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The Weibull-G Family of Probability Distributions
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Abstract: The Weibull distribution is the most important distribution for
problems in reliability. We study some mathematical properties of the new
wider Weibull-G family of distributions. Some special models in the new
family are discussed. The properties derived hold to any distribution in this
family. We obtain general explicit expressions for the quantile function, or-
dinary and incomplete moments, generating function and order statistics.
We discuss the estimation of the model parameters by maximum likelihood
and illustrate the potentiality of the extended family with two applications
to real data.
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1. Introduction

Numerous classical distributions have been extensively used over the past
decades for modeling data in several areas such as engineering, actuarial, environ-
mental and medical sciences, biological studies, demography, economics, finance
and insurance. However, in many applied areas such as lifetime analysis, finance
and insurance, there is a clear need for extended forms of these distributions. For
that reason, several methods for generating new families of distributions have
been studied.

Some attempts have been made to define new families of probability distri-
butions that extend well-known families of distributions and at the same time
provide great flexibility in modeling data in practice. One such example is a
broad family of univariate distributions generated from the Weibull distribution
introduced by Gurvich et al. (1997), by extending the classical Weibull model.
Its cumulative distribution function (cdf) is given by

G(x;α, ξ) = 1− exp[−αH(x; ξ)], x ∈ D ⊆ R, α > 0, (1)
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where H(x; ξ) is a non-negative monotonically increasing function depending on
the parameter vector ξ.

The corresponding probability density function (pdf) becomes

g(x;α, ξ) = α exp[−αH(x; ξ)]h(x; ξ),

where h(x; ξ) is the derivative of H(x; ξ). Different functions H(x; ξ) in (1)
include important statistical models such as: H(x; ξ) = x gives the exponential
distribution; H(x; ξ) = x2 leads to the Rayleigh distribution; H(x; ξ) = log(x/k)
yields the Pareto distribution; H(x; ξ) = β−1[exp(βx) − 1] gives the Gompertz
distribution.

Recently, Zografos and Balakrishnan (2009) proposed and studied a broad
family of univariate distributions through a particular case of Stacy’s generalized
gamma distribution. Consider a continuous distribution G with density g, and
further Stacy’s generalized gamma density f(x) = γxγ δ−1e−x

γ
/Γ(δ) for x >

0 and positive parameters γ and δ. Based on this density, by replacing x by
− log[1−G(x)] and considering γ = 1, Zografos and Balakrishnan (2009) defined
their family with cdf

F (x; δ) = γ{δ,− log[1−G(x)]}, x ∈ X ⊆ R, δ > 0,

where γ(δ, z) =
∫ z
0 t

δ−1e−tdt/Γ(δ) denotes the incomplete gamma function and
Γ(·) is the gamma function.

This pdf family is given by

f(x; δ) =
1

Γ(δ)
{− log[1−G(x)]}δ−1 g(x).

The Weibull distribution is a very popular model and it has been extensively
used over the past decades for modeling data in reliability, engineering and bio-
logical studies. It is generally adequate for modeling monotone hazard rates. In
this paper, we introduce and study in generality a family of univariate distribu-
tions with two additional parameters, in the same vein as the extended Weibull
(Gurvich et al., 1997) and gamma (Zografos and Balakrishnan, 2009) families,
using the Weibull generator applied to the odds ratio G(x)/[1−G(x)]. The term
“generator” means that for each baseline distribution G we have a different dis-
tribution F . The main aim of this paper is to study a new family of distributions,
with the hope it yields a “better fit” in certain practical situations. Addition-
ally, we provide a comprehensive account of the mathematical properties of the
proposed family of distributions.

This paper is unfolded as follows. In Section 2, we define the Weibull-G
family of distributions. Section 3 provides some special distributions obtained
by the Weibull generator. In Section 4, some general mathematical properties of
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the family are discussed. The formulas derived are manageable by using modern
computer resources with analytic and numerical capabilities. In Section 5, the
estimation of the model parameters is performed by the method of maximum
likelihood. In Section 6, two illustrative applications based on real data are
investigated. Finally, concluding remarks are presented in Section 7.

2. The Weibull-G Family of Distributions

Consider a continuous distribution G with density g and the Weibull cdf
F (x) = 1 − e−αxβ (for x > 0) with positive parameters α and β. Based on this
density, by replacing x with G(x)/G(x) [G(x) = 1 − G(x)], we define the cdf
family by

F (x;α, β, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0
αβ tβ−1e−α t

β
dt

= 1− exp

{
−α

[
G(x; ξ)

G(x; ξ)

]β}
, x ∈ D ⊆ R; α, β > 0, (2)

where G(x; ξ) is a baseline cdf, which depends on a parameter vector ξ. The
family pdf reduces to

f(x;α, β, ξ) = αβ g(x; ξ)
G(x; ξ)β−1

G(x; ξ)β+1
exp

{
−α

[
G(x; ξ)

G(x; ξ)

]β}
. (3)

Henceforth, let G be a continuous baseline distribution. For each G distri-
bution, we define the Weibull-G (Wei-G for short) distribution with two extra
parameters α and β defined by the pdf (3). A random variable X with pdf (3)
is denoted by X ∼Wei-G(α, β, ξ). The additional parameters induced by the
Weibull generator are sought as a manner to furnish a more flexible distribution.
If β = 1, it corresponds to the exponential-generator.

An interpretation of the Wei-G family of distributions can be given as follows
(Cooray, 2006) in a similar context. Let Y be a lifetime random variable having
a certain continuous G distribution. The odds ratio that an individual (or com-
ponent) following the lifetime Y will die (failure) at time x is G(x; ξ)/G(x; ξ).
Consider that the variability of this odds of death is represented by the random
variable X and assume that it follows the Weibull model with scale α and shape
β. We can write

Pr(Y ≤ x) = Pr

(
X ≤ G(x; ξ)

G(x; ξ)

)
= F (x;α, β, ξ),

which is given by (2).



56 Marcelo Bourguignon, Rodrigo B. Silva and Gauss M. Cordeiro

The hazard rate function of the Wei-G family is given by

τ(x;α, β, ξ) =
αβ g(x; ξ)G(x; ξ)β−1

G(x; ξ)β+1
=
αβ G(x; ξ)β−1

G(x; ξ)β
τ(x; ξ),

where τ(x; ξ) = g(x; ξ)/G(x; ξ). The multiplying quantity αβ G(x; ξ)β−1/G(x; ξ)β

works as a corrected factor for the hazard rate function of the baseline model. (2)
can deal with general situations in modeling survival data with various shapes
of the hazard rate function. Table 1 lists G(x; ξ)/G(x; ξ) and the corresponding
parameters for some special distributions.

Table 1: Distributions and corresponding G(x; ξ)/G(x; ξ) functions

Distribution G(x; ξ)/G(x; ξ) ξ

Uniform (0 < x < θ) x/(θ − x) θ

Exponential (x > 0) eλx − 1 λ

Weibull (x > 0) eλx
γ − 1 (λ, γ)

Fréchet (x > 0) (eλx
γ − 1)−1 (λ, γ)

Half-logistic (x > 0) (ex − 1)/2 ∅
Power function (0 < x < 1/θ) [(θ x)−k − 1]−1 (θ, k)

Pareto (x ≥ θ) (x/θ)k − 1 (θ, k)

Burr XII (x > 0) [1 + (x/s)c]k − 1 (s, k, c)

Log-logistic (x > 0) [1 + (x/s)c]− 1 (s, c)

Lomax (x > 0) [1 + (x/s)]k − 1 (s, k)

Gumbel (−∞ < x <∞) {exp[exp(−(x− µ)/σ)]− 1}−1 (µ, σ)

Kumaraswamy (0 < x < 1) (1− xa)−b − 1 (a, b)

Normal (−∞ < x <∞) Φ((x− µ)/σ)/(1− Φ((x− µ)/σ)) (µ, σ)

3. Examples

In this section, we give some examples of the Wei-G family of distributions.
The pdf (3) will be most tractable when the cdf G(x; ξ) and the pdf g(x; ξ)
have simple analytic expressions. These sub-models generalize several important
existing distributions in the literature; for example, Phani, exponential power,
Chen, among others distributions.

3.1 Weibull-Uniform Distribution

As a first example, suppose that the parent distribution is uniform in the
interval (0, θ), θ > 0. Then, g(x; θ) = 1/θ, 0 < x < θ < ∞ and G(x; θ) = x/θ.
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The Weibull-Uniform (WU) has cdf given by

FWU(x;α, β, θ) = 1− exp

[
−α

(
x

θ − x

)β]
, 0 < x < θ <∞,

where α, β > 0. This distribution is known in the literature as the Phani distri-
bution, see Phani (1987). The corresponding pdf is

fWU(x;α, β, θ) =
θ α β

(θ − x)2

(
x

θ − x

)β−1
exp

[
−α

(
x

θ − x

)β]
, 0 < x < θ <∞.

3.2 Weibull-Weibull Distribution

As a second example, consider the power function distribution with density
and distribution functions (for x > 0) given by g(x;λ, γ) = λ γ xγ−1e−λx

γ
, λ, γ >

0 and G(x;λ, γ) = 1− e−λxγ , respectively. Then, the Wei-Weibull (WW) distri-
bution has cdf given by

FWW(x;α, β, λ, γ) = 1− exp
[
−α (eλx

γ − 1)β
]
, x > 0.

The WW distribution includes the exponential power (Smith and Bain, 1975)
distribution when β = 1 and α = 1. Further, for β = 1 and λ = 1, we obtain the
Chen (Chen, 2000) distribution. If β = γ = 1 and α = θ/λ (θ > 0), we obtain
the Gompertz (Gompertz, 1895) distribution. The corresponding pdf is

fWW(x;α, β, λ, γ) = αβ λγ xγ−1(1− e−λx
γ
)β−1 exp

{
λβ xγ − α (eλx

γ − 1)β
}
,

x > 0. (4)

3.3 Weibull-Burr XII Distribution

Let us consider the parent Burr XII distribution with pdf and cdf given by
g(x) = ck s−cxc−1[1 + (x/s)c]−k−1, s, k, c > 0 and G(x) = 1 − [1 + (x/s)c]−k,
respectively. Then, the Wei-BXII (WBXII) distribution has cdf given by

FWBXII(x;α, β, s, k, c) = 1− exp
{
−α [(1 + (x/s)c)k − 1]β

}
, x > 0.

The WBXII distribution includes the generalized power Weibull (Nikulin and
Haghighi, 2006) distribution when α = β = 1. The corresponding pdf (for x > 0)
becomes

fWBXII(x;α, β, s, k, c) =
αβck s−cxc−1

1 + (x/s)c
exp

{
−α [(1 + (x/s)c)k − 1]β

}
×[(1 + (x/s)c)k − 1]β−1. (5)



58 Marcelo Bourguignon, Rodrigo B. Silva and Gauss M. Cordeiro

3.4 Weibull-Normal Distribution

The last example refers to the normal distribution. The Wei-normal (WN)
density is obtained from (3) by taking G(·) and g(·) to be the cdf and pdf of the
normal N(µ, σ2) distribution. Then, the WN distribution has cdf given by

FWN(x;α, β, µ, σ) = 1− exp

−α
[

Φ
(x−µ

σ

)
1− Φ

(x−µ
σ

)]β
 , −∞ < x <∞,

where −∞ < µ <∞, σ > 0 and φ(·) and Φ(·) are the pdf and cdf of the standard
normal distribution, respectively. For µ = 0 and σ = 1, we obtain the standard
WN distribution. The corresponding pdf is

fWN(x;α, β, µ, σ) =
αβ φ

(x−µ
σ

)
σ

Φ
(x−µ

σ

)β−1[
1− Φ

(x−µ
σ

)]β+1
exp

−α
[

Φ
(x−µ

σ

)
1− Φ

(x−µ
σ

)]β
 ,

−∞ < x <∞.

Figure 1 illustrates possible shapes of the density functions for some Weibull-
G distributions.

4. Mathematical Properties

Despite the fact that the Wei-G cdf and pdf require mathematical functions
that are widely available in modern statistical packages, frequently analytical and
numerical derivations take advantage of power series for the pdf. By using the
power series for the exponential function, we obtain

exp

{
−α

[
G(x; ξ)

G(x; ξ)

]β}
=
∞∑
k=0

(−1)kαk

k!

[
G(x; ξ)

G(x; ξ)

]k β
.

Inserting this expansion in (2), we have

f(x;α, β, ξ) = αβ g(x; ξ)
∞∑
k=0

(−1)kαk

k!

G(x; ξ)β(k+1)−1

G(x; ξ)β(k+1)+1
. (6)

Now, using the generalized binomial theorem, we can write

G(x; ξ)−[β(k+1)+1] =
∞∑
j=0

Γ(β(k + 1) + j + 1)

j! Γ(β(k + 1) + 1)
G(x; ξ)j . (7)
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Figure 1: (a) WU(α, β, 1), (b) WW(α, β, 1, 1), (c) WBXII(α, β, 7, 3, 2) and (d)
WN(α, β, 0, 1) density functions

Inserting (7) in (6), the Wei-G density function can be expressed as an infinite
linear combination of exponentiated-G (exp-G for short) density functions

f(x;α, β, ξ) =
∞∑

j,k=0

ωj,k hβ(k+1)+j−1(x; ξ), (8)

where

ωj,k =
(−1)k β αk+1 Γ(β(k + 1) + j + 1)

k! j! [β(k + 1) + j − 1] Γ(β(k + 1) + 1)
,

and

ha(x; ξ) = a g(x; ξ)G(x; ξ)a−1.
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Thus, some mathematical properties of the Wei-G model can be obtained di-
rectly from those properties of the exp-G distribution. For example, the ordinary
and incomplete moments and moment generating function (mgf) of the Wei-G
distribution can be obtained immediately from those quantities of the exp-G
distribution.

The Wei-G family of distributions is easily simulated from (2) as follows: if
U has a uniform U(0, 1) distribution, the solution of the nonlinear equation

X = G−1
(

T

T + 1

)
,

has the Wei-G(α, β, ξ) distribution, where T = {log[1/(1− U)]1/α}1/β.

The sth moment of X can be obtained from (8) as

E(Xs) =

∞∑
j,k=0

ωj,k E(Zsj,k),

where Zj,k denotes the exp-G distribution with power parameter β(k + 1) + j −
1. Since the inner quantities in (8) are absolutely integrable, the incomplete
moments and mgf of X can be written as

IX(y) =

∫ y

−∞
xsf(x)dx =

∞∑
j,k=0

ωj,k Ij,k(y),

where Ij,k(y) =
∫ y
−∞ x

s hβ(k+1)+j−1(x; ξ)dx and

MX(t) =
∞∑

j,k=0

ωj,k E(etZj,k).

Order statistics are among the most fundamental tools in non-parametric
statistics and inference. They enter in the problems of estimation and hypothesis
tests in a variety of ways. Therefore, we now discuss some properties of the order
statistics for the proposed class of distributions. The pdf fi:n(x) of the ith order
statistic for a random sample X1, · · · , Xn from the Wei-G distribution is given
by

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)F (x)i−1[1− F (x)]n−i,
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and then

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x;α, β, ξ)

i−1∑
k=0

(−1)k
(
i− 1

k

)

× exp

{
−α (n+ k − i)

[
G(x; ξ)

G(x; ξ)

]β}
,

where f(·) and F (·) are the density and cumulative functions of the Wei-G dis-
tribution, respectively.

Some results of this section can be obtained numerically in any symbolic
software such as MAPLE (Garvan, 2002), MATLAB (Sigmon and Davis, 2002),
MATHEMATICA (Wolfram, 2003), Ox (Doornik, 2007) and R (R Development
Core Team, 2009). The Ox (for academic purposes) and R are freely distributed
and available at http://www.doornik.com and http://www.r-project.org, respec-
tively. The results are easily computed by taking in these sums a large positive
integer value in place of ∞.

5. Maximum Likelihood Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the parame-
ters of the new family of distributions from complete samples only. Let x1, · · · , xn
be observed values from the Wei-G distribution with parameters α, β and ξ. Let
Θ = (α, β, ξ)> be the p × 1 parameter vector. The total log-likelihood function
for Θ is given by

`(Θ) = n log(α) + n log(β) +

n∑
i=1

log[g(xi; ξ)]− α
n∑
i=1

H(xi; ξ)β

+β

n∑
i=1

log[H(xi; ξ)]−
n∑
i=1

log[G(xi; ξ)]−
n∑
i=1

log[G(xi; ξ)],

where H(x; ξ) = G(x; ξ)/G(x; ξ). The components of the score function U(Θ) =
(Uα, Uβ, Uξ)> are

Uα =
n

α
−

n∑
i=1

H(xi; ξ)β,

Uβ =
n

β
− α

n∑
i=1

H(xi; ξ)β log[H(xi; ξ)] +
n∑
i=1

log[H(xi; ξ)],
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and

Uξk = −αβ
n∑
i=1

H(xi; ξ)β−1∂H(xi; ξ)/∂ξk + β
n∑
i=1

∂H(xi; ξ)/∂ξk
H(xi; ξ)

+
n∑
i=1

∂g(xi; ξ)/∂ξk
g(xi; ξ)

−
n∑
i=1

∂G(xi; ξ)/∂ξk
G(xi; ξ)

−
n∑
i=1

∂G(xi; ξ)/∂ξk
G(xi; ξ)

.

Setting Uα, Uβ and Uξ equal to zero and solving the equations simultaneously

yields the MLE Θ̂ = (α̂, β̂, ξ̂)> of Θ = (α, β, ξ)>. These equations cannot be
solved analytically and statistical software can be used to solve them numerically
using iterative methods such as the Newton-Raphson type algorithms.

For interval estimation on the model parameters, we require the observed
information matrix

J(Θ) = −


Uαα Uαβ | U>αξ
Uβα Uββ | U>βξ
−− −− −− −−
Uαξ Uβξ | Uξξ

 ,

whose elements are

Uαα = − n

α2
,

Uαβ = −
n∑
i=1

H(xi; ξ)β log[H(xi; ξ)],

Uαξk = −β
n∑
i=1

H(xi; ξ)β−1H
′
k(xi; ξ),

Uββ = − n

β2
− α

n∑
i=1

H(xi; ξ)β {log[H(xi; ξ)]}2 ,

Uβξk =

n∑
i=1

H
′
k(xi; ξ)

H(xi; ξ)
− αβ

n∑
i=1

H
′
k(xi; ξ)H(xi; ξ)β−1 log[H(xi; ξ)]

−α
n∑
i=1

H
′
k(xi; ξ)H(xi; ξ)β−1,

and
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Uξkξl = αβ
n∑
i=1

H
′′
kl(xi; ξ)H(xi; ξ)β−1

−αβ(β − 1)
n∑
i=1

H
′
k(xi; ξ)H

′
l (xi; ξ)H(xi; ξ)β−2

+β
n∑
i=1

H
′′
kl(xi; ξ)

H(xi; ξ)
− β

n∑
i=1

H
′
k(xi; ξ)H

′
l (xi; ξ)

H(xi; ξ)2
−

n∑
i=1

G
′′
kl(xi; ξ)

G(xi; ξ)

+
n∑
i=1

G
′
k(xi; ξ)G

′
l(xi; ξ)

G(xi; ξ)2
−

n∑
i=1

G
′′

kl(xi; ξ)

G(xi; ξ)
+

n∑
i=1

G
′

k(xi; ξ)G
′

l(xi; ξ)

G(xi; ξ)2

+
n∑
i=1

g
′′
kl(xi; ξ)

g(xi; ξ)
−

n∑
i=1

g
′
k(xi; ξ)g

′
l(xi; ξ)

g(xi; ξ)2
,

where t
′
k(·; ξ) = ∂t(·; ξ)/∂ξk and t

′′
kl(·; ξ) = ∂2t(·; ξ)/∂ξk∂ξl.

6. Applications

The first set consists of 63 observations of the strengths of 1.5 cm glass fibres,
originally obtained by workers at the UK National Physical Laboratory. Unfor-
tunately, the units of measurement are not given in the paper. The data are:
0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30,
1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55,
1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,
1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89,
2.00, 2.01, 2.24. These data have also been analyzed by Smith and Naylor (1987).

For these data, we fit the Weibull-exponential (WE) distribution defined in
(4) with β = 1. Its fit is also compared with the widely known exponentiated
Weibull (EW) (Mudholkar and Srivastava, 1993) and exponentiated exponential
(EE) (Gupta and Kundu, 1999) models with corresponding densities:

EW : fEW(x;α, β, λ) = αβ λβ xβ−1e−(λx)
β
(

1− e−(λx)
β
)α−1

, x > 0,

EE : fEE(x;α, λ) = αλ e−λx
(

1− e−λx
)α−1

, x > 0,

where α > 0, β > 0 and λ > 0.
The second data set were used by Birnbaum and Saunders (1969) and corre-

spond to the fatigue time of 101 6061-T6 aluminum coupons cut parallel to the
direction of rolling and oscillated at 18 cycles per second (cps). The data are:
70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112,
113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124,
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128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134,
134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142,
142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157,
157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212.

For these data, we fit the WBXII distribution defined in (5) and compare it
with the Weibull-log-logistic (WLL) (for x > 0) and the beta Burr XII (BBXII)
(for x > 0) (Paranáıba et al., 2011) models with corresponding densities:

WLL : fWLL(x;α, β, s, c)

=
αβ c s−cxc−1 exp

{
−α [(1 + (x/s)c)− 1]β

}
[(1 + (x/s)c)− 1]β−1

1 + (x/s)c
,

BBXII : fBBXII(x; a, b, s, k, c)

=
c k s−cxc−1

B(a, b)
[1 + (x/s)c]−(kb+1){1− [1 + (x/s)c]−k}a−1,

where a, b, α, β, s, c, k > 0 and B(a, b) is the beta function.

The MLEs of the model parameters (with standard errors in parentheses) and
the Akaike information criterion (AIC) for the WE, WBXII and the other models
are listed in Table 2. The fitted densities for the first and second data sets are
displayed in Figures 2 and 3 (together with the data histogram), respectively.
These results illustrate the potentiality of the WE and WBXII distributions and
the importance of the two additional parameters.

Table 2: MLEs of the parameters (standard errors in parentheses) and AIC of
the WE and WBXII models for the two data sets

Application Model Estimates AIC

First data set

WE(α, β, λ) 0.0148 2.8796 1.0178 34.8

(0.0598) (2.0488) (1.1954)

EW(α, β, λ) 0.6712 7.2846 0.5820 35.4

(0.2489) (1.7070) (0.0292)

EE(α, λ) 31.349 2.6116 68.8

(9.5198) (0.2380)

Second data set

WBXII(α, β, s, k, c) 100.24 0.6383 151.42 0.0024 13.230 920.6

(191.96) (0.3306) (12.817) (0.0067) (5.6938)

WLL(α, β, s, c) 19.9507 0.3786 235.96 15.8459 933.2

(13.726) (0.2336) (27.321) (9.7957)

BBXII(a, b, s, k, c) 123.07 59.095 233.13 2.2139 0.7180 924.0

(0.1292) (60.873) (296.00) (1.4763) (0.1160)
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Figure 2: Estimated (a) pdf and (b) cdf for the WE, EW and EE models for
failure times data
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Figure 3: Estimated (a) pdf and (b) cdf for the WBXII, WLL and BBXII
models for the second data set

7. Concluding Remarks

Following the contents of the classes of extended Weibull (Gurvich et al., 1997)
and gamma (Zografos and Balakrishnan, 2009) families of distributions, we derive
general mathematical properties of a new wider Weibull family of distributions.
This generator can extend several widely known distributions such as the uniform,
Weibull, Burr XII and Weibull distributions. The Weibull-G density function can
be expressed as a mixture of exponentiated-G density functions. This mixture
representation is important to derive several structural properties of this family
in full generality. Some of them are provided such as the ordinary and incomplete
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moments, quantile function and order statistics. For each baseline distribution
G, our results can be easily adapted to obtain its main structural properties. The
estimation of the model parameters is approached by the method of maximum
likelihood and the observed information matrix is derived. We fit some Weibull-G
distributions to two real data sets to demonstrate the potentiality of this family.
We hope this generalization may attract wider applications in statistics.
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