Journal of Data Science 12(2014), 175-196

A Comparison of Statistical Tools for Identifying Modality in
Body Mass Distributions

Ling Xu!, Edward J. Bedrick?, Timothy Hanson?* and Carla Restrepo?
L James Madison University, 2 University of New Megzico,
3 University of South Carolina and * University of Puerto Rico

Abstract: The assessment of modality or “bumps” in distributions is of in-
terest to scientists in many areas. We compare the performance of four
statistical methods to test for departures from unimodality in simulations,
and further illustrate the four methods using well-known ecological datasets
on body mass published by Holling in 1992 to illustrate their advantages
and disadvantages. Silverman’s kernel density method was found to be very
conservative. The excess mass test and a Bayesian mixture model approach
showed agreement among the data sets, whereas Hall and York’s test pro-
vided strong evidence for the existence of two or more modes in all data
sets. The Bayesian mixture model also provided a way to quantify the un-
certainty associated with the number of modes. This work demonstrates the
inherent richness of animal body mass distributions but also the difficulties
for characterizing it, and ultimately understanding the processes underlying
them.
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1. Introduction

Scientists across many realms are interested in quantifying modality in distri-
butions. Examples abound, for example in economics (Henderson, Parmeter and
Russell, 2008), micro-array gene expression data (e.g., Dazard and Rao, 2010),
and astrophysics (e.g., Escobar and West, 1995). Here, we consider ecological
data, which often departs from the “ideal” normal distribution. This not only
has implications for data analysis but also for the interpretation of the ecolog-
ical and evolutionary problems under observation. One point in case concerns
the distribution of body size in animal assemblages. Some authors have described
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these distributions as unimodal and continuous (e.g., Hutchinson and MacArthur,
1959; May, 1986) whereas others have described them as discontinuous such that
species aggregate around certain body sizes leading to multimodal distributions
(e.g., Oksanen et al., 1979; Holling, 1992; see Figure 1). The ecological and evo-
lutionary implications of these divergent views are profound. Whereas the former
implies the existence of a single optimal body size (Stanley, 1973; Brown et al.,
1993) the latter implies the existence of several optima (Griffiths, 1986), raising
questions about the underlying processes (e.g., Scheffer and van Nees, 2006; Allen
and Holling, 2008).
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Figure 1: Distribution of body size of Holling’s (1992) Boreal Forest Mammal
(BFM) data. (a) Histogram and estimated density function based on the best
fitting normal distribution. Probability density functions based on a normal
kernel estimate in which the bandwidth is (b) 1.0, (c) 0.50, and (d) 0.25

The occurrence of multiple modes in body size is not limited to species as-
semblages. They have been widely documented in many animal populations as
intersexual (Ipina and Durand, 2000), intrasexual (Wright, 1968; Riippell and
Heinze, 1999), and caste (Wilson, 1953) size polymorphisms. In these systems,
individuals sharing similar body sizes perform well-defined tasks and in this sense,
they represent functional groups. Other examples include intra (Wright, 1968;
D’Onghia et al., 2000) and inter (Grant, 1986) population size differences. In all
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instances, multimodality seems to be associated with gross intra and inter popu-
lation heterogeneity resulting from a mixture of subpopulations, raising questions
about their origin and the processes maintaining them in space and time.

Revealing and quantifying multimodality in body size data, however, has
been challenging for ecologists and evolutionary biologists, as demonstrated by
the diversity of methods that they have used (Allen et al., 2006 and references
therein) and the concerns that others have raised (Manly, 1996; Siemann and
Brown, 1999). Statisticians have faced similar challenges over the last 30 years as
demonstrated by the variety of methods that they have devised (Silverman, 1981;
Hartigan and Hartigan, 1985; Silverman, 1986). Yet, there is little agreement on
what tools might be most appropriate for revealing and quantifying multimodal-
ity, not to mention investigating the processes underlying these distributions. In
this paper we: (1) review three statistical methods for detecting multiple modes,
(2) introduce a Bayesian test for assessing modality, (3) compare the four ap-
proaches in simulations on a variety of density shapes, (4) evaluate and compare
the performance of these methods on body mass data for species assemblages,
and (5) discuss the advantages and disadvantages of each method in terms of the
future development of these tools to address a variety of ecological and evolution-
ary questions. Although we focus on body size data, we emphasize that many
other data are amenable to similar analyses.

2. Approaches

A mode of a continuous probability distribution is a location at which the
probability density assumes a local maximum value. Distributions with a single
mode (unimodal) are insufficient to describe many datasets, and several classes of
methods have been devised to reveal more complex distributions. These include
histograms, kernel density estimates and mixture models. Histograms are pri-
marily descriptive, while kernel estimates and mixture models allow for inference
using both non-parametric and parametric approaches.

2.1 Kernel Density Estimation: The Silverman and Hall and York Tests

These two tests of modality are based on kernel density estimates. Suppose
we have a sample x1,x9, - ,2, from a population with an unknown density
function f(¢). A popular non-parametric estimate for this density is the so-called
kernel estimate

it =5 >k (57,
=1

where b is a user defined bandwidth and K(-) is a user defined kernel function.
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Two popular choices for the kernel function are the uniform or box kernel
K(t) =1 for —0.50 < ¢ < 0.50 and the normal kernel K (t) = exp(—0.5t2)/+/27.
With a box kernel, the estimate is a smoothed version of the sample histogram.
For simplicity, we consider normal kernels. An important property of normal
kernel estimates is that the number of modes or peaks in f (t) is a non-increasing
function of the bandwidth. That is, larger bandwidths lead to smoother estimated
densities with fewer modes (Figure 1). Givens and Hoeting (2005) discuss several
methods for choosing the bandwidth.

Silverman (1981) proposed a test of modality that is based on the minimum
bandwidth by, that produces a unimodal kernel estimator f (t; bmin). The idea
behind Silverman’s test is that a large value of the bandwidth b is needed to
smooth the data and produce a unimodal density estimate if the population
density f(t) has two or more modes. Thus, large values of by, provide evidence
that the underlying density is not unimodal. To test the null hypothesis that
f(t) is unimodal, Silverman suggests the p-value

pval = P( byin > 0% | (t) is unimodal),
where glbl;‘ is the minimum bandwidth based on the sample. This p-value is es-
timated using a bootstrap procedure where repeated random samples z7,--- , z;,
are selected from a distribution with density f(¢; bfr'fi%). For each bootstrap sam-

ple, the minimum bandwidth b} ; is computed from the kernel estimate
A 1 — t—xf
(t;0) = — K L.
Fsn= 53K (57)

The estimated p-value is the proportion [;fgl of bootstrap samples with b .
oS - Given that b%, > b°% if and only if f£*(¢;b°2% ) has more than one mode, the

min* min ’ Ymin N
p-value is just the proportion of bootstrap samples in which f*(¢; b‘r’g’ii) has more
than one mode. Silverman gives a simple method to sample the distribution

F(t; b2>s). In practice, the distribution f (t; 692 ) is rescaled to have the same
mean and variance as the observed data.

Hall and York (2001) established that the p-value for Silverman’s test is too
large, even in large samples. An important implication of this result is that Sil-
verman’s test may have low power and fail to detect multiple modes when they
exist. To correct this, Hall and York (2001) inflate the minimum bandwidth 2%
in Silverman’s test. For a test with size a (for example, a = 0.05), the hypothe-

sis of unimodality is rejected if the proportion p*(«) of bootstrap samples where

f*(t; Aab2% ) has more than one mode is less than . Here )\, is a decreasing
function of @ with A\, > 1 and A g5 = 1.13. We note that p*(«) < pval so the ad-
justment has the desired effect of making Silverman’s test less conservative. Hall
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and York (2001) also propose a procedure where )\, is estimated using bootstrap
methods. We found this modification to be unnecessary in our examples.

The proportion p*(«) is not a p-value because it depends on the test size a.
If we define the p-value to be the minimum value of « such that p*(«) < «, then
p*(a) is an upper bound on the p-value when p*(«) < o and a lower bound on the
p-value when p*(«) > a. The p-value can be obtained by iteratively evaluating
p* () until [p*(«) — « is small.

Hall, Minnotte and Zhong (2004) proposed a calibration of Silverman’s test
using a non-Gaussian kernel. In contrast to a Gaussian kernel, the number of
modes is a nonmonotone function of the bandwidth with some non-Gaussian
kernels. They used three different non-Gaussian kernels: Epanechnikov, biweight
and triweight. When testing for modality, they showed that using non-Gaussian
kernels does not substantially alter the conclusions of Silverman’s test. We will
not consider this approach here.

Hall and York’s (2001) adjustment to Silverman’s (1981) approach is available
in the package silvermantest available online from www.uni-marburg.de/fb12/
stoch/research /rpackage; this package is referenced in Vollmer, Holzmann and
Schwaiger (2013).

2.2 The Dip and Excess Mass Tests

A difficulty with implementing Silverman’s test is that the interval on which
the density is estimated must be constrained to reduce the influence of isolated
extreme data values producing spurious modes or bumps (see Hall and York,
2001). Two histogram-based methods that were developed to circumvent this
problem are the dip (Hartigan and Hartigan, 1985) and the excess mass (Miiller
and Sawitski, 1991) tests, neither of which requires estimating the density. The
test statistics are equivalent for one dimensional densities as considered here, so
we restrict attention to the excess mass test.

For testing whether a density f(t) is unimodal against the alternative hypoth-
esis that the distribution is bimodal, the measure of excess mass for two modes
is defined by

2
EM,(L) = maxc, ¢, | Y {p(C)) — L length (C;)} |,
j=1

where L > 0 is a constant, the maximum is taken over all disjoint intervals C
and Cy on the line and p(C}) is the proportion of the sample that falls in C}
(Figure 2(a)). The measure of excess mass for one mode is defined similarly:
EM; (L) = max¢c[p(C) — L length(C)].
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Figure 2: Probability density function for a (constructed) bimodal distribution
to illustrate the concepts behind the excess mass test. (a) The shaded area
represents the value of EMy (L) for the choice of L. (b) The excess mass statistic
A is the minimal amount of mass that has to be moved (from the 2nd hump
above vertical bar to the shaded area) to turn two modes into one

The basic idea of the test is that two distinct modes will produce disjoint
intervals with a significant density relative to the interval length, leading to a
much larger value of EMa(L) than when the density is unimodal. The excess mass
statistic, A, is the maximum value of EMy(L) — EM;(L) over all L > 0. Larger
values of A provide stronger evidence against unimodality. Alternatively, A is
the minimal amount of mass that has to be moved to turn a bimodal distribution
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into a unimodal distribution (Miiller and Sawitzki, 1991); see Figure 2(b).

The p-value of the excess mass test is evaluated through a bootstrap method
developed by Cheng and Hall (1998). Under the null hypothesis that f(t) is
unimodal, Cheng and Hall (1998) show that the distribution of A depends on a
single parameter that is a function of the density at the unique mode and the
curvature of the density at the unique mode. Kernel density methods are used
to estimate this parameter and then bootstrap samples are generated from a
family of distributions indexed by this parameter. The p-value is the proportion
of bootstrap samples where A* > A.

It is important to mention that the excess mass test addresses whether the
underlying distribution has one mode or two. In comparison, Silverman’s test
and Hall and York’s test are ideally suited to assess whether the underlying
distribution is unimodal or not.

The dip test (Hartigan and Hartigan, 1985) is available from the Compre-
hensive R Archive Network (CRAN) in the diptest package, written by Martin
Maechler and Dario Ringach. The p-value for this test is computed differently
than suggested by Cheng and Hall (1998) and is very conservative; we are unaware
of an R package that implements Cheng and Hall’s correction.

3. Mixture Models

Mixture models provide a flexible parametric approach to density estimation
that is different from non-parametric kernel methods (McLachlan and Peel, 2000).
The basic idea is to model f(t) as a weighted sum of k& normal densities

k
F) =" wi ¢(t; pi, 04),
i=1

where the weights w; sum to one and ¢(¢; u;, 0;) is a normal density with mean p;
and variance o7. The normal component N (u;, ;) could describe the body size
distribution for a sub-group of a population, while w; represents the size of the
sub-group or component. Within this framework, the i*” subgroup has a single
mode at the mean p; of the it component. However, the number of modes for
the population distribution given by the mixture model may have fewer than k
modes (and can not have more than k£ modes) if the components are not well
separated, or the weights of certain subgroups are small.

Mixture models have been used both by frequentists (McLachlan and Peel,
2000) and Bayesians (Roeder and Wasserman, 1997; Richardson and Green, 1997)
in a variety of settings. Unlike standard frequentist inference which treats the
number of components k as fixed, even when the data are used to determine the
best choice for k, the Bayesian approach allows uncertainty in & to be handled



182 Ling Xu, Edward J. Bedrick, Timothy Hanson and Carla Restrepo

easily and naturally. Specifically, in the Bayesian analyis of the mixture model,
one specifies a joint prior distribution for k, pu = (u1, -+, puk), 0 = (o1, ,0k)
and w = (wy,--- ,wy). Given the data, the prior distribution is updated using
Bayes theorem to provide the posterior distribution for the parameters, which is
used for inferences. Prior information is often unavailable, so it is common prac-
tice to use non-informative (sometimes called vague) priors or reference priors.
Roeder and Wasserman (1997) show that the posterior distribution is improper
when a standard reference prior is used with the normal mixture model. Improper
posteriors can not be interpreted probabilistically, leading to a breakdown in the
Bayesian paradigm. These same authors propose a partially proper prior dis-
tribution that produces a proper posterior distribution given a finite number of
observations and show how to compute the posterior distribution using a Gibbs’
sampling procedure. Their approach is most appropriate when the number of
components k is assumed to be known, but they provide an approximate method
that allows k£ to be unknown.

An alternative is to fit the mixture model using a reversible jump Markov
chain Monte Carlo (MCMC) procedure (Richardson and Green, 1997). Tra-
ditional MCMC methods, such as Roeder and Wasserman’s algorithm, sample
parameters within one given model with a fixed number of components whereas
the reversible jump MCMC samples parameters within the a “current” model
of fixed size k but also “jumps” between models of different sizes (e.g., k — 1
or k + 1) with different sets of parameters, allowing for several competing mix-
ture models with different numbers of components to be fit simultaneously. This
yields an overall model that encompasses all competing models and includes k as
a parameter to be estimated along with the parameters for each sub-model.

Richardson and Green’s (1997) approach for the normal mixture model with
an unknown but finite number of components k uses a vague, data-driven prior
distribution that produces a proper posterior and works well in practice. The
prior on k is a Poisson distribution with rate X, truncated to not be larger than
Kiax; we use Kpax = 20 in this paper. For each fixed value of k, the pri-
ors for pu, o and w are assumed to be independent. The weights (wq,- -+, wg)
have a Dirichlet(1,1,---,1) distribution, which is a multivariate generalization
of a uniform distribution. The means p; have independent N (&, k) distributions,
subject to the identifiability constraint p; < pg < --- < pg. The prior mean &
is selected to be the average of the minimum and maximum data value. The
standard deviation k is set to be the sample range R. This centers the prior in
the middle of the data and keeps the prior flat over an interval of variation of
the data. Decreasing x shrinks the means towards £. The component precisions
. =1/0%i=1,2,---  k are independent with identical gamma I'(c, 3) distribu-
tions where 3 has a I'(g, h) distribution and o = 2, ¢ = 0.2, and h = 10/R?. This
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reflects the prior belief that the precisions should be similar, but their absolute
size should be left arbitrary.

Recently, Bastiirk, Hoogerheide, de Knijff and van Dijk (2012) developed
a Bayesian approach to detecting multimodality based on finite mixtures. Xu
(2005) also examined such tests based on Dirichlet process mixtures (Escobar
and West, 1995) and finite mixtures of normals (Roeder and Wasserman, 1997).

4. Comparison of Tests

For the Silverman, Hall and York, and excess mass tests, test statistics were
computed for each data set, followed by 1,000 bootstrap replications to estimate
their p-values. Silverman’s and Hall and York’s tests can be implemented in R
using a modified version of Davison and Hinkley’s code (1997, p. 189), which
is based on built-in functions for bootstrapping and kernel density estimation.
For our analysis, the minimum bandwidth tests were programmed in C++. A
FORTRAN program kindly provided by Professor M.-Y. Cheng was used to im-
plement the excess mass test.

4.1 Hall and York vs. Excess Mass

Hall and York’s test and the excess mass test are ideally suited for testing
whether a distribution is unimodal or bimodal. Hall and York (2001) and Cheng
and Hall (1998) developed generalizations of these tests that apply to the setting
where the null and alternative models have m and m 4 1 modes, respectively,
but aspects of implementing these tests have not been explored. For all practical
purposes, the two approaches are currently restricted to checking for a single mode
and do not provide a clear-cut approach for identifying the number of modes.
We note that minimum bandwidth test should have power to detect multimodal
alternatives, but the excess mass test is not expected to detect distributions with
three or more modes, unless at least two modes are strongly identifiable.

We designed a simulation study to compare Hall and York’s test and the
excess mass test. Earlier separate studies (Cheng and Hall, 1996; Hall and York,
2001) compared these tests to Silverman’s test, but not to each other. We will
include Silverman’s test in our study for completeness.

Figure 3 plots the 10 distributions used in our study. The study includes a
range of distributions, from symmetric and unimodal to skewed distributions with
two or three modes, some of which are not pronounced. For each distribution,
we generated 1000 samples of size n = 50 and 200. In each sample, the three
statistics were computed, followed by 1000 bootstrap replications to estimate
their p-values. The proportion of the p-values below 0.10, 0.05, and 0.01 was
evaluated.
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Figure 3: Distributions used in the simulation study

Table 1 gives the estimated size or power for tests with nominal levels of
0.01, 0.05, and 0.1. The excess mass test is slightly conservative under the null
hypothesis, but has higher power than Hall and York’s test when the distribution
has prominent modes. Hall and York’s test is the best for identifying bimodal or
multimodal distributions where modes are small. In some cases, for example the
unimodal normal mixture considered in Figure 3’s top-middle panel, the size of
Hall and York’s test is much higher than nominal levels even for a sample sizes
of 200. For this distribution, 500 observations are needed before the actual size
falls to 0.05. Therefore, more advanced calibration of Silverman’s test is probably
needed here. Overall, neither the excess mass nor Hall and York’s test is uniformly
better. As expected, Silverman’s test is too conservative to recommend.
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4.2 The Bayesian Mixture Model

We also fit the model described in Section 3 to the data sets in the previous
section; posterior inference for each data set is based on 10,000 iterates thinned to
1,000 after a burn-in of 2,000. The default prior gives a 0.95 prior probability of
one mode and 0.05 of two or more modes. Thus, our prior places approximately
19 times the weight on one mode as it places on two or more modes. R code to
implement this model is provided in the Appendix.

An important issue with our Bayesian analysis is the extent to which the prior
influences our inferences on the number of modes. To address this concern, we
computed the ratio of the posterior to prior odds that the density has two or
modes. This is the Bayes factor in support of the hypothesis that the density has
two or more modes. Bayes factors are commonly used as an objective measure
of the support in the data for an hypothesis. A standard benchmark (Jeffreys,
1961; Kass and Raftery, 1995) is that Bayes factors exceeding 10 provide “strong”
evidence for a hypothesis, and exceeding 100 provides “decisive” evidence for a
hypothesis. Both of these cutoffs are represented in Table 1. The cutoff BF > 10
seems to be a bit liberal in terms of Type II error, and so we focus only on
BF > 100 and compare it to the excess mass and Hall and York tests for a = 0.05.

The Bayesian test does as well as or better than excess mass for all densities
when n = 200. For n = 50, the excess mass approach fares better on the top-
right and middle-middle densities in Figure 3; both densities have two modes
with relatively small valleys between them. In general, the Bayesian approach
has about the same as or a bit worse power than excess mass for n = 50, but
clearly outperforms the excess mass test on all densities when n = 200. This same
finding roughly holds for the Bayesian test versus Hall and York, except that the
latter test does quite a bit better than the Bayes test for the bottom-right density
at n = 50, and a bit better at n = 200. However, the Bayesian test has Type II
errors of only 0.02 and 0.00 for the top-middle density at n = 50 and n = 200,
whereas the Hall and York test has Type II errors of 0.15 and 0.09 for nominal
rate a = 0.05.

A referee pointed out that the number of normal components necessary to ad-
equately fit skewed distributions may be unnecessarily large, compared to models
that use skewed and/or heavy-tailed components. We investigate this issue by
considering a particular class of unimodal skewed t distributions given by

2
T+1/y
where f, () is the density of a student ¢ with degrees of freedom v. We investigate

the impact that unimodal heavy-tailed (v = 3) versus lighter-tailed (v = 15)
densities have on modal estimation for three levels of skewness, v = 1 (no skew),

fuq (@) [fo(yva) I{z < 0} + f,(x/7)[{z > 0}],
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v = 2 (moderate skew), and v = 3 (heavy skew). Table 2 gives the results
from simulating 500 Monte Carlo data sets at each setting of v and v, with two
sample sizes, n = 50 and n = 200. Again, we used the default prior described in
Section 3 for the reversible jump mixture model. Overall, both heavy-tails and
skew (df = 3, v > 2) render both the Bayesian test and the Hall and York test
unreliable, although the Bayesian test has much smaller type II error. Symmetric
heavy-tails (v = 3,7 = 1) poses no problem for the Bayesian test, but destroys
Hall and York’s test. For lighter tails (df = 15), the Bayesian test performs much
better than Hall and York’s for every setting, but still provides Type II error
of 0.15 for n = 200 and heavy skew. In all skewed cases, there are many data
sets that produce estimates of k£ and the number of modes greater than one, i.e.,
heavy tails and/or skew artificially increases the numbers of components needed
for the normal mixture model and also increases the estimated posterior number
of modes. In such circumstances, finite mixtures of skewed ¢ distributions could
vastly simplify the estimates and provide more accurate estimates of posterior
modes; see, e.g., Lin, Lee and Hsieh (2007) and Ho, Pyne and Lin (2012).

Table 2: Heavy-tail and/or skew simulation. First four rows are Type II errors;
next four rows are the median and 95% interval of the posterior modes for the
number of modes and the number of components k. Last two rows are Type II
errors for Hall and York’s test

af =3 af = 15

P(BF > 10) n = 50 0.33 0.79 0.96 0.01 0.25 0.62

n = 200 0.25 0.79 0.99 0.01 0.24 0.76

P(BF > 100) n = 50 0.04 0.21 0.32 0.00 0.02 0.05

n = 200 0.02 0.12 0.41 0.00 0.03 0.15

— n=>5 1[1,2] 21,3 2[1,3 10,1 1[12 1[12
modae

n=200 1[1,2] 1[1,2] 21,3 1[1,1] 1[1,2 112

% n=50 2[1,3 21,3 324 1[1,2] 2[1,2 2[13]

n=200 3[23] 3[24 435 1[1,2] 2[23] 3[24]

Hall & York n =50 0.42 0.45 0.44 0.11 0.18 0.17
a = 0.05 n = 200 0.65 0.60 0.59 0.13 0.15 0.18

5. A Case Study: Body Size Distributions in Animal Assemblages

The performance of the methods outlined above was evaluated on Holling’s
(1992) data for North American boreal forest birds (n = 101; BFB) and mam-
mals (n = 36; BFM), and North American prairie birds (n = 108; BPB) and
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mammals (n = 53; BPM). The four data sets represent a complete inventory
of the species recorded in these biomes, each species characterized by its mass
mean value obtained from the literature (Holling, 1992). These data sets were
also investigated by Manly (1996) and Siemann and Brown (1999). Throughout
this paper we use the logjg-transformed values of body mass.

5.1 The Silverman, Hall and York and Excess Mass Tests

The three tests differed in their ability to distinguish whether the distribu-
tions are unimodal or not (Table 3). According to Silverman’s and the excess
mass tests, only the BFP and the BPM datasets, respectively, provide support
for two or more modes using a benchmark of p < 0.050 for statistical significance.
For three of the four examples, the excess mass test, which is calibrated to have
the correct size in large samples, is more conservative (larger p-values) than Sil-
verman’s test, which is known to be conservative. On the other hand, Hall and
York’s test suggests that all four data sets have at least two modes.

Table 3: Bootstrap p-values for tests of one mode using Holling’s data. The
minimum bandwidth for Silverman’s tests is given in parentheses

Test

Data Set n Silverman Hall and York Excess Mass

BPB 106 0.062 (0.862) 0.005 0.107
BFB 101 0.037 (0.393) 0.003 0.072
BPM 53 0.077 (0.392) 0.013 0.004
BFM 36 0.106 (0.910) 0.024 0.195

5.2 Mixture Models

We computed the mixture density and the corresponding number of com-
ponents and modes associated with each sample from the posterior. A Bayesian
density estimate was obtained by averaging the estimated mixture densities across
posterior samples.

The Bayesian density estimates mimic the shape of the histograms for the data
sets (Figure 4). The posterior probabilities of the number of components and the
number of modes in f(t) presented in Table 4 suggest that each distribution
has at least two components and at least two modes. The boreal forest birds
and prairie mammals have Bayes factors exceeding 100 (Table 4), indicating
“decisive” evidence toward two or more modes. Prairie birds and forest mammals
have “strong” evidence toward two or more modes. Overall, on the actual data
analyses, the Bayesian approach agrees with the excess mass test.
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Figure 4: Holling’s body mass distributions with Bayesian density estimates

Table 4: Posterior probabilities for number of components and modes in
Holling’s data

Posterior Probability of

Data n 1 2 3 44  Bayes Factor

BPB 106 Components 0.17 0.80 0.03 0.00 ~70
Modes 0.20 0.80 0.00 0.00

BFB 101 Components 0.000 0.95 0.05 0.00 ~590
Modes 0.03 0.95 0.02 0.00

BPM 53  Components 0.09 0.81 0.09 0.01 ~130
Modes 0.12 0.87 0.01 0.00

BFM 36  Components 0.13 0.73 0.12 0.02 ~T70
Modes 0.22 0.77 0.01 0.00

6. Discussion

The four methods evaluated in this paper on a well-known dataset demon-
strated the inherent richness of animal body mass distributions but also the dif-
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ficulties for characterizing it. As expected, Silverman’s test and the excess mass
tests were less likely than Hall and York’s test to detect more than one mode.
Although the Bayesian approach and excess mass give similar conclusions, the
Bayesian mixture model is potentially more informative, as it is able to provide
quantification on the number of modes.

Our analyses using Silverman’s test yielded similar results as those reported by
Manly (1996). In both cases there was weak evidence for multimodality despite
the fact that a visual interpretation of the histograms indicated the opposite.
For example, the histogram of the boreal forest mammal data (Figure 1) appears
bimodal but the p-value for Silverman’s test is 0.105. Of course, the sample size
is small, and the visual assessment of the histogram is influenced by the choice
of bins, but similar inconsistencies are found with larger data sets in Holling’s
series. The primary issue here is that Silverman’s test is conservative, thus this
test has low power to detect deviations from a unimodal distribution. On the
other hand, Hall and York’s modification of Silverman’s test showed evidence for
two or more modes in all four datasets, whereas the excess mass test in only one
(BPM, Table 3). This together with the simulations of Section 4 indicates that
the performance of the methods differ depending on the characteristics of the
data. Studies of the small sample properties of the three non-parametric tests
considered here (Cheng and Hall, 1996; Hall and York, 2001; Xu, 2005) suggest
the following four general conclusions: (1) Hall and York’s modification should be
used with Silverman’s test to eliminate the conservativeness of the latter. (2) The
excess mass test is slightly conservative under the null hypothesis of one mode,
but has higher power than Hall and York’s test when the distribution has two or
more prominent modes. This may explain why the excess mass test appears more
sensitive than Hall and York’s test with the boreal prairie mammal (BPM) data,
which has two prominent and somewhat separated modal regions. (3) Hall and
York’s test is more powerful than the excess mass test for identifying bimodal or
multimodal distributions where the modes have small excess mass. (4) Neither
the excess mass test nor Hall and York’s test is uniformly better.

The Bayesian approach compares well to both excess mass and Hall and York.
The Bayesian approach seems to have a steeper increase of power with sample
size than excess mass, while maintaining acceptable Type II error in all of the
densities considered in Table 1. The introduction of heavy tails and/or skew is
problematic for both the Hall and York test and the Bayesian test, but much
more so for the Hall and York test. Overall, we would recommend the Bayesian
test for the assessment of modality.

There are a variety of other non-parametric tools that have been developed
for examining modality. Hall and York (2001) and Cheng and Hall (1998) extend
Silverman’s test and the excess mass test, respectively, to the setting where the
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null and alternative models have m and m+1 modes. Fraiman and Meloche (1999)
estimate the number and location of modes using a kernel density estimate. The
theory for these methods is complex and practical aspects of implementing these
tools has not been fully explored.

We believe that non-parametric methods are valuable for exploratory analy-
ses but that parametric mixture models have greater potential to shed light on
biologically meaningful properties of multimodal distributions, such as the num-
ber and location of modes. Although frequentist methods are widely used for
mixture models, the Bayesian approach presented here is more natural when the
number of components is unknown. Besides quantifying the number and location
of modes, the Bayesian approach could be extended to compare distributions.
For example, a natural question to consider is whether the BFB and BPB dis-
tributions are “similar”. Considering each as a mixture of normal distributions,
the Bayesian approach would allow us to assess whether the distributions have
the same number of components, and if so, whether the locations, spreads or
weights might be identical. If the means and standard deviations of the normal
components were similar for BFB and BPB but the mixture probabilities were
very different then the overall distributions might appear markedly different when
they only differ with respect to the weight given to the sub-groups of birds that
comprise the various components. Such an analysis was carried out by Xu et al.
(2010) for these data with interesting results.

Appendix: R Code to Implement the Bayesian Test for Multimodality

The R package mixAK (Komérek, 2009) contains a compiled R function to
fit Richardson and Green’s (1997) reversible jump model, NMixMCMC. Below, we
provide a wrapper function to call NMixMCMC and extract the posterior number
of modes and posterior number of components, as well as compute the BF for
> 1 versus 1 mode. The wrapper takes every tenth MCMC iterate to reduce
posterior autocorrelation, and otherwise uses the default prior specification with
Kiax = 20 and the truncated Poisson with A = 1 as described in Section 3. Note
that NMixMCMC can incorporate other priors on k, as well as censored data, so the
Bayesian approach can be generalized further.

library(mixAK) # y is the data vector
# keep is the number of thinned MCMC iterates kept after burnin
modes=functio\mathcal{N}(y,keep){
a=mi\mathcal{N}(y); b=max(y); ra=b-a; a=a-ra/4; b=b+ra/4
gp=100; x=seq(a,b, (b-a)/(gp-1)); d=x
d=rep(0,gp); modes=rep(0,keep)
r=NMixMCMC(y,scale=1list (shift=0,scale=1),
prior=list(priorK="tpoisson",Kmax=20,lambda=1,xi=0.5%(a+b),ce=1/ra"2),
nMCMC=c (burn=200,keep=keep,thin=10,info=100) ,keep.chains=TRUE)
i=0
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for(j in 1:keep){
kt=r$K[jl; w=r$wl(i+1):(i+kt)]; mu=r$mul(i+1):(i+kt)]; si=sqrt(r$Sigmal(i+1):(i+kt)])
for(k in 1:gp){d[k]=sum(w*dnorm(x[k],mu,si))}
for(k in 3:gp){if (d[k-2]1<d[k-11){if (d[k-1]1>d[k]){modes[jl=modes[jI+1}}}
i=i+kt; if(modes[jl==0){modes[jI=1}
}
ktot=max (r$K); mc=matrix(0,ncol=2,nrow=ktot)
for(k in 1:ktot){mc[k,1]=sum(r$K==k)/keep; mc[k,2]=sum(modes==k)/keep}
rownames (mc)=1:max (r$K); colnames(mc)=c("P(comps)","P(modes)")
cat("BF for >1 mode=", (19/(sum(modes==1)/(keep-sum(modes==1)))),"\n")
print ("Posterior components/modes..."); mc

Here is output from the boreal prairie birds data:

> modes (bpb, 2000)

Chain number 1

MCMC sampling started on Sat Jul 06 14:13:02 2013.
Burn-in iteration 200
Iteration 2200
MCMC sampling finished on Sat Jul 06 14:13:08 2013.
BF for >1 mode= 73.00969
[1] ¢‘Posterior components/modes..."
P(comps) P(modes)
1 0.1830 0.2065
2 0.7905 0.7925
3 0.0265 0.0010
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