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On Chen et al.’s Extreme Value Distribution

Saralees Nadarajah∗ and Sumaya Eljabri
University of Manchester

Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con-
ference on Computational Intelligence and Software Engineering, pp. 1-4]
claim to have proposed a new extreme value distribution. But the formulas
given for the distribution do not form a valid probability distribution. Here,
we correct their formulas to form a valid probability distribution. For this
valid distribution, we provide a comprehensive treatment of mathematical
properties, estimate parameters by the method of maximum likelihood and
provide the observed information matrix. The flexibility of the distribution
is illustrated using a real data set.
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1. Introduction

The generalized extreme value (GEV) distribution is one of the most widely
applied models for univariate extreme values. Its cumulative distribution function
and probability density function are specified by

F (x) = exp(−u),

and

f(x) = σ−1u1+ξ exp(−u), (1)

respectively, where 1 + ξ(x − µ)/σ > 0, −∞ < ξ < ∞, −∞ < µ < ∞, σ > 0
and u = {1 + ξ(x − µ)/σ}−1/ξ. Of the three parameters, µ is referred to as the
location parameter, σ is referred to as the scale parameter, and ξ is referred to
as the shape parameter. For details on the GEV distribution, its theory and
applications, we refer the readers to Leadbetter et al. (1987), Embrechts et al.
(1997), Castillo et al. (2005), and Resnick (2008).

∗Corresponding author.
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In recent years, several extensions of the GEV distribution have been proposed
in the literature. The most recent of these is a four-parameter distribution due
to Chen et al. (2010). Earlier generalizations include the three-parameter kappa
distribution due to Mielke (1973) and the four-parameter kappa distribution due
to Hosking (1994). Chen’s generalization has the cumulative distribution function
and the probability density function given by

F (x) =

{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β
, (2)

and

f(x) = α(δβ)−1(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
, (3)

respectively, for −∞ < x < ∞, α > 0, β > 0, δ > 0 and −∞ < µ < ∞. An
excellent motivation for introducing (2) and (3) is described in Chen et al. (2010).
In spite of that, neither of (2) and (3) appear to be valid functions since (x−µ)α

is undefined for x < µ. Furthermore, the distribution given by (2) and (3) is
not a generalization of the GEV distribution, so it cannot be an extreme value
distribution.

The aim of this note is to provide a modification so that Chen et al. (2010)’s
distribution becomes a valid probability distribution. The modification has the
cumulative distribution function and the probability density function specified
by

F (x) =
(

1− 2−1/β
)−1 [{

1 + exp

[
−1

δ
(x− µ)α

]}−1/β
− 2−1/β

]
, (4)

and

f(x) = α(δβ)−1
(

1− 2−1/β
)−1

(x− µ)α−1 exp

[
−1

δ
(x− µ)α

]
×
{

1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
, (5)

respectively, for α > 0, β > 0, δ > 0 and x > µ > −∞. Clearly, (4) and (5)
form a valid probability distribution. We shall refer to the distribution given by
(4) and (5) as the Chen distribution. Although this distribution is still not an
extreme value distribution, we shall see later that it can be a good competitor to
the GEV distribution.
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If X is a random variable with probability density function (5), we write X ∼
Chen(α, β, δ, µ). The Chen quantile function is obtained by inverting (4)

x = Q(z) = F−1(z) = µ+

[
−δ ln

{[
2−1/β +

(
1− 2−1/β

)
z
]−β
− 1

}]1/α
. (6)

So, one can generate Chen variates from (6) by X = Q(U), where U is a uniform
variate on the unit interval (0, 1).

In the rest of this paper, we provide a comprehensive description of the mathe-
matical properties of (5). We examine the shape of (5) and its associated hazard
rate function in Sections 2 and 3, respectively. We derive expressions for the
moments in Section 4. Order statistics, their moments and L-moments are calcu-
lated in Section 5. Asymptotic distributions of the extreme values are provided
in Section 6. Estimation by the method of maximum likelihood – including the
observed information matrix – is presented in Section 7. A simulation study is
presented in Section 8 to assess the performance of the maximum likelihood es-
timators. Application of the Chen distribution to a real data set is illustrated in
Section 9.

The results in Section 4 involve infinite series representations. The terms
of these infinite series are elementary, so the infinite series can be computed by
truncation using any standard package, perhaps even pocket calculators.

2. Shape of Probability Density Function

The first derivative of ln{f(x)} for the Chen distribution is:

d ln f(x)

dx
= −α

δ
(x− µ)α−1 +

α− 1

x− µ
+
α

δ

(
1

β
+ 1

)
(x− µ)α−1

1 + exp [(x− µ)α/δ]
.

So, the modes of f(x) are the roots of the equation

α

δ
(x− µ)α − α

δ

(
1

β
+ 1

)
(x− µ)α

1 + exp [(x− µ)α/δ]
= α− 1. (7)

There may be more than one root to (7). If x = x0 is a root of (7) then it corre-
sponds to a local maximum if d ln f(x)/dx > 0 for all x < x0 and d ln f(x)/dx < 0
for all x > x0. It corresponds to a local minimum if d ln f(x)/dx < 0 for all x < x0
and d ln f(x)/dx > 0 for all x > x0. It corresponds to a point of inflexion if either
d ln f(x)/dx > 0 for all x 6= x0 or d ln f(x)/dx < 0 for all x 6= x0.

Plots of the shapes of (5) for µ = 0, δ = 1 and selected values of (α, β) are
given in Figure 1. Both unimodal and monotonically decreasing shapes appear
possible. Unimodal shapes appear for large α. Monotonically decreasing shapes
appear for small α.
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Figure 1: Plots of (5) for µ = 0, δ = 1, α = 0.5, 1, 2, 5, β = 0.5 (solid curve),
β = 1 (curve of dashes), β = 2 (curve of dots) and β = 5 (curve of dots and
dashes

Furthermore, the asymptotes of f(x) and F (x) as x→∞, µ are given by

f(x) ∼ α(δβ)−1
(

1− 2−1/β
)−1

xα−1 exp

[
−x

α

δ

]
,

as x→∞,

f(x) ∼ α(δβ)−12−1/β−1
(

1− 2−1/β
)−1

(x− µ)α−1,

as x→ µ,

1− F (x) ∼ β
(

1− 2−1/β
)−1

exp

[
−x

α

δ

]
,

as x→∞, and

F (x) ∼ (δβ)−12−1/β−1
(

1− 2−1/β
)−1

(x− µ)α,
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as x→ µ. Note that the upper tail of f(x) is that of a Weibull distribution with
shape parameter α and scale parameter δ. The lower tail of f(x) is polynomial
with power α−1. The upper tail of 1−F (x) is that of a Weibull distribution with
shape parameter α and scale parameter δ. The lower tail of F (x) is polynomial
with power α.

3. Shape of Hazard Rate Function

The hazard rate function defined by h(x) = f(x)/{1−F (x)} is an important
quantity characterizing life phenomena of a system. For the Chen distribution,
h(x) takes the form

h(x) = α
(x− µ)α−1 exp [−(x− µ)α/δ] {1 + exp [−(x− µ)α/δ]}−1/β−1

δβ
[
1− {1 + exp [−(x− µ)α/δ]}−1/β

] . (8)

The first derivative of lnh(x) is:

d lnh(x)

dx
= −α

δ
(x− µ)α−1 +

α− 1

x− µ
+
α

δ

(
1

β
+ 1

)
(x− µ)α−1

1 + exp [(x− µ)α/δ]

+α
(x− µ)α−1 exp [−(x− µ)α/δ] {1 + exp [−(x− µ)α/δ]}−1/β−1

δβ
[
1− {1 + exp [−(x− µ)α/δ]}−1/β

] .

So, the modes of h(x) are the roots of the equation

α

δ
(x− µ)α − α

δ

(
1

β
+ 1

)
(x− µ)α

1 + exp [(x− µ)α/δ]

−α(x− µ)α exp [−(x− µ)α/δ] {1 + exp [−(x− µ)α/δ]}−1/β−1

δβ
[
1− {1 + exp [−(x− µ)α/δ]}−1/β

] = α− 1. (9)

There may be more than one root to (9). If x = x0 is a root of (9) then it corre-
sponds to a local maximum if d lnh(x)/dx > 0 for all x < x0 and d lnh(x)/dx < 0
for all x > x0. It corresponds to a local minimum if d lnh(x)/dx < 0 for all x < x0
and d lnh(x)/dx > 0 for all x > x0. It corresponds to a point of inflexion if either
d lnh(x)/dx > 0 for all x 6= x0 or d lnh(x)/dx < 0 for all x 6= x0.

Furthermore, the asymptotes of h(x) as x→∞, µ are given by

h(x) ∼ αδ−1xα−1,

as x→∞, and

h(x) ∼ α(δβ)−12−1/β−1
(

1− 2−1/β
)−1

(x− µ)α−1,
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as x→ µ. Note that both the upper and lower tails of h(x) behave polynomially
with respect to x.

Figure 2 illustrates some of the possible shapes of h(x) for µ = 0, δ = 1 and se-
lected values of (α, β). Both monotonically increasing, monotonically decreasing
and upside down bathtub shapes appear possible. Upside down bathtub shapes
appear for small values of α and β. Monotonically decreasing shapes appear for
small α. Monotonically increasing shapes appear for large α.
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Figure 2: Plots of (8) for µ = 0, δ = 1, α = 0.5, 0.8, 1.5, 2, β = 0.5 (solid curve),
β = 1 (curve of dashes), β = 2 (curve of dots) and β = 5 (curve of dots and
dashes)

Upside down bathtub shaped hazard rates are common in reliability and sur-
vival analysis. For example, such hazard rates can be observed in the course of a
disease whose mortality reaches a peak after some finite period and then declines
gradually (Silva et al., 2010). For other practical examples yielding upside down
bathtub hazard rates, see Singh and Misra (1994).

It is interesting to note that the Chen distribution can exhibit upside down
bathtub shapes. The GEV distribution cannot exhibit upside down bathtub
shaped hazard rates.
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4. Moments

Let X ∼ Chen(α, β, δ, µ). Using binomial expansion, we can write

E (Xn) = E ((X − µ+ µ)n)

=
n∑

m=0

(
n

m

)
µn−mE ((X − µ)m)

= α(δβ)−1
(

1− 2−1/β
)−1 n∑

m=0

(
n

m

)
µn−m

×
∫ ∞
µ

(x− µ)m+α−1 exp

[
−1

δ
(x− µ)α

]{
1 + exp

[
−1

δ
(x− µ)α

]}−1/β−1
dx

= α(δβ)−1
(

1− 2−1/β
)−1 n∑

m=0

(
n

m

)
µn−m

×
∫ ∞
µ

(x− µ)m+α−1 exp

[
−1

δ
(x− µ)α

] ∞∑
k=0

(
−1/β − 1

k

)
exp

[
−k
δ

(x− µ)α
]
dx

= α(δβ)−1
(

1− 2−1/β
)−1 n∑

m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
×
∫ ∞
µ

(x− µ)m+α−1 exp

[
−k + 1

δ
(x− µ)α

]
dx

= β−1
(

1− 2−1/β
)−1 n∑

m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
δm/α(k + 1)−m/α−1

×
∫ ∞
0

ym/α exp (−y) dy

= β−1
(

1− 2−1/β
)−1

×
n∑

m=0

(
n

m

) ∞∑
k=0

µn−m
(
−1/β − 1

k

)
δm/α(k + 1)−m/α−1Γ (m/α+ 1) (10)

for any positive integer n. The first four moments are:

E (X) = β−1
(

1− 2−1/β
)−1 [

µβ
(

1− 2−1/β
)

+

∞∑
k=0

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α+ 1)

]
, (11)
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E
(
X2
)

= β−1
(

1− 2−1/β
)−1 [

µ2β
(

1− 2−1/β
)

+2

∞∑
k=0

µ

(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α+ 1)

+

∞∑
k=0

(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α+ 1)

]
, (12)

E
(
X3
)

= β−1
(

1− 2−1/β
)−1 [

µ3β
(

1− 2−1/β
)

+3
∞∑
k=0

µ2
(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α+ 1)

+3
∞∑
k=0

µ

(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α+ 1)

+
∞∑
k=0

(
−1/β − 1

k

)
δ3/α(k + 1)−3/α−1Γ (3/α+ 1)

]
, (13)

and

E
(
X4
)

= β−1
(

1− 2−1/β
)−1 [

µ4β
(

1− 2−1/β
)

+4

∞∑
k=0

µ3
(
−1/β − 1

k

)
δ1/α(k + 1)−1/α−1Γ (1/α+ 1)

+6

∞∑
k=0

µ2
(
−1/β − 1

k

)
δ2/α(k + 1)−2/α−1Γ (2/α+ 1)

+4

∞∑
k=0

µ

(
−1/β − 1

k

)
δ3/α(k + 1)−3/α−1Γ (3/α+ 1)

+
∞∑
k=0

(
−1/β − 1

k

)
δ4/α(k + 1)−4/α−1Γ (4/α+ 1)

]
. (14)

The infinite series in (10)-(14) all converge.
The expressions given by (11)-(14) can be used to compute the mean, variance,

skewness and kurtosis of X. The values of these four quantities versus α are
plotted in Figure 3 for µ = 0, δ = 1 and selected values of β. We can see that:
(i) mean, variance and skewness are monotonic decreasing functions of α; (ii)
kurtosis initially decreases before increasing with respect to α.
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Figure 3: Mean, variance, skewness and kurtosis versus α for µ = 0, δ = 1,
β = 0.5 (solid curve), β = 1 (curve of dashes), β = 2 (curve of dots) and β = 5
(curve of dots and dashes)

5. Order Statistics

Order statistics make their appearance in many areas of statistical theory and
practice. Let X1:n < X2:n < · · · < Xn:n denote the order statistics for a random
sample X1, X2, · · · , Xn from (5). It is well known that the probability density
function of the kth order statistic, say Y = Xk:n, is

fY (y) =
n!

(k − 1)!(n− k)!
F k−1(y) [1− F (y)]n−k f(y).

Substituting the expressions for F (y) and f(y) given by (4) and (5), respectively,
we obtain

fY (y) =
αn!

(
1− 2−1/β

)−n
δβ(k − 1)!(n− k)!

(y − µ)α−1 exp

[
−1

δ
(y − µ)α

]
×
{

1 + exp

[
−1

δ
(y − µ)α

]}−1/β−1
×

[{
1 + exp

[
−1

δ
(y − µ)α

]}−1/β
− 2−1/β

]k−1

×

[
1−

{
1 + exp

[
−1

δ
(y − µ)α

]}−1/β]n−k
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=
αn!

(
1− 2−1/β

)−n
δβ(k − 1)!(n− k)!

k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
(−1)k−i−1+j2(i+1−k)/β

×(y − µ)α−1 exp

[
−1

δ
(y − µ)α

]{
1 + exp

[
−1

δ
(y − µ)α

]}−(i+j+1)/β−1

=
n!
(
1− 2−1/β

)−n
(k − 1)!(n− k)!

×
k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
2(i+1−k)/β − 2−(j+k)/β

(−1)k−i−1+j(i+ j + 1)
fα,β/(i+j+1),δ,µ(y),

where fa,b,σ,ξ(·) denotes the probability density function of Chen (a, b, σ, ξ). So,
the probability density function of Y is a finite linear combination of probability
density functions of Chen random variables. Hence, other properties of Y can
be easily derived. For instance, the cumulative distribution function of Y can be
expressed as

FY (y) =
n!
(
1− 2−1/β

)−n
(k − 1)!(n− k)!

×
k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
2(i+1−k)/β − 2−(j+k)/β

(−1)k−i−1+j(i+ j + 1)
Fα,β/(i+j+1),δ,µ(y),

where Fa,b,σ,ξ(·) denotes the cumulative distribution function corresponding to
fa,b,σ,ξ(·). The qth moment of Y can be expressed as

E [Y q] =
n!
(
1− 2−1/β

)−n
(k − 1)!(n− k)!

×
k−1∑
i=0

n−k∑
j=0

(
k − 1

i

)(
n− k
j

)
2(i+1−k)/β − 2−(j+k)/β

(−1)k−i−1+j(i+ j + 1)
E
[
Xq
α,β/(i+j+1),δ,µ

]
, (15)

where Xa,b,σ,ξ ∼ Chen (a, b, σ, ξ).
L-moments are summary statistics for probability distributions and data sam-

ples (Hoskings, 1990). They are analogous to ordinary moments but are computed
from linear functions of the ordered data values. The rth L-moment is defined
by

λr =

r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
βj ,

where βj = E{XF (X)j}. In particular, λ1 = β0, λ2 = 2β1−β0, λ3 = 6β2−6β1 +
β0 and λ4 = 20β3 − 30β2 + 12β1 − β0. In general, βr = (r + 1)−1E(Xr+1:r+1),
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so it can be computed using (15). The L-moments have several advantages over
ordinary moments: for example, they apply for any distribution having finite
mean; no higher-order moments need be finite.

6. Extreme Values

Suppose X1, · · · , Xn is a random sample from (5). If X = (X1 + · · ·+Xn)/n
denotes the sample mean, then by the usual central limit theorem,

√
n(X −

E(X))/
√

Var(X) approaches the standard normal distribution as n→∞.

Sometimes one would be interested in the asymptotes of the extreme order
statistics Mn = max(X1, · · · , Xn) and mn = min(X1, · · · , Xn). Here, we de-
termine the max and min domains of attraction of the cumulative distribution
function given by (4).

Let g(t) = (δ/α)(t− µ)1−α. Then,

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞
exp

{
1

δ
[(t− µ)α − (t+ xg(t)− µ)α]

}

= lim
t→∞

exp

{
1

δ
(t− µ)α

[
1−

(
1 +

xg(t)

t− µ

)α]}
= lim

t→∞
exp

{
−α
δ

(t− µ)αg(t)x
}

= exp(−x),

for every x ∈ (−∞,∞). So, it follows by Leadbetter et al. (1987, Chapter 1)
that F belongs to the max domain of attraction of the Gumbel extreme value
distribution with

lim
n→∞

Pr {an (Mn − bn) ≤ x} = exp {− exp(−x)} ,

for some suitable norming constants an > 0 and bn.

The form of the norming constants can also be determined. For instance, using
Corollary 1.6.3 in Leadbetter et al. (1987), one can see that bn = F−1(1− 1/n)
and an = (α/δ)(bn − µ)α−1, where F−1(·) is given by (6).

For the min domain of attraction, we note that

lim
t→0

F (tx+ µ)

F (t+ µ)
= lim

t→0

(
tx

t

)α
= xα.

So, it follows by Leadbetter et al. (1987, Chapter 1) that F belongs to the min
domain of attraction of the Weibull extreme value distribution.
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7. Maximum Likelihood Estimation

Suppose x1, x2, · · · , xn is a random sample of size n from (5). Then the log-
likelihood function for the vector of parameters (α, β, δ, µ) can be written as

lnL(α, β, δ, µ) = n lnα− n ln δ − n lnβ − n ln
[
1− 2−1/β

]
− 1

δ

n∑
i=1

(xi − µ)α

+(α− 1)

n∑
i=1

ln (xi − µ)

−
(

1

β
+ 1

) n∑
i=1

ln

{
1 + exp

[
−1

δ
(xi − µ)α

]}
. (16)

The first-order partial derivatives of (16) with respect to the four parameters
are:

∂ lnL

∂α
=
n

α
− 1

δ

n∑
i=1

(xi − µ)α ln (xi − µ) +

n∑
i=1

ln (xi − µ)

+
1

δ

(
1

β
+ 1

) n∑
i=1

exp [− (xi − µ)α /δ] (xi − µ)α ln (xi − µ)

1 + exp [− (xi − µ)α /δ]
, (17)

∂ lnL

∂β
= −n

β
+

n ln 2

β2
(
21/β − 1

) +
1

β2

n∑
i=1

ln

{
1 + exp

[
−1

δ
(xi − µ)α

]}
, (18)

∂ lnL

∂δ
= −n

δ
+

1

δ2

n∑
i=1

(xi − µ)α

− 1

δ2

(
1

β
+ 1

) n∑
i=1

exp [− (xi − µ)α /δ] (xi − µ)α

1 + exp [− (xi − µ)α /δ]
, (19)

and

∂ lnL

∂µ
=
α

δ

n∑
i=1

(xi − µ)α−1 − (α− 1)
n∑
i=1

(xi − µ)−1

−α
δ

(
1

β
+ 1

) n∑
i=1

exp [− (xi − µ)α /δ] (xi − µ)α−1

1 + exp [− (xi − µ)α /δ]
. (20)

The maximum likelihood estimators of (α, β, δ, µ), say (α̂, β̂, δ̂, µ̂), are the simul-
taneous solutions of the equations ∂ lnL/∂α = 0, ∂ lnL/∂β = 0, ∂ lnL/∂δ = 0
and ∂ lnL/∂µ = 0. As n→∞, (α̂−α, β̂−β, δ̂−δ, µ̂−µ) approaches a multivari-
ate normal vector with zero means and variance-covariance matrix, −(EJ)−1,
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where

J =



∂2 lnL
∂α2

∂2 lnL
∂α∂β

∂2 lnL
∂α∂δ

∂2 lnL
∂α∂µ

∂2 lnL
∂β∂α

∂2 lnL
∂β2

∂2 lnL
∂β∂δ

∂2 lnL
∂β∂µ

∂2 lnL
∂δ∂α

∂2 lnL
∂δ∂β

∂2 lnL
∂δ2

∂2 lnL
∂δ∂µ

∂2 lnL
∂µ∂α

∂2 lnL
∂µ∂β

∂2 lnL
∂µ∂δ

∂2 lnL
∂µ2


.

The matrix, −EJ , is known as the expected information matrix. The matrix,
−J , is known as the observed information matrix.

In simulations and real data applications described later on, we maximized
the log-likelihood function using the nlm function in the R statistical package
(R Development Core Team, 2012). For each maximization, the nlm function
was executed for a wide range of initial values. This sometimes resulted in more
than one maximum, but at least one maximum was identified each time. In
cases of more than one maximum, we took the maximum likelihood estimates to
correspond to the largest of the maxima.

In practice, n is finite. The literature (see, for example, Efron and Hinkley,
1978) suggests that it is best to approximate the distribution of (α̂−α, β̂−β, δ̂−
δ, µ̂ − µ) by a multivariate normal distribution with zero means and variance-
covariance matrix given by −J−1, inverse of the observed information matrix,
with (α, β, δ, µ) replaced (α̂, β̂, δ̂, µ̂). So, it is useful to have explicit expressions
for the elements of J . They are given in Appendix A.

The multivariate normal approximation can be used to construct approximate
confidence intervals and confidence regions for the individual parameters and for
the hazard and survival functions. A natural question is: how large should n
be for the approximation to be good enough? Section 8 gives an answer to this
question by means of a simulation study.

8. Simulation Study

Here, we assess the performance of the maximum likelihood estimators given
by (18)-(20) with respect to sample size n. The assessment is based on a simula-
tion study:

1. generate ten thousand samples of size n from (5). The inversion method
was used to generate samples, i.e., variates of the Chen distribution were
generated using (6);

2. compute the maximum likelihood estimates for the ten thousand samples,
say (α̂i, β̂i, δ̂i, µ̂i) for i = 1, 2, · · · , 10000;
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3. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(ĥi − h),

and

MSEh(n) =
1

10000

10000∑
i=1

(ĥi − h)2,

for h = α, β, δ, µ.

We repeat these steps for n = 10, 20, · · · , 1000 with α = 2, β = 2, δ = 1 and µ = 0,
so computing biasα(n), biasβ(n), biasδ(n), biasµ(n) and MSEα(n), MSEβ(n),
MSEδ(n), MSEµ(n) for n = 10, 20, · · · , 1000.

Figures 4 and 5 show how the four biases and the four mean squared errors
vary with respect to n. The broken line in Figure 4 corresponds to the biases
being zero. The broken line in Figure 5 corresponds to the mean squared errors
being zero. The following observations can be made:

1. the biases for α, β and δ are generally negative;

2. the biases for µ are generally positive;

3. the biases for each parameter generally approach zero as n→∞;

4. the biases appear smallest for δ;

5. the mean squared errors for each parameter generally decrease to zero as
n→∞;

6. the mean squared errors appear largest for α;

7. the mean squared errors appear smallest for µ for n large enough.

We have presented results for only one choice for (α, δ, δ, µ), namely that (α, δ, δ, µ)
= (2, 2, 1, 0). But the results were similar for other choices.

For the real data application presented in Section 9, we have n = 52. We see
from Figure 4 that the biases of all four of the parameters for n = 52 are less
than 0.04. We see from Figure 5 that the mean squared errors of all four of the
parameters for n = 52 are less than 0.1. So, it is reasonable to assume that the
normal approximation holds for the data application.
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Figure 4: biasα(n) (top left), biasβ(n) (top right), biasδ(n) (middle right) and
biasµ(n) (bottom left) versus n = 10, 20, · · · , 1000
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Figure 5: MSEα(n) (top left), MSEβ(n) (top right), MSEδ(n) (middle right)
and MSEµ(n) (bottom left) versus n = 10, 20, · · · , 1000
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9. An Application

Here, we illustrate flexibility of the Chen distribution using the real data set
used in Chen et al. (2010). The data used by Chen et al. (2010) are fifty two
ordered annual maximum antecedent rainfall measurements in mm from Maple
Ridge in British Columbia, Canada: 264.9, 314.1, 364.6, 379.8, 419.3, 457.4,
459.4, 460.0, 490.3, 490.6, 502.2, 525.2, 526.8, 528.6, 528.6, 537.7, 539.6, 540.8,
551.0, 573.5, 579.2, 588.2, 588.7, 589.7, 592.1, 592.8, 600.8, 604.4, 608.4, 609.8,
619.2, 626.4, 629.4, 636.4, 645.2, 657.6, 663.5, 664.9, 671.7, 673.0, 682.6, 689.8,
698.0, 698.6, 698.8, 703.2, 755.9, 786.0, 787.2, 798.6, 850.4, 895.1.

We fitted the distributions given (1) and (5) to the data. The maximum like-
lihood procedure described in Section 7 was used for fitting (5). The fitted esti-
mates for (5) were: α̂ = 1.700 (0.069), β̂ = 0.055 (0.045), δ̂ = 17125.09 (10190.82),
µ̂ = −33.524 (193.361) with − lnL = 324.443 and AIC = 656.885. The fit-
ted estimates for (1) were: µ̂ = 552.016 (19.520), σ̂ = 129.755 (13.307), ξ̂ =
−0.308 (0.072) with − lnL = 327.932 and AIC = 661.864. The numbers within
brackets are standard errors obtained by inverting the observed information ma-
trix, see Section 7.

We can see that the negative log-likelihood values and the AIC values are
smaller for the Chen distribution. So, for the data set used in Chen et al. (2010),
the Chen distribution provides a better fit. This is confirmed by the probability-
probability plots, quantile-quantile plots and density plots shown in Figures 6 to
8. The points in Figures 6 and 7 are closer to the diagonal lines for the Chen
distribution. The fitted probability density function for the Chen distribution
appears to better capture the histogram in Figure 8.
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Figure 6: Probability plots for the fits of (1) (in red) and (5) (in black) for
annual maximum rainfall from Maple Ridge in British Columbia
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Figure 7: Quantile plots for the fits of (1) (in red) and (5) (in black) for annual
maximum rainfall from Maple Ridge in British Columbia
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Figure 8: Density plots for the fits of (1) (in red) and (5) (in black) for annual
maximum rainfall from Maple Ridge in British Columbia

Furthermore, chi-square goodness of fit tests gave the p-values of 0.039 and
0.071 for (1) and (5), respectively, suggesting that (5) provides the only adequate
fit.

Appendix A

Here, we give explicit expressions for the elements of J defined in Section 7:
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J11 = − n

α2
− 1

δ

n∑
i=1

(xi − µ)α ln2 (xi − µ) +
1

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α ln2 (xi − µ)

1 + exp [(xi − µ)α /δ]

− 1

δ2

(
1

β
+ 1

) n∑
i=1

exp [(xi − µ)α /δ] (xi − µ)2α ln2 (xi − µ)

{1 + exp [(xi − µ)α /δ]}2
,

J12 = − 1

δβ2

n∑
i=1

(xi − µ)α ln (xi − µ)

1 + exp [(xi − µ)α /δ]
,

J13 =
1

δ2

n∑
i=1

(xi − µ)α ln (xi − µ)− 1

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)α ln (xi − µ)

1 + exp [(xi − µ)α /α]

+
1

δ3

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α ln (xi − µ) exp [(xi − µ)α /δ]

{1 + exp [(xi − µ)α /δ]}2
,

J14 =
α

δ

n∑
i=1

(xi − µ)α−1 ln (xi − µ) +
1

δ

n∑
i=1

(xi − µ)α−1 −
n∑
i=1

(xi − µ)−1

−1

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−1 [1 + α ln (xi − µ)]

1 + exp [(xi − µ)α /δ]

+
α

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α−1 ln (xi − µ) exp [(xi − µ)α /δ]

{1 + exp [(xi − µ)α /δ]}2
,

J22 =
n

β2
− 2n ln 2

β3
(
21/β − 1

)+
n(ln 2)221/β

β4
(
21/β − 1

)2 − 2

β3

n∑
i=1

ln

{
1 + exp

[
−1

δ
(xi − µ)α

]}
,

J23 =
1

β2δ2

n∑
i=1

(xi − µ)α

1 + exp [(xi − µ)α /δ]
,

J24 =
α

β2δ

n∑
i=1

(xi − µ)α−1

1 + exp [(xi − µ)α /δ]
,

J33 =
n

δ2
− 2

δ3

n∑
i=1

(xi − µ)α +
2

δ3

(
1

β
+ 1

) n∑
i=1

(xi − µ)α

1 + exp [(xi − µ)α /δ]

− 1

δ4

(
1

β
+ 1

) n∑
i=1

(xi − µ)2α exp [(xi − µ)α /δ]

{1 + exp [(xi − µ)α /δ]}2
,

J34 = − α
δ2

n∑
i=1

(xi − µ)α−1 +
α

δ2

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−1

1 + exp [(xi − µ)α /δ]

− α
δ3

(
1

β
+ 1

) n∑
i=1

exp [(xi − µ)α /δ] (xi − µ)2α−1

{1 + exp [(xi − µ)α /δ]}2
,
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and

J44 = −α(α− 1)

δ

n∑
i=1

(xi − µ)α−2 − (α− 1)

n∑
i=1

(xi − µ)−2

+
α(α− 1)

δ

(
1

β
+ 1

) n∑
i=1

(xi − µ)α−2

1 + exp [(xi − µ)α /δ]

−α
2

δ2

(
1

β
+ 1

) n∑
i=1

exp [1 (xi − µ)α /δ] (xi − µ)2α−2

{1 + exp [(xi − µ)α /δ]}2
.

Explicit expressions for the remaining elements of J follow by symmetry.
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