed method readers may
refer Jain et al. (1985).

4. Loss Function, Prior and Posterior Distribution

SELF is frequently used for the estimation of parameters in classical as well
as in Bayesian estimation procedures. No doubt, its use can easily be justified to
some extent on the ground of uniformly minimum variance unbiased estimation
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(Berger, 1985). However, in practical situation the real loss is often not symmetric
i.e., overestimation of a parameter may lead to harder (weaker) consequences
than under estimation and vice-a-versa. Therefore, in order to cope up with
such situations, the use of asymmetric loss function has been suggested by many
authors (c.f., Zellner, 1986; Varian, 1975; Berger, 1985; Singh et al., 2011, etc.).
An asymmetric loss function known as the general entropy loss function (GELF),
proposed by Calabria and Pulcini (1994) is defined as

Lp(@,a) « (g) —clog (g) 1, (8)

where & is the estimate of parameter c.

This loss function is a generalization of the entropy loss function used by
several authors where the shape parameter c is taken equal to 1. The general
version (8) allows different shapes of the loss function to meet the practical needs.
It may be noted that when ¢ > 0, a positive error causes more serious consequence
than a negative error and reverse is the situation when ¢ < 0. It may easily be
seen that the Bayes estimate ag of a under GELF is given as

ag = [Ea(a™)] ¢, 9)

where E,(-) denotes the posterior expectation of (). The estimator ap exists
only if the expectation in r.h.s. of (9) exists and is non negative.

Another important point of Bayesian point estimation problem is specification
of prior distribution for the parameters. Louzada-Neto et al. (2011) suggested
the use of Jeffrey’s prior for A for given  and gamma prior for 6, i.e., g1(0) o
99t exp(—b0) and g2(A|6) oc 1/X. Thus, the joint prior for # and A as suggested
by them is

a—1

A

g(0,\) « exp(—b6), a>0, b>0. (10)

The above choice of prior distributions can be justified for the situation when
there is no information or very little information about A. The prior distribution
for @ is informative prior and the hyper parameter a and b can be chosen easily if
we have prior guess about 0 (say, m) with specified confidence expressed as prior
variance (say, v). A large prior variance indicates less confidence in prior guess
and the resulting prior distribution is relatively flat. On the other hand, small
prior variance shows greater confidence in prior guess and gives a peaked prior.
However, if we have negligible prior information about €, a and b, and can be taken
very small (close to zero) which will result into the choice of a non informative
prior for #. Once prior guess (m) and prior variance (v) is specified, the values
of a and b are obtained by solving m = a/b and v = a/b?, i.e., a = m?/v and
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b = m/v. It may also be noted that besides having the flexibility as mentioned
above, the prior distribution provides to computational ease also.

Combining the likelihood function, L(6,A|X) from (4) and the prior from
(10) through Bayes theorem, we get the joint posterior distribution for # and A
as follows:

PO, ] X) o L(8,A| X)g(6, \
9(n+a71))\(n71)

— k—lwexp {—)\;.ﬁl -0 (b‘i‘;e_)\mi) }7 (11)

where

oogn—i—a 1 (n—1) n n
k:—/ / 1_6_6 exp =AY mi— 00+ e M| bdfd
i=1 i=1

It may be noted here that posterior distribution in (11) is proper see for
proof Louzada-Neto et al. (2011), although the prior distribution considered for
A is improper non-informative prior. It may also be noted that the constant of
proportionality k& involves double integral and it is not reducible in nice closed
form. For computation of above expression, one way would be to use numerical
techniques. An alternative method would be to use simulation techniques. Al-
though generating samples directly from joint posterior density is not possible,
a full conditional can be easily written from (11). Therefore, MCMC can be
implemented in this case quite routinely, for more details, readers may refer to
Chen et al. (2000), Upadhyay et al. (2009) and Mukherjee et al. (2010). We
propose the use of Gibbs sampler with Metropolis algorithm to simulate samples
from the posterior distribution so that sample-based inferences can be deduced.

The full conditional distribution for § and A obtained from (11), are given
below:

p1 (0| X) oc 07T Lexp {—«9 (b + Ze_/\xi) —nlog (1 - 6_9>} , (12)
i=1
pg()\\H,X)oc)\"_lexp{—/\in—GZe_)‘m’}. (13)
i=1 i=1

The conditional distribution (12) and (13) do not belong to any known para-
metric distribution family, therefore we propose the implementation of Metropolis-
Hasting algorithm with Gibbs iterations and hence, the following MCMC proce-
dure is to be used for the computation of Bayes estimators of 8 and A:

Algorithm to compute Bayes estimates and confidence interval estimate of 0
and A:
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Step 1: Set the initial guess of A and 6 say A\g and 6.

Step 2: Set ¢ = 1.

Step 3: Generate \; from pa(A |6, X) and 6; from p1(6 |\, X).
Step 4: Repeat Steps 2-3, N times.

Step 5: Obtain the Bayes estimates of A and 6 with under GELF as

L N=No —1/c1

N o —c —1/c1 _ —c

)\G - [E(A 1‘data’)] b= [N o N[) ZZ; )\z 1] anda
L N=No —1/er

O = [B(6~|data)] 1/t = [NN Z Qi_cl] respectively,
0=

where Ny is the burn-in-period of Markov Chain. Substituting ¢; equal to
—1 in Step 5, we get Bayes estimates of A and 6 under SELF.

Step 6: To compute the HPD (highest posterior density) credible interval of 6,
order the MCMC sample of 0 (say 01, 02, 03, - -+, On as ) < Oy < O3 <
-+ < On1). Then construct all the 100(1 — a)% credible intervals of 6 say
(0111, Ova—a)—1)))s = > (Ona), Opny)- Here [X] denotes the largest integer
less than or equal to X. Then the HPD credible interval of 8 is that interval
which has the shortest length. Similarly, the HPD credible interval of A can
also be constructed.

Step 7: Using the asymptotic normality property of mles, we can construct ap-
proximate 100(1 — «)% confidence intervals for A and 6 as

S\j:za/g( \E(X)) and é:l:zap(\/\f(é)),

where z, /5 is the 100(1—ca/2)% upper percentile of standard normal variate.
5. Simulation Study

In this section, we shall compare Bayes estimator under GELF with the cor-
responding Bayes estimator under SELF and mles. The estimators 6y and Ay
denotes the mle of the parameters # and A respectively while g and \g are corre-
sponding Bayes estimators under SELF and fc; and Ag are corresponding Bayes
estimators under GELF. Comparisons are based on simulated risks (average loss
over sample space) under GELF. And also we obtained the 95% confidence inter-
val and HPD interval of the parameters 6 and A for different sample sizes. Where
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éc, ;\g and éc, 5\5 represents the lower and upper limit of confidence interval
while éf , ;\g and ég , ;\Il}r represents the lower and upper limit of HPD interval
of 6 and A respectively. It may be mentioned here that the expressions for the
risks cannot be obtained in closed form. Therefore, the risks of the estimators
are estimated on the basis of Monte-carlo simulation study of 1000 samples. It
may be noted that the risks of the estimators will depend on value of n, 0, A, a,
b and c. In order to consider variation in the values of these parameters, we have
obtained the simulated risk for n = 30,60, 90, 100, ¢ = —2.5,—1.5,—1,1,1.5, 2.5,
m = 4,5,6 for v = 1,8. The entries in brackets in Tables 2 and 3 denote the
risks of the estimators when c is negative and the other non-bracket entries are
the risks when c is positive, respectively.

We have generated 1000 samples from (1) for arbitrarily chosen value of 6 and
A as 5 and 2 respectively. From Table 1 we observed that the risks of estimators
O and g are found to be smallest that their competing estimators (95,91\/1)
and (5\5, XM) for all considered the values as c¢. The performance of estimator
estimators S\G and for all considered values as ¢, while in this case éG perform well
for those negative values of ¢ where magnitude is small. Thus for knowing the
estimators € and X for different values of other parameters, we fixed ¢ as moderate
values +1.5. In order to study the effect of variation of sample size n (see Table 2)
on the performance of estimator estimators # and A have taken prior mean as true
value of the parameters §. When v = 1 (showing more confidence in m). From
the table we observed that the risks of all the estimators of 8 and A decreases as
n increases. It is true for both negative and positive values of ¢. Furthermore, for
¢ > 0, the risks of the proposed estimators 9(; and )\G are smallest in comparison
to their competing estimators. But for ¢ < 0 the estimator fg and \g have
perform well under both losses, in comparison to their rival estimator.

Table 1: Risks of estimators of # and A\ under GELF for fixed, § = 5, A = 2,
n=30,a=250b=5

GELF

Ra(0r)  Ra(bs) Ra(0c)  Ra(Am)  Ra(As)  Ra(Aq)

-2.5 0.341757 0.102691 0.103734 0.083392 0.060644 0.060063
-1.5 0.140006 0.036678 0.036647 0.029918 0.02134 0.021257
-1 0.056947 0.016212 0.016212 0.012135 0.008665 0.008665
1 0.048791 0.016958 0.01626 0.012315 0.008917 0.008844
1.5 0.112657 0.038643 0.036218 0.029871 0.021523 0.021021
2.5 0.324095 0.107173 0.097647 0.082524 0.058721 0.05707

From Table 3, when ¢ > 0, the risks of the estimators of A increases, under
both the loss functions with increase in prior mean of @ when prior variance v = 1
(small). While, in this situation, in case of estimation of 6, it is observed that
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Table 2: Risks of estimators of § and A under GELF and SELF for fixed 6 = 5,
A=2,a=25b=5,c==%1.5

n GELF

Re(Or) Re(0s) Re(0c) Re(Aur) Re(Xs) Re(Xe)

30 0.105433 0.019226 0.019215 0.027657 0.017421 0.017051
(0.121773)  (0.019368)  (0.01977)  (0.020646) (0.018019)  (0.018028)

60 0.059165 0.018815 0.019203 0.013766 0.009598 0.009416
(0.058232)  (0.018573) (0.018864) (0.015073) (0.010341)  (0.01036)

90 0.038623 0.018606 0.017083 0.010001 0.007691 0.007558
(0.037964)  (0.017112)  (0.017366) (0.009719) (0.007248)  (0.007268)

100 0.034675 0.018496 0.017002 0.009116 0.007211 0.007051
(0.031989)  (0.015344)  (0.015566) (0.008252) (0.006328)  (0.006347)
SELF
n ~ A A ~ A~ A

Rs(0r) Rs(0s) Rs(0c) Rs(Anr) Rs(As) Rs(Aq)

30 2.608063 0.551406 0.376561 0.103177 0.064418 0.062047
(2.830213)  (0.487099) (0.505589) (0.111107) (0.068513) (0.069215)

60 1.436244 0.521304 0.360041 0.050044 0.035053 0.034111
(1.49614)  (0.486913)  (0.50401)  (0.056685) (0.040079) (0.040341)

90 0.91176 0.451359 0.310604 0.035995 0.028098 0.027467
(0.048819)  (0.482361) (0.498171) (0.035631) (0.027848)  (0.028012)

100 0.819651 0.449559 0.41009 0.033087 0.026494 0.025788

(0.796515)  (0.438331)  (0.446692) (0.030546) (0.024469)  (0.024608)

the risks of the estimators of # increases under SELF, but under GELF, it is
decreasing and almost all reverse trend is noted for prior variance v = 8 (large).
For ¢ < 0, the risks of the estimator of A under both losses namely GELF and
SELF, when we increase prior mean of ¢ for either lower or higher prior variance
of #. However, in case of estimation of #, no definite trend of the magnitude of the
risk is found under both losses and for each prior variance also. Furthermore, for
c>0, (9@, Xg) perform well (in sense of having smaller risk), under both losses
both prior variances (either small or large), while for reverse situation, (fg, Ag)
perform well.

The 95% HPD intervals are also calculated using MCMC samples for the
parameters along with classical 95% confidence interval. The intervals catching
the true value of the parameter is also calculated and the results are presented
in Table 4, for different sample sizes.

From the above table, it is observed that the average length of the confidence
interval and HPD interval decrease when sample size increases. It is also noted
from the table that the average length of the HPD interval is smaller than that
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Table 3: Risks of estimators of 8 and A under GELF and SELF for fixed,
n=230,c==+£1.5

Prior GELF
mean m ~ A~ N ~ ~ ~
and var v c(Orv)  Rg(bs) Rc(0c)  Ra(Awm) Re(As) Ra (M)

m=4, 0.102657 0.035809 0.034527 0.026563  0.019401  0.019361
v=1 (0.098045) (0.03701) (0.037033) (0.026614) (0.019838) (0.019845)

m=>5, 0.102545 0.03577  0.033605 0.026778  0.019659  0.019447
v=1 (0.097155) (0.035556) (0.035741) (0.028062) (0.020257) (0.020257)

m=6, 0.1022548 0.034721 0.033447 0.02677  0.020357  0.019736
v=1 (0.113981) (0.038394) (0.038799) (0.028195) (0.020648) (0.021867)

m=4, 0116567 0.081378  0.076  0.029847  0.025823  0.025417
v=28 (0.106712) (0.064518) (0.06474) (0.026959) (0.023113) (0.023151)

m =5, 0.114907 0.081348 0.073593 0.029263  0.02554  0.025127
v=28 (0.106648) (0.063153) (0.063306) (0.027355) (0.023127) (0.023981)

m=6, 0.119997 0.078151 0.073796  0.02729  0.023988  0.023488
v=28 (0.115041) (0.063813) (0.064225) (0.028884) (0.024351) (0.024356)

Prior SELF
mean m A N N « « «
and var v Bs(a)  Rs(0s) Rs(0g)  Rs(Aum) Rs(As) Rs(Aa)

m=4, 2350557 0.761138 0.728847 0.096196 0.06898505 0.068374
v=1 (2.535097) (0.778047) (0.788698) (0.105062) (0.07372506) (0.074106)

m=5, 2515071 0.840863 0.773042 0.098303 0.07249318  0.070591
v=1 (2.61888) (0.871337) (0.887255) (0.1111) (0.07971482) (0.080399)

m=6, 2583887 1.17893 1.071587 0.098310  0.0760667  0.072728
v=1 (2.658552) (1.147803) (1.169253) (0.198291) (0.07546214) (0.0762)

m=4, 2904274 2.088657 1.890934 0.111935 0.09727108  0.094287
v=28 (2.712018) (1.946832) (1.983546) (0.106461) (0.08988114) (0.090493)

m =5, 2867835 2.087391 1.889961 0.108339 0.09498336  0.092033
v=28  (2.7679) (1.959926) (1.944097) (0.115189) (0.09172668) (0.092398)

m=6, 2733583 2.047801 1.863488 0.100497 0.08913714  0.085974
v=28 (2.683322) (2.024053) (2.064109) (0.198689) (0.09695368) (0.097798)

of the confidence interval. The decrease in the average length of the interval due
to the use of HPD interval against confidence interval is more for small sample
than those for large samples. However we may also observed that when the
sample size increases confidence interval, HPD interval and upper limit of both
intervals are decreasing but lower limit of these intervals increase as sample size
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Table 4: Average length and confidence coefficient of HPD and confidence
interval for different sample size

95% Confidence interval
¢ ég Length C.P. A¢ 5\5 Length C.P.

30 2.136318  9.1592 7.0229 0.97 1.43853 2.73994 1.3014 0.96
60  2.987244  7.5194  4.5321  0.95 1.58737 2.48668  0.8993  0.93
90  3.393616 7.022 3.6284 097 1.66415 2.39194  0.7278  0.94
100 3.451435 6.8659  3.4144 095 1.6777  2.36884 0.69114 0.93

95% HPD interval
2 o1 Length C.P. A bV Length  C.P.

30 3.9831 6.70515  2.7221  0.98 1.68817  2.4421 0.754 0.96
60 4.2619 6.40527  2.1434 097 1.77901  2.3152 0.5362  0.95
90 4.4508 6.2891 1.8383 0.95 1.82609  2.2652 0.4391  0.97
100 4.4691 6.22095 1.7518  0.97 1.83424  2.2519 0.4176  0.96

increases. While the coverage probability (C.P.) does not shows any specific trend
with variation of sample.

6. Data Analysis

In this section we re-analyze the data extracted from Lawless (1982) to illus-
trate our proposed work. The data presented below are the numbers of million
revolutions before failure for each of the 23 ball bearing put on a life test: 17.88,
28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

The sample mean and variance of the data are 72.24 and 1343.64 respec-
tively. Francisco et al. (2011) has used this data for fitting PE and exponential
distribution and on the basis of deviance information criterion concluded that PE
distribution fits better than the exponential distribution. Since we have no prior
information available about the parameters, a non-informative Jeffrey’s prior for
A and gamma distribution with large variance as prior distribution for 6 seems to
be most justified. There are many way of choosing the value of hyper parameters
of the gamma distribution. One way would be to choose hyper parameter a = 1
and b = 0.0001 which gives the prior variance to be 106. But in this arbitrary
choice the prior mean m = 1000 is too large. Therefore, we suggest to obtain the
value of hyper parameters a and b such that the prior mean is equal to mle of
6 and prior variance moderately large (here we have taken v = 8. The mle and
Bayes estimators under general entropy loss function for ¢; = 1.5 and ¢; = —1.5,
HPD intervals and confidence intervals for the parameters # and A are obtained
for both type of choices of hyper parameters and these are presented in Tables 5-7.
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Table 5: Estimates of the parameter under general entropy loss function for
different prior mean, variance

variance (v) c=—-15 c=15
éM S\M éS 5\5 éG S\G éG ;\G
mv:_eé” " 7.330451 0.035827 7.232101 0.035574 7.266457 0.035659 7.055779 0.035142
m = 1000,
o= 1E +6 7.330451 0.03577 7.37826 0.035773 7.417151 0.035856 7.178585 0.035337

Table 6: Lower, upper and length of 95% HPD and confidence interval for the
parameter 6

Prior m & 95% HPD interval of 0 95% confidence Inter of 6

variance (v) éf ég Length éf ég Length
mvz_eé” T 4726236 9.9961 5260864  2.241163  12.42088  10.17972

1?1::12020’6 4.655145  10.72255  6.067405 2.240973  12.41993  10.17896

Table 7: Lower, upper and length of 95% HPD and confidence interval for the
parameter A

Prior m & 95% HPD interval of A 95% confidence Inter of A

variance (v) j\f j\g Length Xg 5\5 Length
mU:_)\éM’ 0.028409 0.042846  0.014436  0.023703 0.047956  0.024253

Tzzlgog_oé 0.028565  0.043494  0.024252  0.023701  0.047954  0.024252

It may be mentioned here that Bayes estimators and HPD intervals have been
obtained above using the MCMC procedures described in Section 4. It is well
known that MCMC analysis provides reliable results only when the chains have
run sufficiently large number of times and reached to the stationary distribution.
In the existing literature of MCMC, a number of tools to assess the convergence
of chain like auto correlation, mixing of chain and normalizing density are men-
tioned. The following sample of Figures drawn by using R software, is enough to
show that the chains in the present analysis have converged.
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Figure 1: (a) Series of theta, (b) Series of lambda
7. Bayes Prediction

The prediction of future observation on the basis of available information is
one of the important topics and it comes up quite naturally in several real life
situations. For details see, Geisser (1971), Aitchison and Dunsmore (1975), Al-
Hussaini (1999), Smith (1997, 1999), etc. Many of the researchers have discussed
the Bayes prediction of future sample based on informative sample, see Ren et
al. (2006), and Al-Jarallah and Al-Hussaini (2007), etc. A numerical approach
to Bayesian prediction for two parameter of Weibull distribution has been dis-
cussed by Dellaportas and Wright (1991). Recently, Pradhan and Kundu (2011)
have proposed the procedure of estimation of posterior predicting density of fu-
ture observation, based on the current sample and observed that Gibbs sampling
technique can be used quite effectively.

Suppose that we are interested in the predictive density of the r*® order statis-
tic y(, from future sample {y1, 2, -+ ,ym} of size m, independent of the informa-
tive data X = {z1,x9, - ,z,}. We know that the probability density function
of the " order statistic in the future sample denoted g (-6, A) is given as
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9(r) (y | 07 )‘) =

m!
(r—1)!(m—r)!

Here f(-]0,)) is same as (1) and F(-|6, ) is the corresponding cumulative
distribution function.
If we denote the predictive density y(r) as 90 (y]| X) then it can be given as

[F(y |00 L= Fy |0, 0] f(y]6,7). (14)

Gy | X) = / / (410, 0)p(6, A | data)dfdx, (15)

where p(0, A| X) is the joint posterior density of (6, \) as given in (11). It is evident
that ga) (y| X) cannot be expressed in nice closed form. However, a simulation
consistent estimator of ga) (y]| X) can be obtained using Gibbs sampling procedure
described in Section 4.

Suppose (6;,\;), i = {1,2,3,--- ,M} is an MCMC sample obtained from
p(f, A| X) using the Gibbs sampling technique then as suggested by Kundu and
Pradhan (2011), a simulation consistent estimator of 9 (y | X)) can be obtained
as;

(W] X) = M;% y|6i, Xi). (16)

Similarly, if we want to estimate the predictive distribution of y., say
Gy (y|data), a simulation consistent estimator of G{, (y|X ) can be obtained
as

7") y’X ZG(T‘ y‘euA (17)

where G(,(y|0, ) denotes the distribution function of the density function
g('r)(y|07 >‘)7 Le.,

T (- 1% ] /0 [F(y]8, )]V 1= F(y 0, 0] f(y]6, )y
m! F(yl0,))
- (r — 1)!(7‘71 —r)! /0 U(I_T)(l - U)(m_r)du. (18)

It should be noted that the same MCMC sample {(0;,\;),i = 1,--- M} can
be used to compute g, (y| X) or Gy (y| X) for all y. For illustration, we would
like to estimate the predictive density and distribution for the first order statistic
of future sample based on given sample of size 30, generated from PE distribution
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with 2 and 5 as the Scale and shape parameter respectively. The generated sample
is given below:

1.414, 0.948, 1.686, 0.967, 2.183, 1.229, 0.325, 0.51, 1.229, 0.556, 1.552, 0.191,
1.067, 0.65, 0.88, 0.237, 1.571, 0.199, 0.773, 2.57, 0.909, 0.015, 2.578, 0.7, 0.893,
0.867, 0.76, 2.156, 1.375, 2.024.

Using Gibbs sampler procedure, we obtained 10,000 values of (6, \). Based on
these, we estimated the predictive density and distribution function for the first
order statistics following the procedure described above. The estimated density
function and distribution function are presented graphically in Figures 2(a) and
2(b).
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Figure 2: (a) graph of predictive density, (b) graph of predictive distribution
8. Conclusion

In this paper we have considered the problem of estimation of parameters of
PE distribution. Procedure for the maximum likelihood estimation and Bayesian
estimation has been discussed. On the basis of comparison of risk of the es-
timators, it is found that Bayes estimator performs better than the maximum
likelihood estimator in most of the situations under symmetric and asymmet-
ric loss function. The paper also discusses the classical interval estimation and
Bayesian HPD interval estimation. It was noted that Bayesian HPD intervals
perform better that classical interval estimation. The paper also includes a pro-
cedure for estimation of predictive distribution. From the discussion mentioned
above, we may conclude that the Bayes procedures discussed in the paper can be
recommended for their use.
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