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L-Moments Estimations for Mixture of Weibull Distributions

Ülkü Erişoğlu∗ and Murat Erişoğlu
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Abstract: Mixture of Weibull distributions has wide application in modeling
of heterogeneous data sets. The parameter estimation is one of the most
important problems related to mixture of Weibull distributions. In this pa-
per, we propose a L-moment estimation method for mixture of two Weibull
distributions. The proposed method is compared with maximum likelihood
estimation (MLE) method according to the bias, the mean absolute error,
the mean total error and completion time of the algorithm (time) by sim-
ulation study. Also, applications to real data sets are given to show the
flexibility and potentiality of the proposed estimation method. The com-
parison shows that, the proposed method is better than MLE method.

Key words: EM algorithm, heterogeneous data, L-moment, mixture distri-
bution, MLE.

1. Introduction

The mixture distributions have provided a mathematical-based approach to
the statistical modeling of a wide variety of random phenomena. The mixture
distributions are useful and flexible models to analyze random durations in a
possibly heterogeneous population. In many applications, available data can be
considered as the data coming from a mixture population of two or more dis-
tributions. Therefore mixture distributions play a vital role in many practical
applications. For example, direct applications of finite mixture models are in
fisheries research, economics, medicine, psychology, paleoanthropology, botany,
agriculture, zoology, life testing and reliability, among others. Indirect applica-
tions include outliers, Gaussian sums, cluster analysis, latent structure models,
modeling prior densities, empirical Bayes method and nonparametric density es-
timation.

Recently the mixture of Weibull distributions has been recognized as a suit-
able model for heterogeneous datasets. Different methods are used to estimate
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the parameter of the mixture of Weibull distributions. Mendenhall and Hader
(1958) considered an n components mixture Weibull distribution. They derived
the maximum likelihood estimates for the scale and mixing parameters, assuming
that the shape parameters are known. Kao (1959) and Jiang and Murthy (1995)
proposed graphical procedures to decide the appropriateness of a two compo-
nents mixture Weibull distribution. A method for estimating the parameters
of mixture distributions using sample moments has been outlined by Paul R.
Rider (1961) who considered special case of the mixture of Weibull distributions.
Falls (1970) attempted to find the five parameters of a two components mixture
Weibull distribution by the method of moments. Olsson (1979) directly searched
the maximum of the log-likelihood function of the Mixture Weibull distribution
through the Nelder-Mead Simplex Procedure. Kaylan and Harris (1981) derived
MLEs for the first Mixed Weibull. Beetz (1982) estimated the parameters of
a mixture Weibull distribution by fitting the mixed probability density to the
experimental histogram using the maximum likelihood method. Cheng and Fu
(1982) proposed a weighted least squares method for estimating the parameters of
a mixture of two Weibulls when the data are grouped postmortem. Sinha (1986)
gave an iterative procedure to obtain the MLE of a two-Weibull mixture for
postmortem data. Ashour (1987) considered the problem of maximum likelihood
estimation with five unknown parameters of the mixture Weibull distribution
for multistage censored type-I sample. Jiang and Kececioglu (1992) presented
an algorithm for estimating the parameters of a Weibull mixture model with
the right censored data using the method of maximum likelihood. Ahmad and
Abdulrahman (1994) presented a procedure for finding the maximum likelihood
estimates of the parameters of a mixture of two Weibull distributions. Ling et al.
(2009) established parameter estimation methods for the mixture Weibull model
using nonlinear least squares theory; and Quasi-Newton method have been used
to solve the optimization problem.

In this paper we will describe an EM algorithm for L-moment estimation of
two components mixture Weibull distribution. Also, we provide a comprehensive
comparison of the L-moment and maximum likelihood estimation methods for
the two component mixture Weibull distribution. We use the following criteria
for comparison: the bias, the mean absolute error, the mean total error and
completion time of the algorithm (time).

The structure of the paper is as follows. In Section 2, we defined density func-
tion, survival function and hazard function of two components mixtures Weibull
distribution and we show plots of two component mixture Weibull distributions
for different parameter values. In Section 3, we first proposed L-moment esti-
mators for two components mixture Weibull distributions. Also, we presented
the maximum likelihood estimations of two components mixture Weibull distri-
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bution. A numerical comparison of the L-moment estimation and the maximum
likelihood estimation methods by simulation study is given in Section 4. In Sec-
tion 5, the proposed L-moment estimation method for two components mixture
Weibull distribution is applied to illustrative examples based on heterogeneous
survival real data sets successfully. Finally, some conclusions are noted in Section
6.

2. Two Component Mixture Weibull Distribution

The probability density function of two components mixture Weibull distri-
bution is defined mathematically as

f(x|ω) = π
α1

β1

(
x

β1

)α1−1

e
−
(
x
β1

)α1
+ (1− π)

α2

β2

(
x

β2

)α2−1

e
−
(
x
β2

)α2
, (1)

where 0 < π < 1, αi > 0, βi > 0 are mixture weight, shape and scale parameters
of subpopulation i respectively and ω = (π, α1, α2, β1, β2) is called the parameter
vector of two components mixture Weibull distribution. Plots of density of two
components mixture Weibull distribution for different parameter values are given
in Figure 1.
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The survival function S(x|ω) of two components mixture Weibull distribution
is given as follows:

S(x|ω) = πe
−( x

β1
)α1

+ (1− π)e
−( x

β2
)α2
. (2)

Plots of survival function of two components mixture Weibull distribution for
different parameter values are given Figure 2.
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Figure 2: Plots of survival functions of two components mixture 
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Figure 2: Plots of survival functions of two components mixture Weibull dis-
tribution for different parameter values

The hazard function h(x|ω) of two components mixture Weibull distribution
is given as follows:

h(x|ω) =
πα1
β1

(
x
β1

)α1−1
e
−( x

β1
)α1

+ (1− π)α2
β2

(
x
β2

)α2−1
e
−( x

β2
)α2

πe
−( x

β1
)α1

+ (1− π)e
−( x

β2
)α2

. (3)

Plots of hazard functions of two components mixture Weibull distribution for
different parameter values are given in Figure 3.
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Figure 3: Plots of hazard functions of two components mixture 
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3. Estimation

The Expectation-Maximization (EM) algorithm can be used to estimate the
parameters of a mixture model distribution. EM algorithm is an iterative algo-
rithm with two steps: an expectation step and a maximization step. In the EM
framework, observed data x1, · · · , xn is viewed as being incomplete, as the asso-
ciated component-label vector z is not available. The EM algorithm is applied
to the mixture of distributions by treating z as missing data. In the E-step, it is
determined elements of component-label vector z. In the M-step, model param-
eters are calculated using the values of the component-label vector calculated in
the previous E-step.

3.1 L-Moment Estimation

The new proposed estimator for two components mixture Weibull distribution
is based L-moments. These are defined in terms of order statistics and have their
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origin in Hosking (1990). Kundu and Raqab (2005) have been applied for the
generalized Rayleigh distribution, Abdul-Moniem (2007) have been applied for
the exponential distributions and Teimouri et al. (2013) have been applied for
the Weibull distribution. In this study, the proposed L-moment estimators for
Weibull distribution of Teimouri et al. (2011) is adapted for two components
mixture Weibull distribution.

Hosking’s (1990) idea works on the basis of computing the r-th moment of the
i-th order statistic. Equating the sample L-moment to the population counterpart
gives the L-moment estimate. The L-moment µ0r is given by

µ0r =
1

r

r−1∑
k=0

(−1)kCr−1
k E(Xr−k:r), (4)

for r = 1, 2, 3, · · · , where Cni denotes the binominal coefficient n!/(i!(n− i)!) and
Xi:n denotes the i-th order statistics in a sample of size n. The sample L-moments
are defined

m0
r =

1

r

n∑
i=1

∑r−1
k=0(−1)kCr−1

k Cn−ik Ci−1
r−k−1

Cnr
Xi:n. (5)

Firstly in the E-Step, the component-label vector z is determined by random
in the new proposed estimation method for two components mixture Weibull
distribution. The mixture weight is computed according to the component-label
vector z as follows

π̂ =

∑n
i=1 ẑi
n

, (6)

where ẑi is element of component-label vector z and it is defined as follows

zi =

{
1, if i-th observation is element of first subpopulation,
0, otherwise.

In the M-step, L-moment estimations (LE) of shape and scale parameters for
first component in two components mixture Weibull distribution are given follows
by respectively,

α̂LM
1 =

ln(2)

ln
(

1−m0
2(1)/m

0
1(1)

) , (7)

β̂LM1 =
m0

1(1)

Γ
(
1/α̂LM

1 + 1
) , (8)
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where m0
1(1) and m0

2(1) are sample L-moments for first subpopulation and defined
as follows

m0
1(1) =

∑n
i=1 ẑixi:n∑n
i=1 ẑi

, (9)

m0
2(1) =

2

(
∑n

i=1 ẑi)
2 −

∑n
i=1 ẑi

n∑
i=1

ẑi(ϕi(1) − 1)xi:n −m0
1(1), (10)

where ϕi(1) is rank number of i-th observation for ascending ordered observations
in first subpopulation. ϕi(1) is obtained only for i-th observations ẑi ≥ 0.5. ϕi(1)
is assumed 1 if ẑi is smaller than 0.5.

LE of shape and scale parameters for second component in two component
mixture Weibull distribution are given as follows by respectively,

α̂LM
2 =

ln(2)

ln
(

1−m0
2(2)/m

0
1(2)

) , (11)

β̂LM2 =
m0

1(2)

Γ
(
1/α̂LM

2 + 1
) , (12)

where m0
1(2) and m0

2(2) are sample L-moments for second subpopulation and de-
fined as follows;

m0
1(2) =

∑n
i=1(1− ẑi)xi:n
n−

∑n
i=1 ẑi

, (13)

m0
2(2) =

2

(n−
∑n

i=1 ẑi)
2 − n+

∑n
i=1 ẑi

n∑
i=1

(1− ẑi)(ϕi(2) − 1)xi:n −m0
1(2), (14)

where ϕi(2) is rank number of i-th observation for ascending ordered observations
in second subpopulation. Then estimation of parameters according to initial
values of missing observation vector z, ẑi values are updated by

ẑi =
π̂f(xi|α̂LM

1 , β̂LM1 )

π̂f(xi|α̂LM
1 , β̂LM1 ) + (1− π̂)f(xi|α̂LM

2 , β̂LM2 )
. (15)

The EM algorithm can be stopped if | lnL(t) − lnL(t+1)| ≤ tol, where tol is
the desired tolerance. lnL is denoted logarithmic likelihood value and defined as
follows

lnL =

n∑
i=1

ln(π̂f(xi|α̂LM
1 , β̂LM1 ) + (1− π̂)f(xi|α̂LM

2 , β̂LM2 )), (16)

where f(xi) is density function of two parameter Weibull distribution.
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3.2 Maximum Likelihood Estimation

Several authors have discussed the problems associated with the maximum
likelihood estimation (MLE) method. The main difficulty of the method is the
lack of analytical tractability and the need for iterative computational methods.
EM algorithm is widely used for the estimation of parameters of the mixture
Weibull distribution. In the E-step, the starting values of component-label vec-
tor z are taken as randomly. In the M-step, it requires the maximization of
the log-likelihood function according to the values of the component-label vector
determined in the previous E-step.

In the M-step, an iterative method must be used to estimate of the shape
parameters of the mixture Weibull distribution. Newton-Raphson method can
be used for the estimation of the shape parameters. The maximum likelihood
estimations of α1 and α2 in the (r + 1)-th iteration of Newton-Raphson method
is defined by

α̂k,(r+1) = α̂k,r +
Ak,r + (1/α̂k,r)− (Ck,r/Bk,r)

(1 + α̂2
k,r) + (Bk,rDk,r − C2

k,r)/B
2
k,r

, k = 1, 2, (17)

where

Ak,r =

∑n
i=1 ẑk,i lnxi∑n

i=1 ẑk,i
, Bk,r =

n∑
i=1

ẑk,ix
α̂k,r
i ,

Ck,r =

n∑
i=1

ẑk,ix
α̂k,r
i lnxi, and Dk,r =

n∑
i=1

ẑk,ix
α̂k,r
i (lnxi)

2.

Once the shape parameters are estimated, then the scale parameters can be
estimated as follows:

β̂k =

(∑n
i=1 ẑk,ix

α̂k
i∑n

i=1 ẑk,i

)1/α̂k

, k = 1, 2. (18)

In the formulas, the belonging probability zk,i, which is the probability that
the unit belongs to the k-th subpopulation (k = 1, 2) and zk,i is given by

ẑ1,i =
π̂f(xi|α̂1, β̂1)

π̂f(xi|α̂1, β̂1)(1− π̂)f(xi|α̂2, β̂2)
, (19)

ẑ2,i = 1− ẑ1,i, (20)

where f(xi) is density function of two parameter Weibull distribution.
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4. Simulation

Here, we compare the performances of the MLE and the LE for the two
component mixture Weibull distribution. A simulation study with 10000 samples
each of size n = 30, 50, 100 are randomly generated from the two components
mixture Weibull distribution with different values of parameters. No restriction
was imposed on the maximum number of iterations and convergence was assumed
when the absolute differences between successive estimates were less than 10−4.
The average of 10000 MLEs and L-moments, their standard error is denoted by
av and se respectively. We make all computations using Matlab program. The
simulation results are given in Table 1.

Table 1 shows that convergence can be achieved for all cases in this simula-
tion study. This emphasizes the numerical stability of the EM algorithm. The
values of mean and standard error suggest that the EM estimates performed
consistently. Standard errors of LEs and MLEs decrease when the sample size
increases. Simulation results show that the L-moment estimation method works
well, and the estimation performance is satisfied.

Bias(θ̂) =
1

10000

10000∑
i=1

(θ̂i − θ), (21)

MAE =
1

10000

10000∑
i=1

|θ̂i − θ|, (22)

MTE =
1

10000

10000∑
i=1

5∑
j=1

(θ̂ij − θj)2

θj
, (23)

where θ̂i the estimator of θ in the i-th replication and θ̂ij the estimator of θj in
the i-th replication. Larger values of the bias, the mean-absolute error and the
mean-total error correspond to less efficient estimators. The comparison results
according to bias and the mean-absolute error are given in Table 2. LE method
is better than MLE method for all sample size and cases in terms of bias and the
mean-absolute error in simulation study.

The comparison results according to the mean total error and time are given
in Table 3. It can be deduced from the Table 3 that LE method is better than
MLE method for all sample size and cases according to the mean total error and
time. The comparisons of LE and MLE in terms of total error and time according
to sample size are given Figure 4. As seen from these figures, LE method is better
than MLE method.



78 Ülkü Erişoğlu and Murat Erişoğlu
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Table 3: The mean total errors and times of the LEs and MLEs for different
parameter values of two components mixture Weibull distribution

Method n

Population

A B C D

MTE
Time

MTE
Time

MTE
Time

MTE
Time

(sec) (sec) (sec) (sec)

LM
30

0.67550 34.962 1.36978 37.427 0.63011 38.462 0.63770 88.102

MLE 0.69658 79.990 2.77831 108.053 0.75644 93.807 0.84495 190.621

LM
50

0.39000 37.229 0.62555 47.751 0.37212 42.322 0.37478 93.974

MLE 0.40029 86.182 1.68132 130.889 0.42311 105.352 0.45968 210.834

LM
100

0.17416 43.481 0.25725 51.014 0.18900 46.445 0.20349 97.743

MLE 0.19922 100.638 0.43177 166.194 0.20235 137.633 0.22374 241.886

12 

 

MLE in terms of total error and time according to sample size are given Figure 4. As seen 

from these figures, LE method is better than MLE method. 

 

 

Figure 4: The comparisons of LE and MLE in terms of total error and time 

according to sample size.  

 

Figure 4: The comparisons of LE and MLE in terms of total error and time
according to sample size

5. Application

Two examples of real data sets are used to illustrate the use of the proposed
LE method for two components mixture Weibull distribution.

Example 1: Fatigue lives dataset consists of 25 specimens of 2 different types.
This data set was first discussed by Ling and Pan (1998) and later discussed by
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Erişoğlu and Erol (2010).
Example 2: A data set consists of 100 failure times for oral irrigators dataset.

This data set was first Colvert and Boardman (1976) and further discussed by
Jiang and Murthy (1997) and Erişoğlu and Erol (2010).

It is known that Example 1 and 2 had two sub groups from previous studies.
Therefore the number of components in the mixture models has been taken two
in this study. Parameter estimates, time, lnL, and K-S goodness of fit testing
results obtained using the LE and MLE methods for Example 1 and 2 are given
Table 4. It can be seen that the LE method yields a value of K-S smaller than
that of the MLE method. Therefore, LE method is better than MLE method in
modeling for Example 1 and 2.

Table 4: Parameter estimates, standard errors of parameter estimates, time,
lnL, and K-S goodness of fit testing results obtained using the LE and MLE
methods for Example 1 and 2

Example LE (std. error) MLE (std. error)

α̂1 3.7717 (0.2130) 4.0386 (0.2250)

β̂1 11.1289 (0.2279) 11.0932 (0.2111)
α̂2 3.9497 (0.2838) 4.3134 (0.3039)

β̂2 37.4515 (0.9118) 37.293 (0.8311)
I π̂ 0.56 (0.0406) 0.56 (0.0405)

Time(sec) 0.266758 0.428352
lnL -90.3087 -90.2449
K-S 0.056456 0.058768

(p-value) (0.9999983) (0.9999947)

α̂1 1.263 (0.0174) 1.2428 (0.0171)

β̂1 124.7848 (1.7549) 123.7296 (1.7585)
α̂2 6.3789 (0.1248) 6.4971 (0.1266)

β̂2 515.7068 (2.1296) 515.3055 (2.0918)
II π̂ 0.5918 (0.0102) 0.5918 (0.0101)

Time(sec) 0.281165 1.400482
lnL -626.3724 -626.3399
K-S 0.065859 0.068412

(p-value) (0.788954) (0.748706)

Figure 5 (a) shows the histograms of data sets and the fitted pdf curves of
distribution according to parameter estimates obtained by using LE and MLE
methods for Example 1 and 2. Figure 5 (b) shows a comparison of the empirical
cumulative distribution function curves and the cumulative function curves of
distributions according to parameter estimates obtained by using LE and MLE
methods for Example 1 and 2.
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17 

 

Figure 5: The (a) probability density functions and (b) cumulative distribution 

function curves for Example1 and 2. 

 

6. Conclusions 

We have proposed a new method for two components mixture Weibull distribution 

based on L-moments. We have performed simulations to compare this method with MLE 

method. The simulation result shows that LE method is better than MLE method according to 

bias, the mean absolute error, the mean total error and completion time of the algorithm.  
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