
Journal of Data Science 12(2014), 107-136

A New Class of Survival Regression Models with Cure Fraction

Edwin M. M. Ortega1∗, Gladys D. C. Barriga2, Elizabeth M. Hashimoto1,
Vicente G. Cancho1 and Gauss M. Cordeiro3

1Universidade de São Paulo, 2Universidade Estadual Paulista “Júlio de
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Abstract: In this paper, we propose a flexible cure rate survival model by as-
suming that the number of competing causes of the event of interest follows
the negative binomial distribution and the time to event follows a generalized
gamma distribution. We define the negative binomial-generalized gamma
distribution, which can be used to model survival data. The new model in-
cludes as special cases some of the well-known cure rate models discussed in
the literature. We consider a frequentist analysis and nonparametric boot-
strap for parameter estimation of a negative binomial-generalized gamma
regression model with cure rate. Then, we derive the appropriate matri-
ces for assessing local influence on the parameter estimates under different
perturbation schemes and present some ways to perform global influence
analysis. Finally, we analyze a real data set from the medical area.

Key words: Cure fraction models, generalized gamma distribution, lifetime
data, negative binomial distribution, sensitivity analysis.

1. Introduction

Models for survival data with a cure fraction (also known as cure rate models
or long-term survival models) play an important role in reliability and survival
analysis. Cure rate models cover situations where there are sampling units not
susceptible to the occurrence of the event of interest. The proportion of such
units is termed the cured fraction. These models have become very popular due
to significant progress in treatment therapies leading to enhanced cure rates. The
proportion of these “cured” units is termed the cure fraction. In clinical studies,
the event of interest can be the death of a patient (which can happen due to
different competing causes) or a tumor recurrence (which can be attributed to
metastasis-component tumor cells left active after an initial treatment). Models
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to accommodate a cure fraction have been widely developed. Perhaps the most
popular type of cure rate model is the mixture distribution introduced by Boag
(1949) and Berkson and Gage (1952). Further, mixture models are based on
the assumption that only a cause is responsible for the occurrence of the event
of interest. However, in clinical studies, the patient’s death, which is the event
of interest, may happen due to different latent competing causes, in the sense
that there is no information about which cause was responsible for the individual
death. A tumor recurrence can be attributed to metastasis-component tumor
cells left active after initial treatment. A metastasis-component tumor cell is
a tumor cell with potential to metastasize (Yakovlev and Tsodikov, 1996). The
literature on distributions which accommodates different latent competing causes
is rich and growing rapidly. The book by Ibrahim et al. (2001), the review paper
by Tsodikov et al. (2003) and the works by Cooner et al. (2007) and Rodrigues
et al. (2009) can be mentioned as key references. In this paper, we propose a
new model called the negative binomial-generalized gamma (“NBGG” for short)
cure rate model, conceived inside a latent competing causes scenario, where the
causes are modeled by the negative binomial (NB) distribution and the time
for the corresponding cause to produce the event of interest (death or tumor
recurrence) is modeled by the generalized gamma (GG) distribution. There is no
information about which cause was responsible for the individual death or tumor
recurrence, but only the minimum lifetime value among all causes is observed and
a part of the population is not susceptible to the event of interest. The proposed
model includes the traditional cure models as special cases (Boag, 1949; Berkson
and Gage, 1952; Yakovlev and Tsodikov, 1996; Ortega et al., 2009b; Cancho
et al., 2011). Also, we examine statistical inference aspects and formulate the
NBGG model with covariates.

After fitting the model, it is important to check its assumptions and conduct
robustness studies to detect possible influential or extreme observations that can
cause distortions in the results of the analysis. In this paper, we discuss the
influence diagnostic based on case-deletion, in which the influence of the i-th
observation on the parameter estimates is studied by removing this observation
from the analysis. We propose diagnostic measures based on case-deletion for
the NBGG regression model with cure rate in order to determine which subjects
might be influential in the analysis.

Nevertheless, when case-deletion is used, all information from a single subject
is deleted at once and therefore it is hard to say whether that subject has some
influence on a specific aspect of the model. A solution for this problem can be
found in the local influence approach, where we again investigate how the results
of the analysis change under small perturbations in the model or data. Cook
(1986) proposed a general framework to detect the influence of the observations
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to indicate how sensitive the analysis is when small perturbations in the data or
model occur. Several authors have applied the local influence methodology in
regression analysis with censoring. Ortega et al. (2003) considered the problem
of assessing local influence in generalized log-gamma regression models with cen-
sored observations; Silva et al. (2008) investigated local influence in log-Burr XII
regression models with censored data; Fachini et al. (2008) adapted local influ-
ence methods to polyhazard models under the presence of covariates; Cancho et
al. (2009) derived curvature calculations under various perturbation schemes in
log-exponentiated Weibull regression models with cure rate; and Hashimoto et al.
(2010) calculated the appropriate matrices for assessing local influences on the pa-
rameter estimates under different perturbation schemes in the log-exponentiated
Weibull regression model for interval-censored data. We propose a similar method
to detect influential subjects in the NBGG regression model with cure rate.

The plan of the next sections of the paper is as follows. Section 2 is dedicated
to model formulation. Parameter inference is discussed in Section 3. In Section 4,
we use nonparametric bootstrap for parameter estimation of the NBGG regression
model with cure rate. In Section 5, we obtain the normal curvatures of local
influence and derive the global influence under some usual perturbations. The
results of an application to a real data set are reported in Section 6. Section 7
provides concluding remarks.

2. The Model

For an individual in the population, let N denote the unobservable number
of causes of the event of interest for this individual. The time for the j-th cause
to produce the event of interest is denoted by Zj , j = 1, · · · , N . We assume that,
conditional on N , the Zj are i.i.d. random variables with cumulative distribution
function (cdf) F (z) and survival function S(z) = 1 − F (z). We also assume
that N is independent of Z1, Z2, · · · . The observable time to event is defined by
T = min{Z1, · · · , ZN}, ifN ≥ 1 and T =∞ ifN = 0, with P (T =∞|N = 0) = 1.
Under this setup, the survival function for the population is given by

Spop(t) = P (N = 0) + P (Z1 > t, · · · , ZN > t|N ≥ 1)P (N ≥ 1). (1)

Tsodikov et al. (2003), among others, demonstrated that Spop(t) = Ap[S(t)],
where Ap(·) is the probability generating function (pgf) of the number of com-
peting causes (N). de Castro et al. (2010) considered that the number of com-
peting causes follows the NB distribution with parameters θ > 0 and α > −1/θ
(Piegorsch, 1990; Saha and Paul, 2005), with probability mass function

pm = P (N = m) =
Γ(α−1 +m)

Γ(α−1)m!

(
α θ

1 + α θ

)m
(1 + αθ)−1/α,
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where m = 0, 1, · · · and Γ(k) =
∫∞

0 wk−1e−wdw is the gamma function. Then,

E(N) = θ and Var(N) = θ + α θ2. (2)

The pgf of N is given by Ap(s) =
∑∞

m=0 pm s
m = [1 +α θ (1− s)]−1/α, 0 ≤ s ≤ 1,

so that the survival function for the population becomes

Spop(t) = Ap
[
S(t)

]
= [1 + αθF (t)]−1/α. (3)

The cured fraction is given by p0 = (1+αθ)−1/α. The probability density function
(pdf) associated to (3) reduces to

fpop(t) = [1 + αθF (t)]−(1/α)−1 θf(t),

where f(t) = −S′(t) denotes the (proper) density function of the time to event
Z in (1) with hazard rate function (hrf)

hpop(t) = θ f(t)[1 + αθF (t)]−1.

We note that fpop(t) and hpop(t) are improper functions, since Spop(t) is not a
proper survival function. The probability distribution in (2) is a flexible model in
the sense it provides nice links between the binomial and Poisson distributions,
that is, for α = −1/r (r integer) we have that N ∼ binomial(r, θ/r) provided that
0 ≤ θ/r ≤ 1 (Piegorsch, 1990). When α → 0, we have N ∼ Poisson(θ). These
results imply that for α = −1 (r = 1), we have the classical mixture cure model
(Boag, 1949; Berkson and Gage, 1952) with a high level of under-dispersion and
for α → 0, we obtain the promotion time cure model (Yakovlev and Tsodikov,
1996). From (2) it follows that the variance of the number of competing causes
under the NB model is flexible. If −1/θ ≤ α < 0, there is under-dispersion from
the Poisson model. We illustrate this point with the mixture cure model. On the
other hand, if α > 0, the counts are over-dispersed.

As pointed out by Tournoud and Ecochard (2008), the parameters of the NB
model have biological interpretations. In (2), θ is the mean number of competing
causes, whereas α accounts for the inter-individual variance of the number of
causes. Additionally, the NB distribution enables de Castro et al. (2010) to
provide a probabilistic justification for the transformation introduced by Yin and
Ibrahim (2005).

To make the model in (3) more flexible, we first assume that the times Z’s to
the event of interest have a GG distribution with pdf given by

f(z; τ, β, k) =
β

τΓ(k)

(z
τ

)kβ−1
exp

[
−
(z
τ

)β]
, (4)

where β > 0 and k > 0 are shape parameters and τ > 0 is a scale parameter.
This distribution is known as the three-parameter GG distribution (Stacy, 1962).
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The times Z’s to the event of interest, are unobservable which do not allow an
appropriate choice of a parametric distribution for the Z’s. Then, it is reasonable
to consider the GG distribution, since this model includes all four most common
types of the hrf: monotonically increasing, decreasing, bathtub and unimodal
hazard rates (Cox et al., 2007).

This version of the GG distribution (4), however, presents convergence prob-
lems that severely limit its usefulness (see for example, Lawless, 2003). To avoid
this problem, consider the following re-parametrization: τ = exp[µ− log(q−2)/β],
β = q/σ and k = q−2. Then, the re-parameterized pdf is given by

f(z;γ) =



|q|
σΓ(q−2)z

(q−2)q
−2

exp

{
q−1
[

log(z)−µ
σ

]
− q−2exp

{
q
[

log(z)−µ
σ

]}}
,

if q 6= 0,

1√
2πσz

exp

{
− 1

2

[
log(z)−µ

σ

]2
}
, if q = 0,

(5)

where γ = (µ, σ)> for −∞ < µ < ∞, σ > 0 and −∞ < q < ∞. The GG
distribution with pdf (5) is known as the family of extended generalized gamma
(EGG) models, described in details by Kalbfleisch and Prentice (2002) and Law-
less (2003), and includes as special cases the exponential, Weibull, reciprocal
Weibull, log-normal and gamma distributions.

Substituting the reparametrized GG distribution in (3), we obtain the NBGG
cure rate model

Spop(t;γ) =



{
1 + αθ

(
1− Γ

{
q−2 exp

[
q
(

log(t)−µ
σ

) ]
; q−2

})}−1/α
,

if q < 0;{
1 + αθ

(
Φ
[

log(t)−µ
σ

])}−1/α
, if q = 0,

{
1 + αθ

(
Γ
{
q−2 exp

[
q
(

log(t)−µ
σ

) ]
; q−2

})}−1/α
,

if q > 0,

(6)

where Φ(z) denotes the standard normal cumulative distribution and Γ(k; z) is
the incomplete gamma function ratio, which is given by

Γ(k; z) =
1

Γ(k)

∫ z

0
xk−1e−xdx.

In Table 1, we list some characteristics of the NBGG model with cure rate.
Note that for q = 1 and β = 1/σ, the special case corresponds to the long-term

survival model with cured fraction (de Castro et al., 2009).
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Table 1: Characteristics of the NBGG model with cure rate in a competitive-
risk structure

Distribution
Mixture Promotion Alternative

Z and N
Cure Model Time Model Cure Model
α = −1 α→ 0 α > 0

q = 1, β = 1/σ Mixture Promotion Alternative
µ = log(τ) Weibull Weibull Weibull

q = 1, σ = 1 Mixture Promotion Alternative
µ = log(τ) Exponential Exponential Exponential

q = 0 Mixture Promotion Alternative
Log-normal Log-normal Log-normal

q = σ Mixture Promotion Alternative
µ = log(τ) Gamma Gamma Gamma

q = −1, β = 1/σ Mixture Promotion Alternative
µ = log(τ) Reciprocal Weibull Reciprocal Weibull Reciprocal Weibull

The survival function for the non-cured population, say SNBGG(y) = P (Y >
y|N ≥ 1), is given by

SNBGG(t) = P (T > t|N ≥ 1) =
[1 + αθF (t)]−1/α − (1 + αθ)−1/α

1− (1 + αθ)−1/α
, t > 0, (7)

where F (·) is the GG cdf. We note that SNBGG(0) = 1 and SNBGG(∞) = 0, so
that it is a proper survival function. The pdf for the non-cured population (called
the NBGG density function) is given by

fNBGG(t) =
θ f(t) [1 + αθF (t)]−(1/α+1)

1− (1 + αθ)−1/α
, t > 0, (8)

where f(·) is the GG pdf. From (8), we note that the parameter σ controls
the scale of the distribution while the parameters α, θ and q control its shape.
As α = −1, the NBGG distribution reduces to the GG distribution. Figure 1
displays some plots of the NBGG density function for some fixed values of α and
θ. These plots indicate that this distribution is very flexible and that the values
of α and θ have a substantial effect on its skewness and kurtosis.

From (7) and (8), it is easy to verify that the hrf for the non-cured population
is given by

hNBGG(t) =
θh(t)S(t) [1 + αθF (t)]−(1/α+1)

[1 + αθF (t)]−1/α − (1 + αθ)−1/α
, t > 0, (9)

where h(t) and S(t) are the hazard rate and survival functions of the GG dis-
tribution, respectively. Based on (9), hNBGG(y)/h(y) is increasing in y > 0 for
θ > 0 and α > −1/θ. Further, h(t) ≤ hNBGG(t) and then the limit behavior of
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Figure 1: The NBGG pdf for some parameter values. The parameters are fixed
at α = −1, 0.01, 0.1, 1, 2, 4, θ = 5, µ = 0 and σ = 1.5, q = 1 (top left panel);
σ = 0.4, q = 0.4 (top right panel); σ = 1, q = 4 (bottom left panel) and
σ = 0.75, q = 0 (bottom right panel)

the hrf of the NBGG distribution is the same as the behavior of the GG hrf.
Figure 2 displays some shapes of the NBGG hrf for some parameter values. When
α → 0, the NBGG hrf approaches the Poisson generalized gamma hrf and, for
α = 1, it reduces to the geometric generalized gamma hrf (Ortega et al., 2011).
In Figure 2, we plot this hrf for some parameter values. There is a mathematical
relationship between the model (6) and the mixture cure rate model (Boag, 1949;
Berkson and Gage, 1952). We can write

Spop(t) = (1 + αθ)−1/α + [1− (1 + αθ)−1/α]SNBGG(t),

where SNBGG(t) is given by (7). Thus, Spop(t) is a mixture cure rate model
with cure rate equal to p0 = (1 + αθ)−1/α and survival function SNBGG(t) for
the non-cured population. This results imply that every mixture cure rate model
corresponds to some model of the form (6) for any α, θ and F (·) (this result holds
for any distribution function).
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Figure 2: The hrf of the NBGG distribution. The parameters are fixed at
α = −1, 0.01, 0.1, 1, 2, 4, θ = 5, µ = 0 and σ = 1.5, q = 1 (top left panel);
σ = 0.4, q = 0.4 (top right panel); σ = 1, q = 4 (bottom left panel) and
σ = 0.75, q = 0 (bottom right panel)

3. Inference

Hereafter, we suppose that the time to the event is not completely observed
and may be subjected to right censoring. Let Ci denote the censoring time. We
observe that Yi = min{Ti, Ci} and δi = I(Ti ≤ Ci) are such that δi = 1 if Ti is a
time to event and δi = 0 if it is right censored, i = 1, · · · , n.

Following de Castro et al. (2009), we consider the Fisher parametrization of
the NB distribution (Ross and Preece, 1985) for α ≥ −1. We define θ = (p−α0 −
1)/α, if α 6= 0, and θ = − log(p0), if α = 0. We incorporate covariates for the
parametric cure rate model (6) through the cure parameter, p0. When covariates
are included, we have a different cure rate parameter, p0i, for each subject, i =
1, · · · , n. The cured fraction is linked to covariates xi = (xi1, · · · , xip)> by the
logistic link, i.e.,
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log

(
p0i

1− p0i

)
= x>i β or p0i =

exp(x>i β)

1 + exp(x>i β)
, (10)

where β stands for the vector of regression coefficients. Notice that regardless
of the specific model (which depends on α), the covariates are associated with
the cured fraction through a unique expression. We recall that covariates are
traditionally used to model the expectation of the number of competing causes.
For instance, in the promotion time cure model, we have θi = E(Ni) = exp(xT

i β)
and p0i = e−θi , so that log{− log(p0i)} = x>i β. The connection between the
cured fraction and the covariates is much more cumbersome in this expression
than in the logistic link. Recently, de Castro et al. (2009) showed that this
parametrization is identifiable.

From (2), Var(Ni) = E(Ni) p
−α
0i . Thus, extra variability in the number of

competing causes due to omitted covariates is governed by the dispersion param-
eter α. Under this relation, the improper functions (6) can be rewritten as

Spop(ti;γ) =

{
{1 + (p−α0i − 1)F (ti;γ)}−1/α, if α 6= 0;

p
F (ti;γ)
0i , if α = 0;

(11)

where F (ti;γ) is the GG distribution. The density function corresponding to this
model is given by

fpop(ti;β,γ, α) =

{
{1 + (p−α0i − 1)F (ti;γ)}−1/α−1 (

p−α0i −1
α ) f(ti;γ), if α 6= 0;

− log(p0i) p
F (ti;γ)
0i f(ti;γ), if α = 0.

(12)

We refer to model (11) as the NBGG regression model with cure rate in a
competitive-risk structure. Following the steps in the proof of Theorem 6.2 in
Tournoud and Ecochard (2008), we conclude that if the covariates are linked to
the parameter α too, identifiability is preserved.

Based on the NB distribution with (10), (11) and (12), we can write the
likelihood of ϑ = (α,β>,γ)T under non-informative censoring as

L(ϑ;D) ∝


∏n
i=1

{
p−α0i −1
α f(yi;γ)

}δi {
1 + (p−α0i − 1)F (yi;γ)

}−δi−1/α
,

if α 6= 0;∏n
i=1 {− log(p0i)f(yi;γ)}δi pF (yi;γ)

0i , if α = 0;

(13)

where ϑ = (α,β>,γ>)>, D = (n,y, δ,x), and x = (x>1 , · · · ,x>n ). The maxi-
mization of (13) follows the same two steps for obtaining the maximum likelihood
estimates (MLEs) of ϑ under the uncensored case. Since in general it is reason-
able to expect that the shape parameter q belongs to the interval [-3, 3] (Lawless,
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2003), in the first step of the iterative process we set different q values in this
interval. Then, we obtain the MLEs α̃(q), β̃(q) and γ̃(q), and determine the max-
imized log-likelihood function Lmax(q). In this step, we use the MaxBFGS routine
in the matrix programming language Ox (see, for instance, Doornik, 2002). In
the second step, the log-likelihood Lmax(q) is maximized, and then q̂ is obtained.
The MLEs of α, β and γ are α̂ = α̃(q̂), β̂ = β̃(q̂) and γ̂ = γ̃(q̂), respectively.
The procedures discussed in this work are developed by assuming q fixed. An
important point to take into account in GG models is related to the estimation of
the parameter q. Several authors have dealt with this topic (Lawless, 2003; Or-
tega et al., 2003; Ortega et al., 2009a; among others) and pointed out difficulties
to estimate q due to problems of unbounded and local maxima in the likelihood
function.

The inference procedures for ϑ = (α,β>,γ>)> can be based on the asymp-
totic normal approximation

(α̂, β̂
>
, γ̂>)> ∼ N(p+3)

{
(α,β>,γ>)>,−L̈−1

(ϑ)
}
,

where −L̈(ϑ) = {∂2l(ϑ)/∂ϑϑT } is the (p + 3) × (p + 3) observed information
matrix

L̈(ϑ) =

 Lαα Lαβj Lαγk
. Lβjβj′ Lβjγk
. . Lγkγk′

 ,

whose sub-matrices are given in Appendix A.
Besides estimation, hypothesis testing is another key issue. Let ϑ1 and ϑ2 be

proper disjoint subsets of ϑ . We aim to test H0 : ϑ1 = ϑ01 against H1 : ϑ1 6= ϑ01,
ϑ2 unspecified. Let ϑ̂0 maximize L(ϑ;D) constrained to H0 and define the
likelihood ratio statistic

LR = 2 log

[
L(ϑ̂;D)

L(ϑ̂0;D)

]
.

Under H0 and some regularity conditions, the LR statistic converges to the chi-
square distribution with dim(ϑ1) degrees of freedom.

4. Bootstrap Re-Sampling Method

The bootstrap re-sampling method was proposed by Efron (1979). This
method treats the observed sample as if it represents the population. From the
information obtained from such a sample, B bootstrap samples of similar size to
that of the observed sample are generated, from which it is possible to estimate
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various characteristics of the population, such as the mean, variance, percentiles
and other quantities.

According to the literature, the re-sampling method can be nonparametric
or parametric. In this study, the nonparametric bootstrap method is addressed,
according to which the distribution function F can be estimated by an empirical
distribution F̂ .

Let T = (T1, · · · , Tn) be an observed random sample and F̂ be the empirical
distribution of T . Thus, a bootstrap sample T ∗ is constructed by re-sampling
with replacement of n elements of the sample T . For the B bootstrap samples
generated, T ∗1 , · · · , T ∗B, the bootstrap replication of the parameter of interest for
the b-th sample is given by

θ̂
∗
b = s(T ∗b ),

that is, the value of θ̂ for sample T ∗b , b = 1, · · · , B.

The bootstrap estimator of the standard error (Efron and Tibshirani, 1993)

is the standard deviation of these bootstrap samples. It is denoted by ÊPB and
obtained by the following expression:

ÊPB =

[
1

(B − 1)

B∑
b=1

(
θ̂∗b − θ̄B

)2
]1/2

,

where θ̄B =
∑B

b=1 θ̂
∗
b/B. Note that B is the number of bootstrap samples gen-

erated. According to Efron and Tibshirani (1993), assuming B ≥ 200, it is
generally sufficient to present good results to determine the bootstrap estimates.
However, to achieve greater accuracy, a reasonably high B value must be consid-
ered. In this study, we consider B = 3000 bootstrap samples. We describe the
bias corrected and accelerated (BCa) method for constructing approximated con-
fidence intervals based on the bootstrap re-sampling method. For further details
on bootstrap intervals, see for example, Efron and Tibshirani (1993), DiCiccio
and Efron (1996) and Davison and Hinkley (1997).

5. Diagnostic Analysis

In order to assess the sensitivity of the MLEs, global influence and local
influence analysis are now carried out under three perturbation schemes.

5.1 Global Influence

A first tool to perform sensitivity analysis, as stated before, is by means of
global influence analysis starting from case-deletion. Case-deletion is a common
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approach to study the effect of dropping the i-th case from the data set. The
case-deletion model for (11) and (12) is given by

Spop(yl;β,γ, α) =

{
{1 + (p−α0l − 1)F (yl;γ)}−1/α, if α 6= 0;

p
F (yl;γ)
0l , if α = 0;

and

fpop(yl;β,γ, α) =

{
{1 + (p−α0l − 1)F (yl;γ)}−1/α−1 p−α0l −1

α f(yl;γ), if α 6= 0;

− log(p0l) p
F (yl;γ)
0l f(yl;γ), if α = 0;

where l = 1, · · · , n, l 6= i. In the following discussion, a quantity with subscript
“(i)” means the original quantity with the i-th case deleted. For model (13), the

log-likelihood function of ϑ is denoted by l(i)(ϑ). Let ϑ̂(i) = (α̂(i), β̂
>
(i), γ̂

>
(i))
> be

the MLE of ϑ from l(i)(ϑ). To assess the influence of the i-th case on the MLE

ϑ̂ = (α̂, β̂
>
, γ̂>)>, the basic idea is to compare the difference between ϑ̂(i) and

ϑ̂. If deletion of a case seriously influences the estimates, more attention should
be paid to that case. Hence, if ϑ̂(i) is far from ϑ̂, then the i-th case is regarded
as an influential observation. A first measure of global influence is defined as the
standardized norm of ϑ̂(i) − ϑ̂ (generalized Cook distance)

GDi(ϑ) = (ϑ̂(i) − ϑ̂)>
[
− L̈(ϑ)

]
(ϑ̂(i) − ϑ̂).

Another alternative is to assess GDi(α), GDi(β) or GDi(γ), whose values reveal
the impact of the i-th case on the estimates of α, β and γ, respectively. Another
popular measure of the difference between ϑ̂(i) and ϑ̂ is the likelihood distance

LDi(ϑ) = 2
{
l(ϑ̂)− l(ϑ̂(i))

}
.

Besides this, we can also compute β̂j − β̂j(i) (j = 1, · · · , p) to assess the difference

between β̂ and β̂(i). Alternative global influence measures are possible. One could
think of the behavior of a test statistic, such as the Wald test for explanatory
variables or censoring effect under a case-deletion scheme.

Since ϑ̂(i) is required for every case, a heavy computational burden may be

involved. In this case, the following one-step approximation for ϑ̂(i) can be used
to reduce the burden:

ϑ̂(i)
∼= ϑ̂+ L̈(ϑ̂)−1 l̇i(ϑ̂),

where l̇(i)(ϑ̂) = ∂l(i)(ϑ)/∂ϑ is evaluated at ϑ = ϑ̂ (see, for instance, Cook and
Weisberg, 1982).
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We can also apply the techniques developed by Wang et al. (1996) to evaluate
how the i-th observation affects a set of parameter estimates. We define the
following quantity as the influential estimate (IE) for individual i and for the
parameters vectors ϑ, β and (µ, σ, α)>

IE(ϑ)i =
1

(p+ 3)

p+3∑
v=1

|ϑ̂v − ϑ̂(i)v|
SE(ϑ̂v)

, IE(β)i =
1

p

p∑
j=1

|β̂j − β̂(i)j |
SE(β̂j)

, and

IE(µ, σ, α)i =
1

3

[ |µ̂− µ̂(i)|
SE(µ̂)

+
|σ̂ − σ̂(i)|
SE(σ̂)

+
|α̂− α̂(i)|
SE(α̂)

]
,

where ϑ̂v, ϑ̂(i)v, β̂j , β̂(i)j , µ̂, µ̂(i), σ̂, σ̂(i), α̂ and α̂(i) are the MLEs for the NBGG
regression model with cure rate. The IE(·) value for individual i can be inter-
preted as the average relative coefficient changes for a set of estimates and it is
useful for assessing the effect of the parameter estimates by exclusion of the i-th
observation. Therefore, a relatively large value of IE(·)i indicates a potential
influential observation that might cause instability in the model fitting.

5.2 Local Influence

Another approach was suggested by Cook (1986), where instead of removing
observations, weights are given to them. Local influence calculation can be carried
out for model (11). If likelihood displacement LD(ω) = 2{l(ϑ̂)− l(ϑ̂ω)} is used,
where ϑ̂ω denotes the MLE under the perturbed model, the normal curvature
for ϑ in the direction of d, ‖ d ‖= 1 is given by Cd(ϑ) = 2|d>∆>[L̈(ϑ)]−1∆d|,
where ∆ is a (p+ 3)×n matrix that depends on the perturbation scheme, whose
elements are given by ∆vi = ∂2l(ϑ|ω)/∂αv∂ωi, i = 1, · · · , n and v = 1, · · · , p+ 3,
evaluated at ϑ̂ and ω0, where ω0 is the no perturbation vector (see, Cook,
1986). For the NBGG regression model with a cure fraction, the elements of
L̈(ϑ) are given in Appendix A. We can also calculate normal curvatures Cd(α),
Cd(β) and Cd(γ) to perform various index plots, for instance, the index plot
of dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue of the
matrix B = −∆>[L̈(ϑ)]−1∆ and the index plots of Cdi(α), Cdi(β) and Cdi(γ),
called the total local influence, where di are the standard basis vectors of Rn.
Thus, the curvature in the direction of di takes the form Ci = 2|∆>i [L̈(ϑ)]−1∆i|,
where ∆>i denotes the i-th row of ∆. It is usual to point out those cases such
that Ci ≥ 2C̄, where C̄ =

∑n
i=1Ci/n. Another influence measure for the i-th ob-

servation is Ui =
∑n1

k=1 λke
2
ki, where {(λk, ek)|k = 1, · · · , n} are the eigenvalue-

eigenvector pairs of B with λ1 ≥ · · · ≥ λn1 ≥ λn1+1 = · · · = λn = 0 and
{ek = (ek1, · · · , ekn)>} is the associated orthonormal basis. Zhu and Zhang
(2004) studied the influence measure ui systematically under a case weight per-
turbation. Thus, this influence measure expresses local sensitivity to the log-
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likelihood of the perturbations. Recently, Ibacahche-Pulgar et al. (2012) stud-
ied influence diagnostics for elliptical semi parametric mixed models, Vanegas
et al. (2012) determined the appropriate matrices for diagnostic procedures in
Birnbaum-Saunders nonlinear regression models and Zeller et al. (2012) pro-
posed the diagnostics in multivariate measurement error models under asymmet-
ric heavy-tailed distributions.

5.3 Curvature Calculations

Next, we calculate for three perturbation schemes the matrix

∆ = (∆vi)[(p+3)×n
] =

(
∂2l(ϑ|ω)

∂ϑvωi

)
[
(p+3)×n

],
where v = 1, · · · , p+ 3 and i = 1, · · · , n. We consider the model defined in (11),
(12) and its log-likelihood function given by (13).

5.3.1 Case-Weight Perturbation

First, we consider a case weight perturbation which modifies the weight
given to each subject in the log-likelihood. Consider the vector of weights ω =
(ω1, · · · , ωn)>.

In this case, the log-likelihood function takes the form

l(ϑ;D|ω) =



n∑
i=1

ωiδi log
{(

p−α0i −1
α

)
f(yi;γ)

}
+

n∑
i=1

ωi(−δi − 1/α) log
{

1 + (p−α0i − 1)F (yi;γ)
}
, if α 6= 0;

n∑
i=1

ωiδi log {− log(p0i)f(yi;γ)}+
n∑
i=1

ωiF (yi;γ) log(p0i), if α = 0,

where 0 ≤ ωi ≤ 1, ω0 = (1, · · · , 1)>. The matrix ∆ = (∆>α ,∆
>
β,∆

>
γ)> is given

in Appendix B.

5.3.2 Response Perturbation

Since the yi values have different variances, the is a need to scall the pertur-
bation vector ω by an estimator of the standard deviation of yi. We consider
here that each yi is perturbed as yiw = yi + ωiSy, where Sy is a scale factor that
can be the estimated standard deviation of y and ωi ∈ R.
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Here, the perturbed log-likelihood function becomes

l(ϑ;D|ω) =



n∑
i=1

δi log
{(

p−α0i −1
α

)
f(y∗i ;γ)

}
+

n∑
i=1

(−δi − 1/α) log
{

1 + (p−α0i − 1)F (y∗i ;γ)
}
, if α 6= 0;

n∑
i=1

δi log {− log(p0i)f(y∗i ;γ)}+
n∑
i=1

F (y∗i ;γ) log(p0i), if α = 0,

where y∗i = yi + ωiSy and ω0 = (0, · · · , 0)>. The matrix ∆ = (∆>α ,∆
>
β,∆

>
γ)>

is given in Appendix C.

5.3.3 Explanatory Variable Perturbation

Cook (1986) described a general scheme for perturbing the whole design ma-
trix X in linear regression models. Some authors have studied the perturbation
of covariates. This perturbation has a more complicated impact on the estimates.
The errors-in-variable model treats the error of covariates and so the local influ-
ence under the perturbation of covariates may be related to the errors-in-variable
model. Consider now an additive perturbation on a particular continuous ex-
planatory variable, say xt, by setting xitω = xit + ωiSx, where Sx is a scaled
factor, ωi ∈ R. This perturbation scheme leads to the following expressions for
the perturbed log-likelihood function

l(ϑ;D|ω) =



n∑
i=1

δi log
{(

(p∗0i)
−α−1
α

)
f(yi;γ)

}
+

n∑
i=1

(−δi − 1/α) log {1 + [(p∗0i)
−α − 1]F (yi;γ)} , if α 6= 0;

n∑
i=1

δi log {− log(p∗0i)f(yi;γ)}+
n∑
i=1

F (yi;γ) log(p∗0i), if α = 0,

where p∗0i = exp(x∗>i β)/(1+exp(x∗>i β)), (x∗>i β) = β1xi1 + · · ·+βt
(
xit+ωiSx

)
+

· · · + βpxip and ω0 = (0, · · · , 0)>. The matrix ∆ = (∆>α ,∆
>
β,∆

>
γ)> is given in

Appendix D.

6. Application

In this section, we discuss an application of the local influence methodology
to a set of real data on cancer recurrence. The data come from a study on cuta-
neous melanoma (a type of malignant cancer) for the evaluation of postoperative
treatment performance with a high dose of a certain drug (interferon alfa-2b)
in order to prevent recurrence. Patients were included in the study from 1991
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to 1995, and follow-up was conducted until 1998. The data were collected by
Ibrahim et al. (2001) and represent the survival times (T ), until the patient’s
death. The original sample size was n = 427 patients, 10 of whom did not
present a value for explanatory variable tumor thickness. When such cases were
removed, a sample of size n = 417 patients was retained. The percentage of cen-
sored observations was 56%. The following variables were associated with each
participant, i = 1, · · · , 417: yi: observed time (in years); xi1: treatment (0:obser-
vation, 1:interferon); xi2: age (in years); xi3: nodule (nodule category: 1 to 4);
xi4: sex (0:male, 1:female); xi5: p.s. (performance status-patient’s functional ca-
pacity scale as regards his daily activities: 0:fully active, 1:other) and xi6: tumor
(tumor thickness in mm).

First, we consider the NBGG regression model given in (11) with all regressor
variables,

log

(
p0i

1− p0i

)
= β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6.

To obtain the MLEs of the model parameters, we use the MaxBFGS sub-
routine in Ox. To estimate β and γ of the NBGG regression model with cure
rate, we fix different values for q. We choose the value of q that maximizes the
likelihood function over several values of q ∈ (−3, 3), thus obtaining q = 0.7.
Iterative maximization of the logarithm of the likelihood function in (13) begins
with an initial guess α = 1, β = 1, σ = 1 and µ = 1/ȳ (a moment estimator
for µ from i.i.d. exponential observations), where ȳ =

∑
yi/n. Of course, this

choice is not foolproof; it is advisable to run the BFGS method several times
from different starting values. Table 2 gives the MLEs for the proposed model.
At a 5% significance level, all regression coefficients but nodule category (β3) are
non-significant.

Table 2: MLEs of the parameters of the NBGG regression model with cure
rate fraction fitted to the cutaneous melanoma data

Parameter Estimate Standard Error p-value

µ 1.371 0.354 –
σ 0.550 0.073 –
α 2.995 2.132 –
β0 1.329 0.673 0.048
β1 0.127 0.183 0.487
β2 -0.010 0.007 0.134
β3 -0.411 0.132 0.002
β4 0.057 0.203 0.779
β5 -0.142 0.221 0.520
β6 -0.009 0.027 0.746
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Now, using the nonparametric bootstrap method with B = 3000, we obtain
the bootstrap estimates and the BCa confidence intervals, as described in Section
4. The estimates are presented in Table 3. Note that the estimates from the two
methods taken for illustration are very similar, as expected. However, since these
methods are based on the likelihood, and asymptotic normality is expected for
this sample size (n = 417), we can continue the analysis using the MLEs.

Table 3: Nonparametric bootstrap from the NBGG regression model with cure
rate fraction fitted to the cutaneous melanoma data set

Parameter Estimate Standard Error 95% C.I. Bca

µ 1.326 0.291 (0.875, 1.924)
σ 0.515 0.103 (0.273, 0.668)
α 3.846 4.357 (0.267, 14.139)
β0 1.557 0.674 (0.408, 2.939)
β1 0.087 0.224 (-0.404, 0.485)
β2 -0.011 0.007 (-0.028, 0.002)
β3 -0.450 0.134 (-0.717, -0.215)
β4 0.095 0.233 (-0.328, 0.580)
β5 -0.152 0.257 (-0.681, 0.357)
β6 -0.014 0.032 (-0.089, 0.038)

6.1 Global Influence Analysis

In this section, we use Ox to compute the case-deletion measures GDi(ϑ) and
LDi(ϑ) presented in Section 4.1. These influence measures are plotted in Figure
3.
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Figure 3: Index plot of GDi(ϑ), generalized Cook’s distance (Figure 3a). Index
plot of LDi(ϑ), likelihood distance (Figure 3b)
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Figure 3 indicates that the cases 174 and 279 are possible influential obser-
vations. Similarly to the GDi(ϑ) and LDi(ϑ) statistics, we calculate the new
measures IE(θ)i, IE(γ)i and IE(β)i. The index plots for these influence mea-
sures are displayed in Figure 4. Clearly, the most influential observations are 174
and 259.

(a) (b) (c)
 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 50 100 150 200 250 300 350 400

Index

259

In
fl
u
e
n
ti
a
l
e
s
ti
m

a
te

s
(α

, 
μ

, 
σ

)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 50 100 150 200 250 300 350 400

Index

259

In
fl
u
e
n
ti
a
l
e
s
ti
m

a
te

s
(α

, 
μ

, 
σ

)

 

0

0,05

0,1

0,15

0,2

0,25

0 50 100 150 200 250 300 350 400

Index

174

In
fl
u
e
n
ti
a
l
e
s
ti
m

a
te

s
(β

)

0

0,05

0,1

0,15

0,2

0,25

0 50 100 150 200 250 300 350 400

Index

174

In
fl
u
e
n
ti
a
l
e
s
ti
m

a
te

s
(β

)

 

0

0,05

0,1

0,15

0,2

0,25

0 50 100 150 200 250 300 350 400

Index

174

In
fl
u
e
n
ti
a

l
e
s
ti
m

a
te

s
(α

, 
μ

, 
σ

, 
β

)

0

0,05

0,1

0,15

0,2

0,25

0 50 100 150 200 250 300 350 400

Index

174

In
fl
u
e
n
ti
a

l
e
s
ti
m

a
te

s
(α

, 
μ

, 
σ

, 
β

)

Figure 4: Index plot of IE(θ)i (Figure 4a). Index plot of IE(γ)i (Figure 4b).
Index plot of IE(β)i (Figure 4c)

6.2 Local Influence Analysis

In this section, we analyze the local influence for the cancer data.

6.2.1 Explanatory Variable Perturbation

By applying the local influence methodology developed in Section 4, where
case-weight perturbation is used, we obtain the values Cdmax(ϑ) = 1.57, Cdmax(γ)
= 1.24 and Cdmax(β) = 1.47 as maximum curvatures. In Figure 5, the index plots
of dmax(ϑ), Ci and Ui for all points are presented. Clearly, the most influential
observations on ϑ̂ are the cases 174, 279 and 381 (see Figure 4).
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Figure 5: Index plots of dmax(ϑ) (Figure 5a), Ci (Figure 5b) and Ui (Figure
5c) under the case-weight perturbation scheme
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6.2.2 Influence Using Response Variable Perturbation

Next, we examine the influence of perturbations on the observed survival
times. The values for the maximum curvature were Cdmax(ϑ) = 19.60, Cdmax(γ) =
1.58 and Cdmax(β) = 7.34. Figure 6 displays the plots for dmax(ϑ), Ci and Ui for
all points. The plots in Figures 6a, 6b and 6c indicate that the observations 279
and 341 as the most influential on ϑ̂.
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Figure 6: Index plots of dmax(ϑ) (Figure 6a), Ci (Figure 6b) and Ui (Figure
6c) under the response perturbation scheme

6.2.3 Influence Using Explanatory Variable Perturbation

The perturbation of the explanatory variable age (x2) is investigated here.
After the perturbation of this explanatory variable, the values Cdmax(ϑ) = 1.12,
Cdmax(γ) = 1.10 and Cdmax(β) = 0.95 were obtained as maximum curvatures.
The respective index plots of dmax(ϑ), Ci and Ui are displayed in Figure 7. The
plots in Figures 7a, 7b and 7c indicate that the observation 279 is the most
influential on ϑ̂.
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Figure 7: Index plots of dmax(ϑ) (Figure 7a), Ci (Figure 7b) and Ui (Figure
7c) under perturbation of the explanatory variable age
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6.3 Impact of the Detected Influential Observations

The diagnostic analysis (global influence and local influence) detected the
following three cases as potentially influential: 174, 279 and 341. In order to
reveal the impact of these three observations on the parameter estimates, we
refitted the model under some situations. First, we individually eliminated each
one of these three cases. Next, we removed all potentially influential observations
from set “A” (original data set) .

Table 4 gives the relative changes (in percentage) of each parameter esti-
mate, defined by RCϑj = [(ϑ̂j − ϑ̂j(I))/ϑ̂j ] × 100, parameter estimates and the

corresponding p-values, where ϑ̂j(I) denotes the MLE of ϑj after the set “I” of
observations being removed. Note that I1 = {174}, I2 = {279}, I3 = {341},
I4 = {174, 279}, I5 = {174, 341}, I6 = {279, 341}, and I7 = {174, 279, 341}.

Table 4 indicates that the MLEs from the NBGG regression model with a cure
fraction are not highly sensitive under deletion of the outstanding observations.
In general, the significance of the parameter estimates does not change (at 5%)
after removing set I. Therefore, we do not have inferential changes after removing
the observations handed out in the diagnostic plots The largest variations in the
parameter estimates occur with the estimates that are not significant, which
should be removed from the model.

We fit the NBGG, Poisson-generalized-gamma (PGG) cure rate and mixture-
generalized-gamma (MGG) regression models to these data. For details, see for
example, Ortega et al. (2009b) and Ortega et al. (2009a). The fitted models can
be compared employing the Akaike information criterion (AIC). Table 5 gives
the estimates (and their standard errors) of the parameters for both regression
models and the AIC values in increasing order. The NBGG model yields the best
fitting according to these criteria.

The QQ plot of the normalized randomized quantile residuals (Dunn and
Smyth, 1996; Rigby and Stasinopoulos, 2005) in Figure 8 suggests that the NBGG
regression model yields an acceptable fit. Each point in Figure 8 corresponds to
the median of five sets of ordered residuals. Hence, in the rest of this section we
adopt this model.

Finally, we end up our application dealing with the estimation of the surviving
fraction (p0). To estimate the proportion of cured individuals, we use (10) and
the invariance property of the MLEs, namely

p̂0i =
exp(0.900− 0.409x3)

1 + exp(0.900− 0.409x3)
, and p̂0 =

∑n
i=1 p̂0i

n
= 0.487.

From these results, we note that the estimate of the parameter α is equal
to 2.830 > 0, providing favorable indications for the alternative cure model and
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Table 4: Relative changes [-RC-in %], estimates and the corresponding p-
values in parentheses for the regression coefficients to explain the expected
log-survival time

Dropped µ̂ σ̂ α̂ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

None - - - - - - - - - -
1.37 0.55 3.00 1.33 0.13 -0.01 -0.41 0.06 -0.14 -0.01
(-) (-) (-) (0.05) (0.49) (0.13) (0.00) (0.78) (0.52) (0.75)

I1 [6] [2] [18] [13] [38] [-18] [-5] [115] [-40] [-45]
1.28 0.56 2.46 1.50 0.08 -0.01 -0.43 0.12 -0.08 -0.01
(-) (-) (-) (0.01) (0.67) (0.08) (0.00) (0.53) (0.72) (0.64)

I2 [6] [0] [13] [-4] [25] [5] [-3] [-16] [49] [-39]
1.29 0.55 2.59 1.38 0.10 -0.01 -0.43 0.07 -0.07 -0.01
(-) (-) (-) (0.03) (0.61) (0.17) (0.00) (0.75) (0.76) (0.66)

I3 [0] [4] [-7] [-2] [14] [-4] [1] [-43] [-12] [-5]
1.37 0.53 3.20 1.35 0.11 -0.01 -0.41 0.08 -0.16 -0.01
(-) (-) (-) (0.04) (0.54) (0.11) (0.00) (0.68) (0.46) (0.72)

I4 [10] [-1] [24] [-13] [55] [-10] [-6] [-108] [91] [-68]
1.24 0.55 2.29 1.50 0.06 -0.01 -0.44 0.12 -0.01 -0.01
(-) (-) (-) (0.01) (0.76) (0.12) (0.00) (0.55) (0.96) (0.60)

I5 [6] [2] [11] [-14] [51] [-21] [-3] [-157] [31] [-45]
1.29 0.54 2.67 1.51 0.06 -0.01 -0.43 0.15 -0.10 -0.01
(-) (-) (-) (0.01) (0.73) (0.07) (0.00) (0.44) (0.68) (0.63)

I6 [6] [3] [7] [-6] [39] [1] [-2] [-58] [40] [-44]
1.29 0.53 2.78 1.40 0.08 -0.01 -0.42 0.09 -0.09 -0.01
(-) (-) (-) (0.03) (0.67) (0.15) (0.00) (0.65) (0.71) (0.64)

I7 [9] [3] [17] [-13] [68] [-13] [-4] [-148] [85] [-68]
1.24 0.53 2.50 1.51 0.04 -0.01 -0.43 0.14 -0.02 -0.01
(-) (-) (-) (0.01) (0.82) (0.10) (0.00) (0.47) (0.93) (0.59)

Table 5: MLEs for the regression model with a cure fraction fitted and in paren-
thesis the standard error to the cutaneous melanoma data set and information
criteria considering other models

Parameter NBGG PGG MGG

µ 1.335 (0.248) 0.883 (0.082) 0.719 (0.067)
σ 0.556 (0.054) 0.642 (0.045) 0.666 (0.046)
α 2.830 (1.257) — —
β0 0.900 (0.307) -1.258 (0.200) 1.153 (0.269)
β3 -0.409 (0.097) 0.368 (0.069) -0.473 (0.105)

AIC 1024.009 1029.934 1038.993
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Figure 8: QQ plot of the normalized randomized quantile residuals with identity
line for the GG regression model

with super-dispersion. We also observe that the parameter β3 is significant (at
the 5% level), which indicates the nodule size influences the survival time of the
patients. Besides this, we note that the estimate of β3 is negative, which implies
that the larger the nodule, the smaller the estimated probability of the patient’s
survival is. In this study, we could also verify that approximately 49% of the
patients are cured of skin cancer.

The MLEs of the survival function and Kaplan-Meier estimate are presented
in Figure 9. The model provides a good fit for the cured fraction.
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Figure 9: Kaplan-Meier curves (solid lines), estimated survival, estimates of the
cure fraction and and upper and lower 95% confidence limits for the cutaneous
melanoma data
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Next, we turn to a simplified model retaining the nodule category as the
only covariate. The estimates of the surviving fraction of patients stratified by
nodule category from 1 to 4 (and standard error) are 0.620(0.0406), 0.521(0.0421),
0.420(0.0382) and 0.344(0.0328), respectively, where standard error were obtained
after an application of the delta method. Figure 10 displays the surviving function
stratified by nodule category from 1 to 4 jointly with the Kaplan-Meier estimate
(left panel). Also, Figure 10 (right panel) displays the surviving function stratified
by nodule category for non-cured patients.
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Figure 10: Kaplan-Meier curves (solid lines) and the estimated of the survival
function for the NBGG model (left panel) and the estimated of the survival
function for the non-cured pacients (right panel) stratified by nodule category
(1-4, from top to bottom).

7. Concluding Remarks

In this paper, we propose a model for lifetime data, called the negative bino-
mial generalized gamma (NBGG for short) cure rate model, which was conceived
inside a latent competing causes scenario with cure fraction. Maximum likeli-
hood inference is implemented straightforwardly and asymptotic theory may be
considered for generating confidence intervals for the parameters and hypothesis
tests. Also, we provide applications of influence diagnostics (global, local and
total influence) in the NBGG model with covariates. The necessary matrices for
application of the techniques were obtained by taking into account some usual
perturbations in the model/data. Therefore, the NBGG regression model with
a cure fraction can be an interesting option to explain/predict the log-survival
time and long-term individuals.

Appendix A: Hessian Matrix L̈(ϑ)

Here, we derive the necessary formulas to obtain the second-order partial
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derivatives of the log-likelihood function. After some algebraic manipulations,
we obtain

Lαα =

n∑
i=1

δi
p−α0i log(p0i)[−α log(p0i)− p−α0i ]

h2
i

− 1

α2

n∑
i=1

F (yi;γ)p−α0i log(p0i)

gi

− 2

α3

n∑
i=1

log
[
1 + hiF (yi;γ)

]
+

n∑
i=1

[F (yi;γ)]2[log(p0i)]
2(δi + α−1)p−2α

0i

g2
i

+

n∑
i=1

F (yi;γ) log(p0i)p
−α
0i

[
− α−2 − (δi + α−1) log(p0i)

]
gi

;

Lαβj =
n∑
i=1

δixijp
−α
0i

h2
i [1 + exp(x>i β)]

{
− hi[1− α log(p0i)]− αp−α0i log(p0i)

}
−

n∑
i=1

xijp
−α
0i F (yi;γ)

gi[1 + exp(x>i β)]

{
α−1 − (δi + α−1)[1− α log(p0i)]

}
−

n∑
i=1

xijαp
−2α
0i log(p0i)(δi + α−1)[F (yi;γ)]2

g2
i [1 + exp(x>i β)]

;

Lαγk =
n∑
i=1

δi[ḟ(yi;γ)]γk
h2
i f(yi;γ)

[
hi + αp−α0i log(p0i)

]
+

n∑
i=1

[Ḟ (yiγ)]γk

[−hi
α2gi

+
p−α0i log(p0i)

g2
i (δi − α−1)−1

]
;

Lβjβj′ =
n∑
i=1

δixijxij′p0i

h2
i [1 + exp(x>i β)]2

{
hi[1− exp(x>i β)]− p0i

}
−

n∑
i=1

(δi + α−1)F (yi;γ)xijxij′p0i

g2
i [1 + exp(x>i β)]2

{
gi[1− exp(x>i β)]− p0iF (yi;γ)

}
;

Lβjγk = α
n∑
i=1

(δi + α−1)xijp
−α
0i [Ḟ (yi;γ)]γk

g2
i [1 + exp(x>i β)]

;

Lγkγk′ = α
n∑
i=1

δi
hi[f(yi;γ)]2

{
[f̈(yi;γ)]γkγk′f(yi;γ)− [ḟ(yi;γ)]γk [ḟ(yi;γ)]γk′

}
−

n∑
i=1

hi(δi + α−1)

g2
i

{
[F̈ (yi;γ)]γkγk′gi − hiḞ (yi;γ)]γk [Ḟ (yi;γ)]γk′

}
;

where
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hi = p−α0i − 1, gi = 1 + hiF (yi;γ),

[ḟ(yi;γ)]γk = ∂f(yi;γ)/∂γk, [f̈(yi;γ)]γkγk′ = ∂2f(yi;γ)/∂γk∂γk′ ,

[Ḟ (yi;γ)]γj = ∂F (yi;γ)/∂γk, [F̈ (yi;γ)]γkγk′ = ∂2F (yi;γ)/∂γk∂γk′ ,

with p0i is defined in Section 3, i = 1, · · · , n, j, j′ = 1, · · · , p and k, k′ = 1, 2.

Appendix B: Case-Weight Perturbation Scheme

Here, we provide the elements considering the case-weight perturbation scheme.
The elements of the matrix ∆ = [∆>α ,∆

>
β(p× n),∆>γ(2× n)]> are expressed as

(∆α)i =
δi
{
− p̂−α̂0i [α̂ log(p̂0i) + 1] +1

}
α̂ĥi

+
log(ĝi)

α̂2
+

(δi + α̂−1)p̂−α̂0i log(p̂0i)F (yi; γ̂)

ĝi
;

(∆βj )i =
−α̂xij p̂−α̂0i

[1 + exp(x>i β̂)]

[
δi

ĥi
− (δi + α̂−1)F (yi; γ̂)

ĝi

]
;

(∆γk)i =
α̂δi[ḟ(yi;γ)]γk

ĥif(yi; γ̂)
− (δi + α̂−1)ĥi[Ḟ (yi;γ)]γk

ĝi
.

Appendix C: Response Perturbation Scheme

Here, we provide the elements ∆ji considering the response variable pertur-
bation scheme. The elements of the matrix ∆ = [∆>α ,∆

>
β(p × n),∆>γ(2 × n)]>

are expressed as

(∆α)i =
[Ḟ (y∗i ;γ)]ωi

ĝi

[
ĥi
α̂2

+
(δi + α̂−1)p̂−α̂0i log(p̂0i)

ĝi

]
;

(∆βj )i =
α̂xij p̂

−α̂
0i (δi + α̂−1)[Ḟ (y∗i ;γ)]ωi

ĝ2
i [1 + exp(x>i β̂)]

;

(∆γk)i =
α̂

ĥi[f(yi; γ̂)]2

{
[f̈(y∗i ;γ)]ωiγkf(yi; γ̂)− [ḟ(y∗i ;γ)]γk [ḟ(y∗i ;γ)]ωi

}
−(δi + α̂−1)ĥi

ĝ2
i

{
ĝi[F̈ (y∗i ;γ)]ωiγk − ĥi[Ḟ (y∗i ;γ)]ωi [Ḟ (y∗i ;γ)]γk

}
.

Appendix D: Explanatory Variable Perturbation

Here, we provide the elements ∆ji considering the explanatory variable per-
turbation scheme. The elements of ∆ = [∆>α ,∆

>
β(p× n),∆>γ(2× n)]> are given
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by

(∆α)i =
δiα̂ log(p̂0i)p̂

−α̂
0i β̂tSx(1 + p̂−α̂0i )

ĥi[1 + exp(x>i β̂)]
+
α̂[F (yi; γ̂)]2(δi + α̂−1) log(p̂0i)β̂tSx

ĝ2
i [1 + exp(x>i β̂)]

− F (yi; γ̂)p̂α̂0iβ̂tSx

ĝi[1 + exp(x>i β̂)]

{
α̂−1 − (δi + α̂−1)

[
− α̂ log(p̂0i) + 1

]}
;

(∆γk)i =
α̂β̂tSxp̂

−α̂
0i

[1 + exp(x>i β̂)]

{
α̂δi[ḟ(yi;γ)]γk
h2
i f(yi; γ̂)

+
(δi + α̂−1)[Ḟ (yi;γ)]γk

ĝ2
i

}
.

For j 6= t,

(∆βj )i =
α̂δixij β̂tSxp̂

−α̂
0i

ĥi[1 + exp(x>i β̂)]2

{
− ĥi[α̂+ exp(x>i β̂)] + α̂p̂−α̂0i

}
+
α̂xij β̂tSxp̂

−α̂
0i (δi + α̂−1)F (yi; γ̂)

ĝ2
i [1 + exp(x>i β̂)]2

{
α̂+ exp(x>i β̂)

[1 + ĥiF (yi; γ̂)]−1
− α̂p̂−α̂0i F (yi; γ̂)

}
.

For j = t,

(∆βt)i =
α̂δiSxp̂

−α̂
0i

ĥ2
i [1 + exp(x>i β̂)]2

{
ĥi
[
− xitβ̂t(α̂+ exp(x>i )β̂)

]
+ α̂xitβ̂tp̂

−α̂
0i

}
+
α̂Sx(δi + α̂−1)[F (yi; γ̂)]2

ĝi2p̂α̂0i[1 + exp(x>i β̂)]2

{
xitβ̂tα̂− 1 + exp(x>i β̂)(1 + xitβ̂t)

F (yi; γ̂)ĝ−1
i

− α̂xitβ̂t
p̂α̂0i

}
,

where

ĥi = p̂−α̂0i − 1, ĝi = 1 + ĥiF (yi; γ̂), [ḟ(yi;γ)]γk = ∂f(yi;γ)/∂γk
∣∣
γ=γ̂ ,

[Ḟ (yi;γ)]γk = ∂F (yi;γ)/∂γk
∣∣
γ=γ̂ , [ḟ(y∗i ;γ)]ωi = ∂f(y∗i ;γ)/∂ωi

∣∣
γ=γ̂,ω=ω0

,

[Ḟ (y∗i ;γ)]ωi = ∂F (y∗i ;γ)/∂ωi
∣∣
γ=γ̂,ω=ω0

,

[ḟ(y∗i ;γ)]γk = ∂f(y∗i ;γ)/∂γk
∣∣
γ=γ̂,ω=ω0

,

[Ḟ (y∗i ;γ)]γk = ∂F (y∗i ;γ)/∂γk
∣∣
γ=γ̂,ω=ω0

,

[f̈(y∗i ;γ)]ωiγk = ∂2f(y∗i ;γ)/∂ωi∂γk
∣∣
γ=γ̂,ω=ω0

,

[F̈ (y∗i ;γ)]ωiγk = ∂2F (y∗i ;γ)/∂ωi∂γk
∣∣
γ=γ̂,ω=ω0

,

where p0i is defined in Section 3, i = 1, · · · , n, j = 1, · · · , p, and k = 1, 2.
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