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Abstract

The COVID-19 (COrona VIrus Disease 2019) pandemic has had profound global consequences
on health, economic, social, behavioral, and almost every major aspect of human life. Therefore,
it is of great importance to model COVID-19 and other pandemics in terms of the broader
social contexts in which they take place. We present the architecture of an artificial intelligence
enhanced COVID-19 analysis (in short AICov), which provides an integrative deep learning
framework for COVID-19 forecasting with population covariates, some of which may serve as
putative risk factors. We have integrated multiple different strategies into AICov, including
the ability to use deep learning strategies based on Long Short-Term Memory (LSTM) and
event modeling. To demonstrate our approach, we have introduced a framework that integrates
population covariates from multiple sources. Thus, AICov not only includes data on COVID-19
cases and deaths but, more importantly, the population’s socioeconomic, health, and behavioral
risk factors at their specific locations. The compiled data are fed into AICov, and thus we obtain
improved prediction by the integration of the data to our model as compared to one that only
uses case and death data. As we use deep learning our models adapt over time while learning
the model from past data.
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1 Introduction
The COVID-19 pandemic has caused an enormous health and humanitarian crisis worldwide.
It is unlike any other single phenomenon that has occurred in modern history since the end of
World War II. The pandemic’s effects have spanned over a range that is so vast over space, and
yet so condensed over time, that the dual blows of intensity and rapidity have exposed myriad
systemic vulnerabilities in many societies around the world.

The first known case was traced back to 17 November 2019. Since the emergence of a cluster
of cases in Wuhan, China, on 31 December 2019, COVID-19 has spread rapidly worldwide. Just
six months later, as of 23 June 2020, there are 8,993,659 COVID-19 cases and 469,587 deaths
globally. On 30 January 2020, the World Health Organization (WHO) (Welt Health Organiza-
tion, 2020) declared COVID-19 to be a Public Health Emergency of International Concern and
subsequently, on 11 March 2020, a pandemic.
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In the United States, the first case of COVID-19 was confirmed on 20 January 2020 in
Washington State, and as of 23 June 2020, there were over 2.3 million confirmed cases and
121,167 deaths (New York Times, 2020a). Although initial efforts to reduce the spread took place,
recent data shows a resurgence at an increased scale. In the absence of a vaccine or treatment to
effectively combat the disease, non-pharmaceutical policy interventions such as social distancing
and lockdowns are recommended by health experts to prevent further transmission. To gain
insights into the possible impact of such measures on COVID-19 outcomes, we depend upon the
ability to accurately forecast the spread of reported cases and confirmed deaths and recoveries.
Naturally, the accuracy of forecasting relies on the availability of current, reliable data and
historical data to determine estimates of uncertainty.

During outbreaks of epidemics, initially data on cases and deaths could be scarce, and
the quality of data annotation, validation, and aggregation might be uncertain. For instance,
changes in clinical data entry, such as the addition of a new category clinically diagnosed to the
existing lab-confirmed category, may likely have been reflected in the reporting (Petropoulos and
Makridakis, 2020). Initial fears about COVID-19 among the general population with regards to
the trajectory of the pandemic could also affect administrative reporting. Diverse media sources
and differences in local and federal policies may add to the general uncertainty about disease
progression. Nevertheless, a data-driven approach to forecasting can offer valuable insights into
the disease dynamics, and thereby an ability to objectively plan for the near future.

Unlike earlier global outbreaks, during COVID-19, the current worldwide digital ecosystem
allows for real-time data collection, which in turn is used by artificial intelligence (AI) and deep
learning systems to understand healthcare trends, model risk associations, and predict outcomes
(Ting et al., 2020). In addition to traditional public health surveillance strategies available to
most countries, a variety of static and dynamic data types may be integrated to model the scale
and dynamics of this pandemic (Pyne et al., 2015). Several organizations, including the Johns
Hopkins University’s Center for Systems Science and Engineering, the New York Times, the At-
lantic’s COVID-19 tracking project, among others have developed real-time tracking maps for
following COVID-19 cases around the world using data from the U.S. Centers for Disease Con-
trol and Prevention (CDC), WHO, and other international health agencies. Notably, the CDC
receives forecasts from several modeling groups that use a wide variety of approaches ranging
from SEIR (Susceptible-Exposed-Infectious-Recovered) to Agent-based to Bayesian models to
understand the non-pharmaceutical policy interventions (or the lack thereof) to predict disease
dynamics and its impact on human lives (CDC, 2020b).

For precise and contextually relevant modeling of COVID-19 dynamics for a given popula-
tion or community, we use data integration to combine community-specific health and behavioral
risk factors, demographic and socioeconomic variables that are available for the corresponding
county along with the cases and deaths data for COVID-19 while leveraging the recently devel-
oped and increasingly popular deep learning strategies to forecast COVID-19 dynamics using
our model. Towards this, we develop a parallel computing platform called AICov standing for
AI-driven Platform for COVID-19 to implement the different components of our framework and
obtain the needed resources through multi-cloud interfaces in a robust manner.

In this study, while we incorporate information from community and county-specific covari-
ates to inform our forecasting model for each metropolitan area, we want to avoid the so-called
ecological fallacy in drawing inferences about individual disease outcomes based on large area-
level aggregated risk factors. Our objective is also to underscore the nuanced roles played by
pre-existing socioeconomic and other prevailing conditions of a given community that can act
as determinants of its health outcomes and possible disparities, especially under such sudden
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stresses to its current systems as those felt during any pandemic. It is important to note that the
underlying models are learned directly from the data instead of being projected by a theoretical
epidemiological model that relies on simulation populations. This allows quick adaptation and
self-adaptation in regards to changing behaviors and regional differences.

The paper is structured as follows. In Section 2, we provide a short overview of deep learning-
based time series forecasting that we use in AICov. In Section 3, we outline our architecture that
enables the user to conduct powerful time series forecasting by integrating static and dynamic
information on population risk factors with time-series disease data. In Section 4, we describe the
input data for AICov. Next, we demonstrate our analysis involving the population risk factors
and identify those that contribute to our prediction accuracy. Finally, we present our conclusion.

2 LSTM
This section presents a short overview of the recurrent neural network algorithms used in this
work.

2.1 LSTM Background

In this study, we base our work on a traditional LSTM algorithm for our predictions (Keras,
2015; Hochreiter and Schmidhuber, 1997). An LSTM is a Recurrent Neural Network (RNN)
(Rumelhart et al., 1986) with feedback connections allowing the use of data input sequences to
predict data output sequences. LSTMs have been applied to many application areas from hand-
writing (Graves and Schmidhuber, 2009), image, feature detection, and time series prediction
(Schmidhuber et al., 2005). LSTM’s have an internal state that is used to prevent the vanishing
gradient problem (Hochreiter, 1991) during the training of RNNs.

Different variants of LSTM algorithms exist. Ours is based on an LSTM cell depicted in
Figure 1.

It has an input gate, output gate, and a forget gate. The cell is maintaining how a subsequent
value is calculated. This includes (a) how input values are influencing the cell via the input gate,
(b) how the forget gate influences a memory value within the cell via the forget gate, and (c) how

Figure 1: LSTM Unit Diagram.
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the output gate influences the output activation of the LSTM unit. A cell has a number of inputs
and outputs that are weighted. During a training step, these weights are learned to be reused
in a prediction process between input and output sequences. The LSTM network will have a
number of input values represented as vector x and a number of output values in the last layer
of the network predicting a number of future values (Greff et al., 2017). For our experiments this
includes the numbers of days we use as input to our prediction and the number of days we use
as output of our prediction for a single cell. In our implementation the number for inputs and
outputs can be adjusted. We repeat this prediction over all input sequences to create the output
forecast sequences. Next we list the equations (1)–(6) used in LSTM. We use in the equations
◦ as the Hadamard product, σg is the sigmoid function for the gate. With D being the number
of days as input features and H being the number of hidden layers, the inputs and outputs are
defined by xt ∈ R

D the input vector to the LSTM unit and ht ∈ R
H the hidden state vector e.g.,

the last of which is the output vector of the LSTM. In our case the output contains the days we
predict based on the input features. The equations are

ft = σg(Wf xt + Uf ht−1 + bf ), (1)
it = σg(Wixt + Uiht−1 + bi), (2)
ot = σg(Woxt + Uoht−1 + bo), (3)
c̃t = σc(Wcxt + Ucht−1 + bc), (4)
ct = ft ◦ ct−1 + it ◦ c̃t , (5)
ht = ot ◦ σh(ct ), (6)

where ft ∈ R
H is the forget gate’s activation vector, it ∈ R

H is the input/update gates activation
vector, ot ∈ R

H output gate’s activation vector, c̃t ∈ R
H the cell input activation vector ct ∈ R

H

the cell state vector, σc is the cell activation function, W ∈ R
H×D, U ∈ R

H×H and b ∈ R
H being

the weight matrices and bias vector parameters which are learned during training. In particular
we denote Wq and Uq contain the weights of the input and recurrent connections, where the
subscript denotes either the input gate i, the output gate o, the forget gate f or the memory
cell c. For a more detailed discussion about LSTM’s we refer to Greff et al. (2017).

2.2 Covariate Enhanced LSTM
We often think of the laws of physics described by operators that evolve the system given
sufficient initial conditions and in this language, we have shown how to represent Newton’s law
operator by a recurrent network (Kadupitiya et al., 2020). We expect that the time dependence of
many complex systems: Covid pandemics, Southern California earthquakes, traffic flow, security
events can be described by deep learning operators that both capture the dynamics and allow
predictions.

In this paper, we adopt this approach to describe the time dependence of COVID-19 infec-
tion and fatality counts in different regions. We intend to process the two time-series (infections,
fatalities/deaths) associated with each city plus the covariates (fixed in time but dependent on
region) to build a model for the time evolution of the data. There is a nontrivial architecture
design choice as to the method of handling the time-independent covariates. We could combine
a recurrent network for the time series with some fixed network for the covariates. However,
that does not fit with our concept of deriving an evolution operator for COVID-19 data that
naturally depends on the covariates for each city. Thus instead, we feed the covariates into the
recurrent network as input in addition to the days.
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3 AICov Architecture
The motivation for creating this architecture is based on our experience with deep learning
toolkits such as Keras and PyTorch. While these systems provide the necessary APIs to integrate
time series solutions, they target primarily more general user communities. In particular, they
do not consider existing data sets or specific needs and analysis options to evaluate them for the
purpose of COVID-19 risk factor data integration. We describe below the different requirements
that motivate the design of our architecture framework, AICov, and how we address each of
these.
Requirement 1 (Ease of Use). A major design criterion for AICov is that the framework
must be easy to use, and extensions can be made to allow usability of both the Application
Programming Interfaces (API) as well as the user interface. To address these requirements, we
are devising a specialized but easy to use time series API for COVID-19 that integrates common
tasks such as automated filtering and normalization of the data.
Requirement 2 (Interactive Access). Due to the experimental nature of analyzing the data,
AICov must support the exploration of the data in an interactive fashion. As many data scientists
use Jupyter Notebooks to integrate their work interactively, AICov integrates such notebooks.
Jupyter notebooks allow rapid modification of the analysis workflow through the ease of Python
as programming language. Additionally, they enable us to formulate easily sophisticated scientific
analytics workflows with the help of Python and Jupyter Notebooks.
Requirement 3 (Expandable API). Assuming that new models and other analysis algorithms
will be developed over time, AICov must allow the integration of such models through programs
and APIs. To address this requirement, we are developing an abstract API for data, analysis, and
metadata parameter adjustments. External services can be integrated with the help of REST
(REpresentational State Transfer) services. The REST services are automatically generated from
function specifications (von Laszewski et al., 2020a).
Requirement 4 (Flexible Data Source Integration). The integration of various sources of data
is a key part of AICov. To achieve this goal, we provide a number of abstractions and data
manipulation functions to extract needed data from established sources. Furthermore, the data
can be combined, and additional data wrangling by external groups can be integrated. Through
such abstractions, it is possible to replace, add, and correct data sets that are part of the analysis.
This allows us to compare different results created from different data sets. Moreover, we include
data selection directly in our framework to easily and quickly reuse them in a data mashup. An
important example is that the data need not be static over the disease’s progression but can be
continuously updated. This also has a significant impact on our analytics algorithms.
Requirement 5 (Automated Update of the Analytics). As the data can change, previous anal-
yses may have to be updated. Our forecast is not just a single script but includes a mechanism to
register multiple workflows of continuously integrated (CI) analysis that are automatically rerun
when new data are made available to the system. Previous results are maintained. Metadata
with these runs can retrieve the versioned data sets used to calculate and store the versioned
analytics workflow.
Requirement 6 (Flexible Model definition). We want to allow experimentation with various
models in AICov that may be easily and flexibly definable as workflows. We give functional
abstraction definitions that enables us to define the models ourselves or integrate third party
models describing the spread of the disease.
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Requirement 7 (Deep Learning Forecast). As the forecasting models depend on changing
data that are made available daily, it is important for AICov to utilize the newly available data.
Many models can be applied to this, including moving averages based models or models that are
purely derived from deep learning. To address this requirement, AICov allows for the integration
of both. Furthermore, in our deep learning framework, we can integrate an automated search
for important risk factors, which is the focus of this study.

Requirement 8 (Model Orchestration). To coordinate the different model predictions and the
generation of the deep learning forecasts, we need the ability to orchestrate them while applying
a number of parameters. To address this requirement, the AICov architecture includes the ability
to integrate parameter sweeps to, for example, identify hyperparameters, or integrate different
data sets as parameters to identify suitable forecast models that can deliver the one which fits
the best.

Requirement 9 (Compute Resource Mapping). For other uses of AICov, we need to integrate a
flexible resource utilization framework. To address this requirement, we leverage from our earlier
work and utilize through Cloudmesh and National Institute of Standards and Technology (NIST)
Big Data Working Group (NBDIF) definitions cloud services into the architecture (Chang and
von Laszewski, 2019). This includes containers but also infrastructure services in the cloud.
Through the service integration, we also provide access to Graphics Processing Units (GPUs).

Requirement 10 (Convenient Interfaces). As we have a wide variety of users, we need to enable
interfaces that are used by the various communities. To address this requirement, we provide a
number of APIs, REST services and make them available via Jupyter Notebooks. In addition,
we developed some custom widgets for the notebooks that are specifically targeted towards data
integration, parameter manipulation, and visualization of the results.

Putting all these requirements together results in an architecture as shown in Figure 2.
In summary, the AICov architecture allows the inclusion of new data sources and models.

An orchestrator enables modifying parameters and selecting data sources and models used in the
analysis. The framework can be accessed via the interface layer that includes APIs, REST, and

Figure 2: AICov Architecture.
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Jupyter Notebooks. Compute interfaces are provided either by direct access of GPUs from local
resources or through the staging of automatically generated REST services via our Cloudmesh
REST Service integrator (von Laszewski et al., 2020a,b; von Laszewski, 2020). Additionally,
we can also access through abstractions cloud services that are offered by the various cloud
providers and are targeting our application domain. Different models can be easily integrated
into our framework to verify our forecast or enhance our forecast based on the users’ models
and data.

4 Data for the COVID-19 Analysis
While the U.S. has seen an overall case fatality rate of 5.14%, some U.S. locations have experi-
enced a disproportionate number of deaths compared to others. This disparity of deaths among
different communities could be attributed to a diversity of local risk factors and socioeconomic
determinants of health that now constitute a very active area of investigation. Researchers are
studying the effects of different community-specific socioeconomic variables, underlying health
conditions and comorbidities, infrastructure, and systemic responses. Given the complexity of
such underlying conditions that can determine individual disease outcomes, where and under
what conditions people get infected by the virus, and then recover or die take place not in
isolation but rather in an interplay of diverse factors that are characteristic to a local commu-
nity, which need to be synthesized. In other words, a basic requirement for effective modeling of
COVID-19 dynamics is that the information regarding a particular community’s vulnerabilities
and strengths pertaining to the disease must be as comprehensive and integrative as possible.
The regular reporting of accurate Coronavirus outbreaks data from local health departments
has been understandably difficult, especially in the areas that are hardest hit.

We use data on community-specific health and behavioral risk factors aggregated at the
county level from the large-scale longitudinal CDC Behavioral Risk Factor Surveillance System
(BRFSS) surveys (CDC, 2020a) and demographic and socioeconomic data from the U.S. Cen-
sus Bureau US Census Bureau (2020a) for each county, along with the cases and deaths data
compiled by the CDC National Center for Health Statistics (NCHS) (CDC, 2020c) and inte-
grate them with other data sources such as the American Hospital Directory (American Hospital
Directory, 2020).

4.1 Data Collection and Processing
Among the different sources of data on daily cases and deaths data collected and aggregated
at different spatial levels, especially for the U.S., many are either freely available repositories
such as GitHub or accessible via specifically developed online resources such as the New York
Times (New York Times, 2020b) and the Johns Hopkins Coronavirus Resource Center (Johns
Hopkins Coronavirus Resource Center, 2020). For this study, we generated two data sets based
on the latter resource upon our checking for the locations and times at which cumulative counts
of COVID-19 cases and deaths on any given day were no less than those on the previous day.
This led us to compile daily coronavirus cases and deaths data for 345 U.S. counties from 32
states and the District of Columbia and matched by five-digit Federal Information Processing
Standards (FIPS) code or county name to dynamic and static variables from additional data
sources.

The static data in this repository was collected from the U.S. Census Bureau and the
Centers for Disease Control and Prevention (CDC). The different fields cover the domains of
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behavioral and health risk factors, hospital capacity, and socioeconomic and demographic con-
ditions. Data on health outcomes, prevention measures, and unhealthy behaviors were extracted
from the CDC’s 500 Cities Local Data for Better Health program (Centers for Disease Control
and Prevention, 2020a) in the form of crude or age-adjusted prevalence of conditions such as
respiratory disease, obesity or smoking. These values were aggregated from the census tract to
the county level using the first five digits of the eleven-digit tract FIPS code. Because a single
county may consist of multiple individual cities, we include the list of all city labels within each
aggregate group to represent a greater metropolitan area. 110 of such metropolitan areas that
had more than 500 reported cases of COVID-19 by April 15, 2020, were selected for this study.

Notably, a greater metropolitan area such as New York City could be spread across more
than one county, which can lead to the complexity of aggregating counts and other variables.
Time series data for the 5 individual counties (boroughs) in New York City were not available
in the Johns Hopkins CSSE (Center for Systems Science and Engineering) data set. Rather, the
total number of cases and deaths for the entire city of New York are reported and assigned the
FIPS code of New York County (Manhattan). To ensure consistent geography across the static
and dynamic data, we compute the population-weighted sum or median of each covariate over
the assigned counties.

Demographic variables were gathered from the Census QuickFacts (US Census Bureau,
2020b) online resource using an automated web scraping algorithm and cover relevant areas such
as age, race, income, and population density. Additional socioeconomic variables include the Gini
Index, which measures economic inequality and CDC Social Vulnerability Index (SVI) (Centers
for Disease Control and Prevention, 2020b). The SVI was created to guide public health officials
and disaster response efforts by identifying the communities across the United States most likely
to need support during a crisis. Census tracts and corresponding counties are ranked across 15
social factors, which are grouped into four themes: socioeconomic status, household composition
and disability, minority status and language, and housing and transportation.

Lastly, the total number of general acute care, critical access, and military hospitals within
each county are included in the data. Such variables included the number of relevant hospitals
per county, and the estimated number of beds (total known bed counts added to the number of
hospitals in the county with missing data times the average number of beds per hospital in that
state) per 1,000 people using the American Hospital Directory (American Hospital Directory,
2020). The list of covariates is presented in Table 1.

5 Analysis
We have conducted a number of analysis efforts to evaluate the validity of our approach. We
focus on the following questions:

Question 1. Can we apply deep learning strategies that self-learn the behavior of a model in
order to provide future predictions? See Section 5.1.

Question 2. Can we use real time data as input and apply deep learning strategies instead of
models that self learn and provide future predictions? See Section 5.2.

Question 3. Does the inclusion of covariates improve the prediction quality while including
geospatial and socio-economic risk factors? See Section 5.2.

Question 4. Are there some impact factors that influence the prediction more than others? See
Section 5.2.
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Table 1: Covariate Risk factor abbreviations as used in this study.

Risk Factor Description

ARTHRITIS Percent reported with arthritis
BINGE Percent reported with binge drinking
BLACK Percent of Blacks in the population
BPHIGH Percent reported with high blood pressure
BPMED Percent reported taking blood pressure medication
CANCER Percent reported as cancer patients
CASTHMA Percent reported with current asthma
CHD Percent reported with coronary heart disease
CHECKUP Percent reported with health checkup
CHOLSCREEN Percent reported with cholesterol screening
COPD Percent reported with chronic obstructive pulmonary disease
CSMOKING Percent reported as currently smoking
DIABETES Percent reported with diabetes
ESTBEDS Number of estimated beds in hospitals
HIGHCHOL Percent reported with high cholesterol
HISPANIC Percent of Hispanic in the population
INSURANCE Percent reported with insurance
KIDNEY Percent reported with kidney disease
LPA Percent reported with no leisure-time physical activity
MHLTH Percent reported with not good mental health
NBEDS Number of beds in hospitals
NBEDS/1000 Number of beds per 1000 people
NHOSP Number of hospitals
NONE No risk factor used
OBESITY Percent reported with population that is obese
PHLTH Percent reported with physical health issues
POP_DENSITY_2010 Population Density from the 2010 Census
POVERTY Percent of poverty in the population
SENIOR Percent of seniors in the population
STROKE Percent reported with stroke
SVI_MINORITY Percent of social vulnerability index in the minority population
SVI_OVERALL Percent of social vulnerability index in the overall population

5.1 Deep Learning Predictions of Model-based Empirical Fits

To establish the feasibility of using LSTM, we have, in our analysis, verified that through deep
learning we can recreate the predictions identified by a model-based approach using empirical
fits. In this comprehensive analysis, we obtain predictions through deep learning while using
data generated from epidemiological models as discussed in Marsland and Mehta1 (2020). The
time series we used was 100 days long, and a multi-layered LSTM recurrent network was used.
Our prediction approach differs by learning not only from the demographics (fixed data for
each city) and time-dependent data but by integrating the population model for the underlying
prediction, as shown in Figure 3. Such model predictive integration capability is important in
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Figure 3: Cumulative empirical fits can be very accurately predicted with LSTM. The data is
taken from 37 U.S. Cities. Our comparison showcases that given a model, we can replicate the
prediction of such models using the model data over time. The x-axis represents the days since
the first data was fed to the model.

any application with multiple time scales. For example, this allows us to integrate multi-scale
time effects into the forecast, which could address the combination of general forecasts and the
next time steps of choice, such as days, weeks, months, or longer. For this analysis, we used 37
of the 110 cities with reliable empirical fits (that we derived from an epidemiological model and
not deep learning (Marsland and Mehta1, 2020)) for the cases and deaths data up to April 15,
2020. Our analysis identified a sophisticated single deep learning time evolution operator that
can describe these 37 separate data sets, and smooth fitted data leads to very accurate deep
learning descriptions via LSTM as depicted in Figure 3 that are smaller than 1% from the model
predictions.

5.2 Realtime-Data Covariate LSTM Prediction

In this section, we establish that using deep learning can not only be applied to model predictions
but also from real time data. As we want to evaluate the influence of the risk factors on our
prediction framework using not only models but deep learning algorithms, we have devised a
parameter sweep framework based on LSTM that conducts the prediction for 110 cities while
also considering the risk factors as listed in Table 1. This framework can query any combination
of risk factors as well as not including any, in which case it defaults to the traditional LSTM
algorithm as introduced in Section 2. Hence, we will answer Questions 2 and 3.

To answer these questions, we chose for our next analysis a date range between 2020-02-01
and 2020-05-25. We start with a basic LSTM operator with two layers of LSTM, and initial and
final fully connected layers (Kadupitiya et al., 2020). For LSTM, we have selected the activation
function based on Rectified Linear Units (RELU). For the last layer sigmoid is chosen. A drop
out rate of 0.2 is used, we use 16 input nodes, and have a batch size of 110. The batch size is the
subset size of the training sample (e.g. 110 out of 12540 for a 3 day input length) that is used
to train the LSTM during its learning process. The maximum epoch is chosen to be 200. This is
the number of steps after we interrupt the learning process. The number of nodes internally is
32. The maximum total number of samples is 12540 when using 3 days as input length. We use
a two-layer LSTM, as shown in Table 2. Within our system, we have the ability to set a number
of input days. For this analysis, we have chosen three different input lengths, namely 3, 4, and
5 days. The term “None” in the output shape means this dimension is variable.
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Table 2: The deep learning parameters used for the model sweep creation in as exported by
Keras using 1 risk factor. The activation function is RELU and the recurrent activation function
is sigmoid.
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dense Dense (None, 1, 32) 96 128 (None, 5, 32) 1152 (None, 5, 32) 1280
LSTM LSTM (None, 1, 16) 3136 3136 (None, 5, 16) 3136 (None, 5, 16) 3136
LSTM 1 LSTM (None, 16) 2112 2112 (None, 16) 2112 (None, 16) 2112
Dense 1 Dense (None, 32) 544 544 (None, 32) 544 (None, 32) 544
Dense 2 Dense (None, 30) 990 990 (None, 30) 990 (None, 30) 990
The LSTM contains a total of 6,910 trainable parameters in case we include one risk factor. In the case, we do
not use any risk factor it is 6878, and when we include 33 risk factors, it is 7934.

We have run the training on all 110 cities from our data that represented each FIPS while
not including any risk factors (Question 2) and running them with a single risk factor while
iterating over all risk factors (Question 3). We then summed up all absolute errors for the
predicted data points over the same time period and repeated each experiment 10 times. We
summarized all the results in the form of a box-whisker diagram each for deaths and for cases.
We sorted the diagram in such a fashion that the risk factor that has the model with the lowest
error appears first. We preceded the graph with the experiment labeled as “NONE” that which
does not use any risk factors to provide a comparison. The graphs are depicted in Figures 4 for
cases, and 5 for deaths.

We show the errors and the association with a risk factors in Tables 3 and 4. In the ta-
bles we include the following columns (a) the Risk Factor (b) the root mean square error of all
models for this risk factor (c) the minimum cumulative error by risk factor and (d) the num-
ber of days that were used as input and identified to relate to the model with the minimum
cumulative error. The table has in the first column the rank this particular model compares to
all other models with minimal risk factor. The rank was obtained by sorting the best model
for each risk factor. We display two tables. One for cases (Table 3) and one for deaths (Ta-
ble 4).

We see that in our experiment, almost all risk factors lead to an increased model predic-
tion accuracy for cases. We note that by including factors such as population density, physical
health Insurance, population breakdown by ethnicity, number of hospitals, and diabetes, lead
to better overall predictions for cases. We also see that many of these factors perform better on
average.
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Table 3: Best models for cases for each risk factor and their respective errors. The model that
uses no risk factor is highlighted in grey. We present the Root Mean Square Error (RMSE), the
cumulative error and how many days as input were used for this corresponding model.

Place/Rank Risk Factor RMSE Cases Minimum
Cumulative Error
for Cases by Risk
Factor

Number of
Days as Input

1 POP_DENSITY_2010 0.0554 7.94 5
2 PHLTH 0.0548 8.01 3
3 BLACK 0.0550 8.12 4
4 HISPANIC 0.0561 8.22 5
5 NHOSP 0.0546 8.26 3
6 INSURANCE 0.0546 8.34 3
7 CHOLSCREEN 0.0547 8.37 3
8 DIABETES 0.0546 8.4 5
9 STROKE 0.0542 8.45 4

10 CHD 0.0540 8.46 5
11 CHECKUP 0.0549 8.51 5
12 NBEDS 0.0541 8.54 5
13 SVI_OVERALL 0.0548 8.58 5
14 KIDNEY 0.0546 8.61 5
15 CASTHMA 0.0551 8.63 5
16 BPMED 0.0547 8.74 3
17 LPA 0.0543 8.75 5
18 CSMOKING 0.0537 8.75 5
19 ARTHRITIS 0.0541 8.83 3
20 POVERTY 0.0550 8.84 3
21 ESTBEDS 0.0545 8.86 4
22 MHLTH 0.0549 8.9 3
23 COPD 0.0556 8.93 4
24 SENIOR 0.0551 8.93 3
25 CANCER 0.0545 8.99 3
26 NBEDS/1000 0.0544 9.05 3
27 BPHIGH 0.0546 9.13 4
28 NONE 0.0549 9.26 3
29 HIGHCHOL 0.0564 9.28 3
30 BINGE 0.0543 9.32 5
31 OBESITY 0.0545 9.5 3
32 SVI_MINORITY 0.0551 9.54 4
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Table 4: Best models for deaths for each risk factor and their respective errors. The model that
uses no risk factor is highlighted in grey. We present the Root Mean Square Error (RMSE), the
cumulative error and how many days as input were used for this corresponding model.

Place/Rank Risk Factor RMSE Deaths Minimum
Cumulative Error
for Deaths by Risk
Factor

Number of
Days as Input

1 SVI_OVERALL 0.0675 18.75 5
2 CSMOKING 0.0669 19.01 5
3 HISPANIC 0.0676 19.04 5
4 NONE 0.06696 19.09 4
5 POP_DENSITY_2010 0.0670 19.13 4
6 SENIOR 0.0685 19.27 3
7 CHOLSCREEN 0.0679 19.43 5
8 CASTHMA 0.0670 19.46 5
9 INSURANCE 0.0671 19.48 5

10 MHLTH 0.0687 19.53 3
11 LPA 0.0671 19.54 5
12 POVERTY 0.0673 19.57 5
13 OBESITY 0.0671 19.68 5
14 CANCER 0.0687 19.70 3
15 NBEDS/1000 0.0675 19.73 5
16 BLACK 0.0684 19.83 3
17 DIABETES 0.0676 19.84 5
18 ARTHRITIS 0.0669 19.94 4
19 NBEDS 0.0669 19.95 4
20 NHOSP 0.0674 19.95 5
21 BPHIGH 0.0678 19.99 5
22 PHLTH 0.0687 20.02 3
23 CHECKUP 0.0675 20.02 5
24 CHD 0.0687 20.15 3
25 STROKE 0.0669 20.16 4
26 HIGHCHOL 0.0686 20.35 3
27 ESTBEDS 0.0671 20.42 4
28 KIDNEY 0.0689 20.49 3
29 BINGE 0.0674 20.56 5
30 BPMED 0.0674 20.69 5
31 COPD 0.0675 20.98 5
32 SVI_MINORITY 0.0674 21.53 4
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Figure 4: Influence of risk factors on the accuracy of the prediction of COVID-19 cases. The y-axis
represents the cumulative error over all input data for the cities. The x-axis labels correspond
to the order of models for minimum model error.

Figure 5: Influence of risk factors on the accuracy of the prediction of COVID-19 deaths. The y-
axis represents the cumulative error over all input data for the cities. The x-axis labels correspond
to the order of models for minimum model error.

We observed a different scenario for deaths, in which we only identified three risk factors,
namely the Social Vulnerability Index (SVI), chain-smoking, and Hispanic that, when integrated
into our deep learning model, leads to better prediction results. However, the accuracy of the
overall prediction of deaths is far less precise than that of the cases. To showcase this, we have
included Figures 6a and 6b that show the respective errors for example for the population
density.

This can be explained by our input data distribution between cases and deaths in which
we noted higher fluctuations relative to the overall value in cases of deaths. A mitigation to
this issue would be using a seven day average over the analyzed period. However, we have
not done this on purpose for this analysis as we wanted to identify how a covariate enhanced
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Figure 6: Model prediction error for cumulative deaths when including one risk factor
POP_DENSITY_2010 in addition to the past number of cases and deaths.

LSTM behaves that includes risk factors based on the daily fluctuations. This was done to
avoid and showcase any needed preprocessing on the data and to identify the capability of
the deep learning framework while adapting to the fluctuations without any special activities.
Previously, we have already shown in Section 5.1 that for smooth data inputs the prediction
is very accurate. Using fluctuation data allows our framework for an automated ingest of data
on a daily basis to enable data fusion of new cases and deaths information. Hence, we can re-
train the model with new incoming data every day. Through repeated training experiments, we
found the LSTM hyperparameters such as epochs and dropout values that work well for our
experiments.

We conducted an additional analysis and plotted the top 10 best cumulative prediction
model errors for each risk factor in Figure for cases and deaths. The horizontal black line shows
the first occurrence of no risk factor being used.

Notably, we identified that a jump occurs when we sort the top 10 model predictions at
around 320 models from a total of 3200 automatically generated models. This also underscores
the need to run our deep learning model multiple times to obtain best parameter candidates.
Furthermore, we see that the cumulative error for cases is about half the size as for deaths. This
is caused by cases having a larger number of samples than those from deaths.

6 Conclusion
While this study focuses on if and which risk factors can improve the predictions, we do not focus
on why. Such analysis could provide insights into causal relationships. For example, information
such as health insurance and the number of hospitals and beds are often related to the quality
of services that affect early detection and treatment. Furthermore, population parameters such
as population density can determine the rate of spread and the number of cases. Similarly,
distributions of comorbidities in a given population such as physical health, cholesterol screening,
diabetes, etc., are found to be insightful in predicting outcomes (Maleki et al., 2020). Identifying
such risk factors and correlating them to the prediction accuracy provides valuable candidates
for future studies.

A variety of mathematical and computational models have been used for predicting COVID-
19 outcomes (Jewell et al., 2020). It includes compartmental models such as the SIR (Susceptible-
Infected-Recovered) and SEIR (Susceptible-Exposed-Infected-Recovered) which are relatively
easy to compute, and thus, commonly used in epidemiology. However, their simplistic assump-
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Figure 7: Top 10 predictions from all different risk factors sorted by cumulative error for deaths
(7a) and cases (7b). The horizontal line in each figure represents the model cumulative error
with no risk factor as input for deaths and cases respectively.

tions, such as homogeneous mixing within populations, might make them less realistic for pan-
demics such as COVID-19. For instance, such models often assume a closed population that
does not change. However, COVID-19 dynamics have prominently included massive migration,
deaths due to comorbidities temporarily conferred immunity, and notably, major disparities in
terms of socio-economic determinants of health.

In terms of implementation, SIR and SEIR models are fitted with point estimates, which
may not adequately reflect the disease dynamics. For instance, it is difficult to account for
behavioral changes (e.g., human mobility) or systemic inadequacies (e.g., availability of hospital
beds) that may appear in specific subpopulations. Finally, the compartmental model estimates
do not allow for quantification of uncertainty, which makes it harder to use them in policy-
making. A comparison of modeling approaches concluded that while SEIR model performed
better for a couple of states in the U.S., alternatives have performed better for the other states
(Bertozzi et al., 2020). AICov has addressed most of the above modeling issues in its design, as
per the requirements of its forecasting objectives.
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We present AICov as an integrative deep learning framework for COVID-19 forecasting
with the help of population covariates. Thus, its objectives are different from those of tradi-
tional compartmental models. One of the important features of the architecture for AICov is
that it is by design targeting Cloud and High Performance Computing (HPC) resources to con-
duct parameter sweeps to leverage sophisticated deep learning toolkits. The architecture allows
the integration of various data sources that can update the data from its sources on demand
and update its model predictions based on newly introduced data. Parameters can easily be
adjusted via Jupyter notebooks that, in turn, call the computational backends on HPC and
cloud resources.

In addition to this architecture, we used data collected from multiple public sources and
agencies, and integrated the same across spatially contiguous units such as cities or metropoli-
tan areas. In our analysis, we have focused on 110 selected cities of the U.S., but the frame-
work is general and can be used to analyze similar data on pandemics from anywhere in the
world.

The comprehensive analysis showcases the feasibility of our approach. Based on the out-
comes reported it can lead to an improved prediction once we integrate risk factors in addition
to the time-dependent data such as cases and deaths resulting from COVID-19. While the im-
provements observed were modest, they do present a concrete way of improving the forecast
models. Inclusion of further putative factors from the ongoing worldwide studies on Covid-19
will only strengthen the future applications of our integrative framework.

We have shown that deep learning can return very good results while using smooth data,
which we used in our empirical fits. For real data as presented to us for the daily changes, it still
produced good results and even was able to predict changes based on weekly fluctuations. This
is typically not achieved by other non-data based model approaches. Also, we have used in our
data only cases and deaths, but we intend to expand this by using data about recovery and, in
the future, immunization.

We have experimented with different hyperparameters and included in this study a selection
of hyperparameters that have worked well for this data set.

As we have set up the first version of our AICov software, we have used cloud and high-
performance computers. All of our sophisticated analyses were run in a day on at most 16
computers. All deep learning algorithms that were run on GPUs were run on NVIDIA Tesla
K80s. However, our framework is on purpose generalized so that other compute resources can
be integrated and leveraged. This includes local, HPC, and cloud computing resources, as well
as different GPUs. Naturally, we also need to take into consideration not only the compute time
but also the time it takes for the researcher to derive the models. As our approach is self-learning
based on automated data updates, the time to prepare an updated model can be automatized
and minimal input is needed. Thus the overall effort is very competitive.

Acronyms
This section contains the list of acronyms in Table 5 as used in the paper for easy reference.
The definitions of the risk factors are however given within the paper in Table 1 on page 301
and not repeated here.
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Table 5: Non-risk factor acronyms used in this paper.

Abbreviation Description

API Application Programming Interfaces
BRFSS Behavioral Risk Factor Surveillance System
CDC U.S. Centers for Disease Control and Prevention
CI Continuous Integration
COVID-19 COrona VIrus Disease 2019
CSSE Center for Systems Science and Engineering
cum cumulative
FIPS Federal Information Processing Standards
GPUs Graphics Processing Units
HPC High Performance Computing
LSTM Long Short-Term Memory
MSE Mean Squared Error
NBDIF NIST Big Data Working Group
NCHS CDC National Center for Health Statistics
NIST National Institute of Standards and Technology
NONE No risk factors used
NORM_POP Normalized Population
NSF National Science Foundation
RELU REctified Linear Unit
REST REpresentational State Transfer
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SEIR Susceptible, Expose, Infectious, Recovered
SELU Scaled Exponential Linear Unit
SIR Susceptible, Infectious, Recovered
U.S. United States of America
WHO World Health Organization

Supplementary Material
The code and paper document represented to implement AICov are contained in several repos-
itories:
1. The entire cloudmesh code on which the cloud based implementation of the AICov frame-

work is based and contains over 70 contributors is available publicly at https://github.com/
cloudmesh. Cloudmesh contains a number of modules that dependent on the users access to
cloud resources can be customized. A detailed manual about the configuration is available
at https://cloudmesh.github.io/cloudmesh-manual/.

2. The entire COVID-19 analysis leverages cloudmesh and uses Jupyter notebooks to coordi-
nate its workflow as discussed in the architecture Figure 2. The code and data for the re-
sults presented in this paper are located in the repository at https://github.com/cloudmesh/
cloudmesh-covid.
The data was analysed on a variety of supercomputing resources including an allocation

https://github.com/cloudmesh
https://github.com/cloudmesh
https://cloudmesh.github.io/cloudmesh-manual/
https://github.com/cloudmesh/cloudmesh-covid
https://github.com/cloudmesh/cloudmesh-covid
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of 20 compute nodes that were utilized to execute the repeated model creation to assure
reproducible results.
However, the use of the data is copyrighted and must be authorized to be used for other
publications without contacting the authors. The data gathering and analysis is a significant
intellectual contribution and we like to avoid that the data is taken before we have not
secured a publication.

3. The entire paper is located in LATEXsource in the GitHub repository https://github.com/
cyberaide/paper-covid. This repository will be open sourced after acceptance of publication
to not violate any publisher restrictions. If desired the authors can grant access to this
repository prior to publication. Please contact the corresponding author.

A zip file is provided for the publication for archival purposes. However, it will be much more
convenient and easier to use our GitHub distribution as discussed in the supplementary section.
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