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Abstract: The problem of variable selection is fundamental to statistical
modelling in diverse fields of sciences. In this paper, we study in particular
the problem of selecting important variables in regression problems in the
case where observations and labels of a real-world dataset are available. At
first, we examine the performance of several existing statistical methods for
analyzing a real large trauma dataset which consists of 7000 observations
and 70 factors, that include demographic, transport and intrahospital data.
The statistical methods employed in this work are the nonconcave penalized
likelihood methods (SCAD, LASSO, and Hard), the generalized linear logis-
tic regression, and the best subset variable selection (with AIC and BIC),
used to detect possible risk factors of death. Supersaturated designs (SSDs)
are a large class of factorial designs which can be used for screening out
the important factors from a large set of potentially active variables. This
paper presents a new variable selection approach inspired by supersaturated
designs given a dataset of observations. The merits and the effectiveness
of this approach for identifying important variables in observational studies
are evaluated by considering several two-levels supersaturated designs, and
a variety of different statistical models with respect to the combinations of
factors and the number of observations. The derived results are encour-
aging since the alternative approach using supersaturated designs provided
specific information that are logical and consistent with the medical experi-
ence, which may also assist as guidelines for trauma management.

Key words: Generalized linear model, penalized likelihood, supersaturated
design, trauma, variable selection.

1. Introduction

Extensive research into variable selection has been carried out over the past
four decades, (see [23] and [24]), and many studies are related to medicine and
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biology, such as [8], [9] and [34]. Factor screening in large-dimensional problems
is an essential activity in which the main goal is to identify correctly and parsimo-
niously the factors that have an important influence on the measured response.
In screening studies many of the effects are negligible. This is known as the
sparsity-of-effects principle [3], which is very important for making the analysis
feasible. To enhance predictability and obtain the “best” model derived from the
screening procedure, viz., the model with the smallest residual sum of squares,
the traditional variable selection techniques used are stepwise deletion and subset
selection.

Although these selection procedures are practically useful, they lack of the-
oretic properties and ignore stochastic errors inherited in the stages of variable
selection. The logistic regression model is assessing association between an an-
tecedent characteristic and a quantal outcome statistically adjusting for potential
confounding effects of other covariates, but does not fit the data accurately if the
observed odds ratios deviate from its assumptions [18]. Furthermore the best
subset variable selection suffers from several drawbacks, the most severe of which
is that it lacks of stability [4], and can be computationally time-consuming when
multiple predictors are considered. Fan and Li [7] proposed a class of variable
selection procedures via nonconcave penalized likelihood which are different from
traditional approaches of variable selection in that they delete insignificant vari-
ables by estimating their coefficients as 0. Recent related studies include [10],
[26] and [38].

This work focuses on the variable selection issue, and specifically on the prob-
lem of selecting important variables in regression problems in the case where ob-
servations and labels of a real-world dataset are available. In particular, we deal
with a large-dimensional problem of statistical modelling by providing a compar-
ative study concerning various variable selection techniques, and considering an
alternative approach using supersaturated designs (SSDs).

The rest of this paper is organized as follows. In Section 2, we describe the
variable selection methods employed in this work. In Section 3, we discuss the
use of SSDs for variable selection given a dataset of observations. In Section 4,
we describe the proposed method using SSDs, apply all the above procedures
to trauma annual data collected in Greece, and the merits of the alternative ap-
proach are also evaluated. Finally, in Section 5, the obtained results are discussed
and some concluding remarks are made.

2. Variable Selection Methods

2.1 Generalized Linear Models

The generalized linear model (GLM) was developed to allow us to fit regres-
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sion models for univariate response data that follow the exponential family which
includes among others the binomial distribution, which describes the distribution
of the errors, and will be the one upon which the analysis is based, when a lo-
gistic regression model is considered. The logistic regression model is often used
to analyze data arising in medical studies, where it is often the case of a binary
response variable, taking two possible values 1 or 0 for “success” or “failure”,
respectively. In this paper, we assume some basic familiarity with logistic regres-
sion concepts. The concepts necessary for a description of the generalized linear
logistic regression can be found in [16], [23], [25], and in [36].

2.2 Best Subset Variable Selection

The procedure of subset selection is used with certain criteria which com-
bine statistical measures with penalties for increasing number of predictors in
the model. Reviews can be found in [14], [24], and [29]. Basically, these criteria
are classified into four categories: (1) Prediction criteria; (2) Information-based
criteria; (3) Data-reuse and Data-driven procedures; (4) Bayesian variable selec-
tion.

In this work, we focus on the information-based criteria which are related
to likelihood or divergence measures. The most popular criteria of this class
include Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) which are derived from distinct perspectives. AIC aims at minimizing
the Kullback-Leibler divergence between the true distribution and the estimated
from a candidate model, and BIC aims at selecting a model that maximizes
the posterior model probability [37]. AIC was proposed by Akaike [1], and it
selects the model that minimizes AIC = −2l + 2q, where l is the log-likelihood
of the model and q is the number of predictors or the dimension of the covariate
vector X in the model. BIC was proposed by Schwarz [33] and has a similar
form to AIC except that the log-likelihood is penalized by q log(n) instead of 2q,
selecting the model that minimizes BIC = −2l+ q log(n), where n is the number
of observations.

All subsets approach is an exhaustive search, since it searches through all
possible subsets and selects the subset with the smallest residual sum of squares.
However, a drawback of this method is that it is very time consuming when
the number of predictors is large. This computational difficulty prevents the
all subsets algorithm from being widely used when there are a large number of
predictors in practical problems.

2.3 Nonconcave Penalized Likelihood Methods

Although the aforementioned techniques are useful for exploratory investiga-
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tions, in situations where the number of predictor variables of interest is large,
several drawbacks are introduced. Fan and Li [7] proposed a class of variable
selection procedures via nonconcave penalized likelihood. Li and Lin [20] in-
troduced an extension of this method, i.e., the nonconcave penalized likelihood
approaches extend to least squares, namely nonconvex penalized least squares,
and focus on the situation in which the design matrix is not full rank. The pro-
posed methods are different from traditional approaches of variable selection in
that they delete insignificant variables by estimating their coefficients as 0.

Assume that the data (xi, Yi) are collected independently. Conditioning on
xi, Yi has a density fi(g(xTi β), yi), where g is a known link function and β the
d-dimensional vector of unknown coefficients. In Fan and Li [7], a form of the
penalized likelihood is defined as

Q(β) ≡
n∑
i=1

li(g(xTi β), yi)− n
d∑
j=1

pλ(|βj |), (1)

where li = log fi denote the conditional log-likelihood of Yi, pλ(·) is a penalty
function, and λ is an unknown thresholding parameter, which can be chosen
by data-driven approaches, such as cross-validation (CV) and generalized cross-
validation (GCV, Craven and Wahba [5]). In general, Cp, CL, CV, and GCV are
useful techniques for selecting a good estimate from a proposed class of linear
estimates and it is argued that CV and GCV can be viewed as some special
ways of applying CL (see [19]). Maximizing the penalized likelihood function is
equivalent to minimizing

−
n∑
i=1

li(g(xTi β), yi) + n

d∑
j=1

pλ(|βj |), (2)

with respect to β. To obtain a penalized maximum likelihood estimator of β we
minimize (2) with respect to β, for some thresholding parameter λ.

In this paper, to obtain a penalized maximum likelihood estimator of β which
is the vector of the unknown coefficients in the model, several penalty functions
were considered. In particular we implement the L1 penalty pλ(|β|) = λ|β| which
results in the Least Absolute Shrinkage and Selection Operator method (LASSO,
[35]), the Hard thresholding penalty pλ(|β|) = λ2 − (|β| − λ)2I(|β| < λ) (see [2]),
where I(·) is an indicator function, and the Smoothly Clipped Absolute Deviation
(SCAD) penalty the first derivative of which is defined by p′λ(|β|) = λ{I(|β| ≤
λ) + ((αλ− β)+/(α− 1)λ)I(|β| > λ)}, for some β > 0 and α > 2, with pλ(0) = 0
([7]). For the choice of α, according to the relevant literature (see [8]), the value
α ≈ 3.7 appears to perform quite satisfactorily in numerous variable selection
problems.
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Fan and Li ([7]) proposed a unified algorithm for the minimization of (2) by
local quadratic approximations. Given an initial value β(0) that is close to the

true value of β, when β
(0)
j is very close to 0 we set β̂j = 0 and when β

(0)
j is not

very close to 0, the penalty pλ(|βj |) can be locally approximated by a quadratic

function as [pλ(|βj |)]′ = p′λ(|βj |)sgn(βj) ≈
{
p′λ(|β(0)j |)/|β

(0)
j |
}
βj , when βj 6= 0. In

other words, pλ(|βj |) ≈ pλ(|β(0)j |)+{p′λ(|β(0)j |)/|β
(0)
j |}(β2j −β

(0)2

j )/2, for βj ≈ β(0)j .
If the first term of (2) is regarded as a loss function of β denoted by l(β), then
(2) can be written in the unified form

l(β) + n
d∑
j=1

pλ(|βj |). (3)

Under the assumption that the first two derivatives of the loglikelihood are con-
tinuous, the first term of (3) can be locally approximated by a quadratic function.
With the local quadratic approximation, the solution can be found by iteratively
computing the following expression with an initial value

β(0): β(1) = β(0) − {∇2l(β(0)) + n
∑

λ(β(0))}−1{∇l(β(0)) + nUλ(β(0))},

where

∇l(β(0)) =
∂ l(β(0))

∂β
, ∇2l(β(0)) =

∂2 l(β(0))

∂β∂βT
, Uλ(β(0)) =

∑
λ

(β(0))β(0),∑
λ

(β(0)) = diag
{
p′λ(|β(0)1 |)/|β

(0)
1 |, · · · , p

′
λ(|β(0)d |)/|β

(0)
d |
}
.

When the algorithm converges, the estimator satisfies the condition ∂l(β̂(0))/∂βj+

np′λ(|β̂(0)j |)sgn(β̂
(0)
j ) = 0, the penalized likelihood equation, for nonzero elements

of β̂(0). The standard errors for the estimated parameters can be obtained di-
rectly because the parameters and selecting variables are estimated at the same
time. Following the conventional technique in the likelihood setting, the cor-
responding sandwich formula can be used as an estimator for the covariance
of the estimates β̂(1), the nonvanishing component of β̂. That is, ĉov(β̂(1)) =
{∇2l(β̂(1)) + n

∑
λ(β̂(1))}−1ĉov{∇l(β̂(1))}{∇2l(β̂(1)) + n

∑
λ(β̂(1))}−1. Interested

reader may refer to Fan and Li [7] for more details.

3. Supersaturated Designs

Supersaturated designs (SSDs) are fractional factorial designs in which the
number of factors to be estimated exceeds the number of experimental runs.
SSDs are widely used in experimentations in which the main goal is to identify
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the important effects efficiently in terms of minimal computational cost and time.
SSDs can be generally described as designs with m factors and n runs where
n ≤ m. The idea of SSDs was initiated by Satterthwaite [31]. Even though the
construction methods of SSDs have been studied extensively (see, for example, the
recent reviews [12] and [17]), the analysis of SSDs still remains a very challenging
task. Some new approaches for analyzing SSDs have been developed in recent
years. The interested reader may refer to Li and Lin (2003) [21], Gupta and Kohli
(2008) [13] for analysis methods of SSDs up until 2007, and to Georgiou (2012)
[11] for a detailed review later than 2008. We do not present here more details
on construction and analysis methods of SSDs, since this paper focuses on the
idea of using SSDs for variable selection.

The use of experimental designs for variable selection in problems of obser-
vational data has been introduced by Pumplün et al. (2005) ([27] and [28]).
Schiffner and Weihs (2009) [32] extended the simulation study of [27] in order
to verify the results and as basis for further research in this field; the appropri-
ateness of D-optimal plans for training classification methods was additionally
investigated. Rüping and Weihs (2009) [30] proposed an algorithm inspired by
statistical design of experiments and kernel methods to deal with the problem of
variable selection given a database of observations. Unlike observations resulting
from experimental designs, massive data sets sometimes become available with-
out predefined purposes. Usually, it is preferable to find some interesting features
in the data sets that will provide valuable information to support decision making
[22]. For experimental situations where there really is no prior knowledge of the
effects of factors, but a strong belief in factor sparsity, and where the aim is to
find out if there are any dominant factors and to identify them, experimenters
should seriously consider using SSDs as suggested in [12]. In the early literature,
there are several research papers regarding the practical use of SSDs in real life
problems, for example see [12] and [15]. More research is needed for the best
practical usage of SSDs, since the situations in which SSDs are really promising
and essentially ready for use in practice are limited. Good designs (may not opti-
mal) are already available for many sizes of an experiment [12], but their practical
usage still remains a difficult and challenging task. In our paper, we used several
SSDs combined with several existing statistical analysis methods in order to deal
with the problem of variable selection in a large-dimensional dataset.

4. Proposed Methodology

In this section, we examine the performance of several existing variable selec-
tion methods, as well as the alternative approach considering SSDs, for analyzing
a real large annual trauma dataset. Here is a brief summary. The data were
collected in an annual registry conducted by the Hellenic Trauma and Emer-
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gency Surgery Society involving 30 General Hospitals in Greece. The study was
designed to assess the effects of differing prognostic factors on the outcome of
injured persons. Note here that 70 covariates were thought to be possible risk
factors, and after medical advice, all of the factors were treated equally during
the variable selection approach, meaning that there was no factor that should be
always maintained in the model. Altogether N = 7000 patients were recorded,
and for each of them the binary response variable y (death: 1, otherwise: 0) was
reported.

Penalized partial likelihood approach, with the SCAD, L1, and Hard penalty,
was applied to this dataset. In order to implement these methods, we estimated
the thresholding parameter λ based on data via minimizing an approximate gen-
eralized cross-validation (GCV) statistic. The constant α in the SCAD was taken
as 3.7 according to suggestions in the relevant literature (see [7]). The standard
error formula described in Subsection 2.3 was also computed. We considered
likelihood based generalized linear models as well. From now on we shall assume
that the design matrix X = (xij) is standardized so that each column has mean 0
and variance 1. The best subset variable selection procedure with AIC and BIC
was also conducted. The analysis was organized in two subsections, in which
numerical comparisons among variable selection methods are illustrated. In Sub-
section 4.2 we considered different SSDs for the desired analysis. All models were
conducted using MATLAB codes.

4.1 Sequential Variable Selection

In this subsection, we perform sequentially several variable selection methods
until we achieve the model’s convergence. Model I is the initial model, viz.,
the whole trauma dataset consisting of N = 7000 patients and 70 possible risk
factors. The names of the 70 available prognostic factors of the initial Model I
are listed in the Appendix. Due to the fact that best subset selection procedures
are extremely computationally time-expensive, their application was not possible
in this stage of the medical study.

Model II was obtained from the first execution of each of the LR, SCAD,
LASSO, and Hard methods, and 29 variables were identified as statistically sig-
nificant (ss). These 29 ss variables (x9, x11, x12, x13, x14, x16, x17, x18, x20, x21,
x22, x23, x24, x25, x26, x27, x29, x35, x36, x37, x38, x39, x40, x41, x42, x43, x44,
x45, x46) were selected from at least one of these methods, were kept and used
for further analysis.

Model III was obtained from the second execution of each of the LR, SCAD,
LASSO, and Hard methods, and 14 variables were identified as ss. These 14
ss variables were selected from at least one of these methods, were kept and
used for further analysis. Note here that when the above four methods were
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applied for third time, we noticed that the values of the estimated coefficients
were maintained different from zero, resulting to the model’s convergence. Hence,
after following two-step variable selection procedures (LR, SCAD, LASSO, and
Hard) we identified Model III which consists of 14 ss variables listed in Table 1.
The estimated coefficients and standard errors for Model III are also reported
in Table 1. The unknown parameter λ was estimated to be 0.0008, 0.0001, and
0.0008 for the SCAD, L1 and Hard thresholding penalties respectively. With the
estimated value of λ, the penalized likelihood estimator was obtained at the 2nd,
3rd and 2nd step iterations for the penalized likelihood with the SCAD, L1 and
Hard thresholding penalties respectively.

Table 1: Estimated coefficients and standard errors for Model III

Method Logistic SCAD LASSO Hard
Best Subset Best Subset

(BIC) (AIC)

Intercept -4.08 (0.11) -4.08 (0.11) -4.06 (0.11) -4.08 (0.11) -4.06 (0.11) -4.08 (0.11)

x9 0.33 (0.07) 0.33 (0.07) 0.33 (0.06) 0.33 (0.07) 0.32 (0.06) 0.33 (0.07)

x11 -0.47 (0.10) -0.47 (0.10) -0.46 (0.10) -0.47 (0.10) -0.47 (0.09) -0.47 (0.10)

x13 0.24 (0.06) 0.24 (0.06) 0.24 (0.06) 0.24 (0.06) 0.23 (0.06) 0.24 (0.06)

x16 -0.20 (0.06) -0.20 (0.06) -0.20 (0.06) -0.20 (0.06) -0.26 (0.06) -0.20 (0.06)

x20 -0.24 (0.10) -0.24 (0.10) -0.23 (0.10) -0.24 (0.10) 0 (-) -0.24 (0.10)

x21 -0.67 (0.12) -0.67 (0.12) -0.66 (0.12) -0.67 (0.12) -0.69 (0.12) -0.67 (0.12)

x24 0.65 (0.07) 0.65 (0.07) 0.65 (0.07) 0.65 (0.07) 0.63 (0.07) 0.65 (0.07)

x26 -0.18 (0.08) -0.18 (0.07) -0.17 (0.07) -0.18 (0.07) 0 (-) -0.18 (0.07)

x29 -0.80 (0.12) -0.80 (0.12) -0.79 (0.12) -0.80 (0.12) -0.82 (0.12) -0.80 (0.12)

x37 0.14 (0.03) 0.14 (0.03) 0.14 (0.03) 0.14 (0.03) 0.14 (0.03) 0.14 (0.03)

x38 -0.71 (0.06) -0.71 (0.06) -0.71 (0.06) -0.71 (0.06) -0.74 (0.06) -0.71 (0.06)

x39 -0.34 (0.09) -0.34 (0.09) -0.34 (0.08) -0.34 (0.09) -0.42 (0.08) -0.34 (0.09)

x42 -0.21 (0.09) -0.21 (0.09) -0.20 (0.09) -0.21 (0.09) 0 (-) -0.21 (0.09)

x43 -0.46 (0.09) -0.46 (0.09) -0.45 (0.09) -0.46 (0.09) -0.45 (0.09) -0.46 (0.09)

The application of best subset selection procedures was not possible until
this stage of the experimental study due to computational complexity. We thus
applied best subset variable selection methods (with AIC and BIC) to the 14 ss
variables of Model III derived from penalized likelihood methodology. We observe
from Table 1 that SCAD, Hard, LR, and best subset with AIC score methods yield
the same model, while estimates of LASSO are systematically lower. Best subset
procedure via minimizing the BIC score rejects factors which may be statistically
significant. For example, the estimated coefficient for covariate “spinal column
x-ray” (x42) is set equal to zero whereas is selected in all other models considered
in this article. Note here that the estimated standard errors for the L1 penalized
likelihood estimator are consistently smaller than LR, SCAD and Hard methods.
This implies that the biases in the LASSO estimators are larger.
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As far as execution times are concerned, we observe that Hard method was
much faster with 67 sec versus to SCAD which needed almost 147 sec, and to
LASSO which needed 490 sec. The best subset procedures via minimizing the
BIC and AIC scores needed 275331 and 276422 sec, respectively. In general, Hard
method was the quickest compared to all considered methods.

4.2 Implementing Supersaturated Designs for Variable Selection

In this subsection, we study the use of SSDs for variable selection given a
dataset of observations. We approach the problem of variable selection by con-
sidering SSDs, and conduct several statistical analysis methods. The measure
used to determine the considered SSDs is the measure of non-orthogonality be-
tween two columns, i.e., the inner products of two columns in the two level designs
does not always vanish to zero.

During our experiments, only main effects models were taken into considera-
tion. We now present the proposed procedure used in order to identify SSDs as
appropriate as possible for analyzing a real large dataset.

1. Given the initial dataset consisting of m input predictor variables {xi1, · · · ,
xim}, and N observations, i = 1, 2, · · · , N , define the SSDs properties.
• Desired number of rows (n): n = 1/100 of N available runs
• Desired number of columns (m): m+ 1 > n.

2. Choose randomly from the initial dataset 100 (n ×m) plans according to
the uniform distribution. We assume that each of the initial m factors
has two levels, ±1. Generate the SSD matrix X = [1, x1, x2, · · · , xm] for
each plan, which is the n × (m + 1) model matrix. The first column of X
is 1n = [1, · · · , 1]T , with the column j corresponding to the levels of the
(j − 1)-th factor for j = 2, · · · ,m + 1. From columns 2, · · · ,m + 1 of X,
m columns were assigned to each plan at random. From 1, · · · , N rows,
n = N/100 rows were assigned to each plan at random.

3. Search and exclude the plans with the worst non-orthogonality property
(the highest value of degree of non-orthogonality between columns is 1).

4. Identify the SSD plan(s) with the best possible non-orthogonality prop-
erty, viz., the SSD plan(s) with the minimum correlation level (coefficient)
between factors.

We applied the above procedure to our initial trauma data set, and 100 (n =
70×m = 70) plans were randomly chosen according to the uniform distribution.
In other words, 100 SSDs have been constructed based on random samples of
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observations of the trauma dataset, viz., by random selection of n = 70 runs
from the set of N = 7000 available runs. We identified 5 SSDs with the minimum
correlation coefficient. Hence, we considered five SSDs each with m = 70 factors
and n = 70 runs. The disadvantage of these SSDs is that because of the nature
of the problem it was not possible to be balanced. An SSD for two level factors is
said to be balanced if every column of the design has levels +1 and −1 appearing
equally often. Since the factors depend on the characteristics of the studied
patients and cannot be pre-specified, it was impossible for us to take measures
according to the balanced optimal two-level supersaturated designs which would
protect us more from the unavoidable confound of the involved statistical analysis.

We perform sequentially several variable selection methods to the constructed
5 datasets, each of them consisting of n = 70 patients and m = 70 possible risk
factors, until we achieve the model’s convergence. ModelSSDs was obtained from
the first execution of each of the LR, SCAD, LASSO, and Hard methods, and 13
variables were selected as ss for all the 5 SSDs considered. These 13 ss factors (x1,
x2, x3, x10, x11, x16, x19, x38, x42, x43, x47, x48, x62) were selected from at least
one of these methods, were kept and used for further analysis. The application
of best subset selection procedures was possible in this stage of the experiment.
We thus applied LR, SCAD, LASSO, Hard, and best subset variable selection
methods (with AIC and BIC) to the 13 ss factors of ModelSSDs, and identified a
new model consisting of 5 ss factors. Note here that when the above methods were
applied once again, we noticed that the values of the estimated coefficients were
maintained different from zero, resulting to this model’s convergence. Hence, we
identified the “best” possible model (Final ModelSSDs) consisting of 5 ss variables,
appeared in Table 2. We derived the coefficients of this model by concerning all
7000 observations, so the same abbreviations with Model III are also used here.
The unknown parameter λ was estimated to be 0.0007, 0.0001, and 0.0007 for
the SCAD, L1 and Hard thresholding penalties respectively. The needed steps
to obtain the penalized likelihood estimator were 2, 3, and 2 for SCAD, L1, and
Hard penalty respectively.

Note here that even if the constructed SSDs may not be the best possible,
however, these SSDs achieved to recognize the 5 ss factors that were included in
Model III by using only the 1/100 of available runs. We also observe a stability
in the results obtained from the statistical analysis of all 5 SSDs. In medical
terms, a model with the less possible important factors was desirable in our
case. We observe from Table 2 that all six methods gave the same results, and
hence medical community should seriously take into account these five factors in
order to decrease the death rate from trauma in Greece. Indeed, the 5 common
factors should be considered as statistically significant, and all the others could
be maintained for further investigation. The first and third factor are referred
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to actions at the side of the accident. The second one concerns the decision a
doctor should take after the patient was examined in the emergency room, and
the last two factors concern actions taken in the emergency room.

Table 2: Estimated coefficients and standard errors for Final ModelSSDs

Method Logistic SCAD LASSO Hard
Best Subset Best Subset

(BIC) (AIC)

Intercept -3.93 (0.10) -3.93 (0.10) -3.92 (0.10) -3.93 (0.10) -3.93 (0.10) -3.93 (0.10)

x11 0.19 (0.05) 0.19 (0.05) 0.19 (0.05) 0.19 (0.05) 0.19 (0.05) 0.19 (0.05)

x16 -1.02 (0.06) -1.02 (0.06) -1.02 (0.06) -1.02 (0.06) -1.02 (0.06) -1.02 (0.06)

x38 -0.65 (0.05) -0.65 (0.05) -0.65 (0.05) -0.65 (0.05) -0.65 (0.05) -0.65 (0.05)

x42 -0.49 (0.09) -0.49 (0.09) -0.49 (0.08) -0.49 (0.09) -0.49 (0.09) -0.49 (0.09)

x43 -0.34 (0.07) -0.34 (0.07) -0.34 (0.07) -0.34 (0.07) -0.34 (0.07) -0.34 (0.07)

4.3 Comparative Results of the Proposed Variable Selection Proce-
dures

Initially, we performed sequentially several variable selection methods to the
whole dataset until we achieve the model’s convergence. Hence, we identified the
final model, viz., Model III which consists of 14 ss variables listed in Table 1.
These selected 14 ss variables are x9, x11, x13, x16, x20, x21, x24, x26, x29, x37,
x38, x39, x42, x43.

We then approached the problem of variable selection by considering sev-
eral two-levels supersaturated designs (SSDs). After implementing the five con-
structed SSDs, we conducted several statistical analysis methods until we achieve
the model’s convergence. Hence, we identified the “best” possible model consist-
ing of 5 ss variables, appeared in Table 2. These selected 5 ss variables are x11,
x16, x38, x42, x43.

There are four significant points worth mentioning here.

1. The Final ModelSSDs consists of 5 variables which were identified as ss for all
the five constructed SSDs.

2. The 5 ss variables of Final ModelSSDs (see Table 2) are also identified as ss
and are included in Model III (see Table 1). Note here that comparing with
the results of the ss variables given in Tables 1 and 2, there only exist five
accordant variables (x11, x16, x38, x42, x43) obtained from the two proposed
variable selection procedures. These accordant variables are the final sig-
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nificant variables (Final ModelSSDs) identified by implementing the SSDs
methodology and the assistance of the penalized likelihood methodologies.

3. The proposed SSDs methodology achieves to recognize these 5 ss factors (Final
ModelSSDs) by using only the 1/100 of available runs.

4. Best subset procedure via minimizing the BIC score rejects factors which may
be ss when performing only sequential variable selection. The estimated
coefficient for “spinal column x-ray” (x42) is set equal to zero whereas x42
is selected as ss from all other considered methods (see Table 1). The
proposed method considering SSDs achieved to recognize x42 as ss even for
the best subset procedure via minimizing the BIC (see Table 2). This fact
implies that the proposed SSDs methodology tends to reduce the biases for
the estimators of coefficients and standard errors.

5. Concluding Remarks

Recent proliferation of large-dimensional databases makes variable selection,
or dimension reduction crucial in model building and challenging due to their
complicated structure. Not only does judicious variable selection improves the
model’s predictive ability, but it generally provides a better understanding of the
underlying concept that generates the data. In the literature, little work has been
done in this area via penalized likelihood methods. This article comes to present
an extensive application of SCAD, LASSO and Hard methods in combination
with the usage of supersaturated designs for variable selection given a dataset
of observations. We observed that the logistic regression compared to the two
traditional variable selection methods, fails to eliminate the possible insignificant
factors, and the best subset method (with AIC or BIC) is very time consuming,
in some cases even impossible. SCAD, LASSO and Hard methods outperform
the abovementioned methods as they are much faster, and more effective because
they select important variables via optimizing a penalized likelihood simultane-
ously, and hence the standard errors of estimated parameters can be estimated
accurately. Therefore, we believe that since these methods are easily and quickly
implemented, even in a such large-dimensional problem, they should be all ap-
plied during a statistical analysis. In this way, factors that are selected from all
three penalized likelihood methods should be considered as statistically signifi-
cant, and the others that are chosen from at least one of these methods could be
maintained for further investigation. The effective use of supersaturated designs
in the statistical analysis of our medical data is very important, since it allowed
us to obtain a parsimonious and meaningful model that identifies the significant
prognostic factors affecting death from trauma, using only few patients (only the
1/100 of available runs).
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Appendix

Trauma Study

• (Model I) (levels ±1):
x1: gender
x2: arterial hypertension
x3: coronary disease
x4: heart failure
x5: arrhythmia
x6: asthma
x7: chronic obstructive pulmonary disease (COPD)
x8: chronic kidney disease
x9: car accident
x10: none safety measures at the side of the accident
x11: collar soft at the side of the accident
x12: RL at the side of the accident
x13: unconscious at the side of the accident
x14: life belt
x15: airbags
x16: transfer to a clinic, of the hospital
x17: transfer to surgery
x18: transfer to general surgery
x19: transfer to orthopedic clinic
x20: expected big temporary handicap
x21: expected small temporary handicap
x22: recovery
x23: transport by ambulance (in other hospital)
x24: transport by ambulance in emergency room
x25: transport by car in emergency room
x26: checking in the emergency room by general surgeon
x27: checking in the emergency room by neurosurgeon
x28: ICP Monitoring
x29: DW
x30: US Triplex
x31: evacuation
x32: A.T.L.S
x33: capillary refill
x34: peritoneum points
x35: sweating
x36: peripatetic
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x37: central cyanosis
x38: peripheral vein
x39: head x-ray
x40: upper part of spinal column x-ray
x41: pelvis x-ray
x42: spinal column x-ray
x43: extremities x-ray
x44: CT abdomen
x45: CT extremities
x46: resident on charge
x47: CT thorax
x48: thorax x-ray
x49: nasogastric tube
x50: fluids
x51: chest drainage
x52: catheter
x53: pericardiocentesis
x54: blood
x55: thoracotomy
x56: angiography
x57: diagnostic peritoneal lavage (DPL)
x58: embolism
x59: toxicology testing
x60: ultrasound (US)
x61: urea testing
x62: mild trauma
x63: Radiograph E.R.
x64: immobility of limbs
x65: face injury
x66: head injury
x67: breast injury
x68: spinal column injury
x69: upper limbs injury
x70: lower limbs injury
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