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Abstract: In this paper, we reconsider the two-factor stochastic mortality
model introduced by Cairns, Blake and Dowd (2006) (CBD). The error
terms in the CBD model are assumed to form a two-dimensional random
walk. We first use the Doornik and Hansen (2008) multivariate normality
test to show that the underlying normality assumption does not hold for the
considered data set. Ainou (2011) proposed independent univariate normal
inverse Gaussian Lévy processes to model the error terms in the CBD model.
We generalize this idea by introducing a possible dependency between the
2-dimensional random variables, using a bivariate Generalized Hyperbolic
distribution. We propose four non-Gaussian, fat-tailed distributions: Stu-
dent’s t, normal inverse Gaussian, hyperbolic and generalized hyperbolic
distributions. Our empirical analysis shows some preferences for using the
new suggested model, based on Akaike’s information criterion, the Bayesian
information criterion and likelihood ratio test, as our in-sample model selec-
tion criteria, as well as mean absolute percentage error for our out-of-sample
projection errors.

Key words: Generalized hyperbolic distribution, Doornik-Hansen test, stochas-
tic mortality model.

1. Introduction

It is now well established that mortality should be modeled as a stochastic
process and that longevity has improved over the past century. We should con-
sider that this improvement is also random and cannot be easily predicted. Many
authors have tried to find reasonable mortality models in recent years. The ob-
vious reason behind all this research is that the improved longevity costs money
to the insurance industry. To explain it further, consider a life annuity business
or even a pension plan. If longevity improves and annuitants or pensioners live
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longer than were expected, then the benefits will be paid out over a longer pe-
riod of time. The consequences can result in much more adverse outcomes if we
consider a large portfolio of annuitants.

Different approaches can be considered when forecasting mortality rates. Specif-
ically, age-period-cohort models as well as the model proposed in the prominent
paper by Lee and Carter (1992) and its generalizations are among the most suc-
cessful methods. Detailed explanations of these models can be found in Lee and
Miller (2001), Renshaw and Haberman (2003), Jong and Tickle (2006).

As mentioned in Cairns et al. (2006), there are 3 different mortality risks
for insurance companies that offer annuities and life insurance products. We
summarize them here:

• Mortality risk: that means fluctuations of mortality rates over time.

• Longevity risk: which can be considered as any randomness in the long-term
trend of mortality rates.

• Short-term, catastrophic mortality risk: that can be explained by any sud-
den phenomena like the influenza pandemic in 1918, the tsunami of Decem-
ber 2004 in Indonesia and of 2011 in Japan.

Some authors try to add jump processes to model mortality, mostly incorporated
in the Lee-Carter framework. See for example, Wang et al. (2011), Giacometti
et al. (2009) and Hainaut and Devolder (2008).

Over relatively short period of time, longevity has become a considerable
risk in countries like Japan and Taiwan. This brings a significant attention to
longevity projections. In this paper, longevity risk is modeled according to Cairns
et al. (2006) that includes two stochastic factors. They proposed a bivariate
normal distribution to model the dynamic of the stochastic factors. However,
the error terms of the CBD model seem to have tails thicker than those of a
normal distribution, as we show in our empirical analysis. Therefore, we consider
a family of bivariate generalized hyperbolic (GH) distributions to model the error
terms in the CBD model. This family of distributions have semi-heavy tails with
a dependence structure. We use this desirable property to model longevity risk.
Thus, we suggest using the bivariate generalized hyperbolic (GH) distribution in
the CBD model.

We consider four non-Gaussian distributions within the GH class, which in-
clude Student’s t, normal inverse Gaussian, hyperbolic and generalized hyperbolic
distributions. Next, in order to compare our model with the CBD model, we use
likelihood ratio test, Akaike’s information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) as our in-sample model selection criteria. In addition, for
the out-of-sample performance, we project mortality rates and apply the mean
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absolute percentage error to the proposed model in order to indicate some pref-
erences.

The paper is organized as follows: In Section 2, a brief review of the CBD
model is given together with the data set that we used to fit our model. Then,
we test the assumptions given in the CBD model by applying Doornik-Hansen’s
multivariate normality test in Section 3. Next, generalized hyperbolic distribu-
tions are defined in Section 4. We propose and fit our model in Section 5. Section
6 is devoted to model comparisons. In Section 7, we summarize the empirical
results for three more data sets including mortality data for Russia, Spain and
the U.S. Conclusions are given in Section 8.

2. Review of the CBD Model

In this section, we summarize the two-factor stochastic mortality model pro-
posed by Cairns et al. (2006). The realization of the one-year survival prob-
abilities for the cohort aged x and still alive at time t is denoted by p̃(t, x).
Furthermore, the realized mortality rate is defined by q̃(t, x) = 1 − p̃(t, x). For
their empirical analysis, they choose the following model for the mortality curve:

q̃(t, x) =
eA1(t+1)+A2(t+1)(x)

1 + eA1(t+1)+A2(t+1)(x)
, (1)

where they assume that A(t) = (A1(t), A2(t))′ is a two-dimensional random walk
with drift. The first factor influences the changes in mortality at all ages equiv-
alently, while the second factor alters mortality rates at higher ages much more
than at lower ages as mentioned in Cairns et al. (2006). To make forecasts of the
future distribution for A(t), they propose to model the factors in A(t) according
to,

A(t+ 1) = A(t) + µ+ CZ(t+ 1), (2)

where µ is a constant 2× 1 vector, C is a constant 2× 2 upper triangular matrix
and Z(t) is a two-dimensional standard normal random variable.

Similarly to Cairns et al. (2006), we use an ordinary least square method to
estimate A(t). Then, we change the distributional assumption in (2); next we
apply the maximum likelihood method to estimate the dynamic properties of the
two factors.

The first contribution of this paper is to show that the normality assumption
in (2) cannot describe well the historical data and should be tested before making
any further inference. We also, propose GH distribution to use in the CBD model
and show how it can provide a better fit. First we explain the data set that we
use for our empirical illustration.
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We rely on mortality data for Males in Italy, 1969-2008 and ages 60-90. The
data set was obtained from the Human Mortality Database (HMD1). We delib-
erately consider more recent data, since this period of time exhibit less levels of
uncertainty compared to the mortality data for first half or two-thirds of 20th
century. This allows us to have the data with less volatility and develop our
model accordingly.

3. Doornik-Hansen’s Multivariate Normality Test

In order to estimate the mean and the variance-covariance matrix in (2), we
first need to estimate A(t). To do so, the ungraduated mortality rates for each t
are transformed from q̃(t, x) to

log

(
q̃(t, x)

p̃(t, x)

)
= A1(t+ 1) +A2(t+ 1)(x). (3)

Then, the linear regression is applied in (3) to estimate A(t). It is clear from (2)
that

E[A(t+ 1)−A(t)] = µ,

Var[A(t+ 1)−A(t)] = CC
′
. (4)

Equation (4) shows that the mean and the variance of the first consecutive dif-
ferences, A(t+ 1)−A(t), can be used to estimate µ and V = CC

′
, respectively.

We use R as our software environment.2 The estimations are given in Table 1.
Generally, the negative value for µ1 shows mortality improvement. At the same
time, the positive value for µ2 indicates that mortality rates at higher ages are
improving at a slower rate. These results are consistent with those of Cairns et
al. (2006) in the original CBD model.

Table 1: Estimated mean and variance matrices for the CBD model in (4)

Mortality data µ̂ V̂

Italy

[
−0.056037813
0.000529807

] [
0.0524230293 −0.0006519287
−0.0001527592 0.000002196178

]

Before explaining the Doornik and Hansen normality test, we need to check
our data (i.e., the increments A(t + 1) − A(t)) for any serial autocorrelation,
dependency as well as conditional Heteroscedasticity (non-constant variance).
These are requirements for the hypothesis tests that we use in this paper.

1The data are available online at www.mortality.org.
2R is a share-ware for statistical computing and graphics, http://www.r-project.org/
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In order to test the serial autocorrelation, we obtain the sample autocorrela-
tion function (ACF), rk at lag k defined by:

rk =

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )∑n

t=k+1(Yt − Ȳ )2
, k = 1, 2, · · · , (5)

where Yt = Ai(t+ 1)−Ai(t), i = 1, 2. Figure 1 shows the sample ACF of A1(t+
1)− A1(t) and A2(t+ 1)− A2(t) with the 95 % confidence limits (dotted lines).
Looking at this figure, we can see that the sample ACF’s are not statistically
significant. Therefore, there is no indication of serially autocorrelated increments.
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Figure 1: Sample ACF plot for Italy-Data: 1969-1999

The Ljung-Box test (Ljung and Box, 1978) can be applied to test for inde-
pendence of A(t+ 1)−A(t). The test statistics is defined as:

Q(k) = n(n+ 2)

k∑
m=1

r̂2
k

n−m
, (6)

where n is the number of observation and r̂k is the estimated sample ACF defined
in (5). The null hypothesis is the linear independence in A(t+1)−A(t). Under the
null hypothesis, Q(k) has an asymptotic chi-squared distribution with k degrees
of freedom. The null hypothesis is rejected when the value of Q(k) is greater than
the selected critical value of chi-squared distribution with k degrees of freedom.
Table 2 shows the value of the test statistic, Q(k), the degrees of freedom, df and
the p-value of the Ljung-Box test. Therefore, we cannot reject the null hypothesis
of linear independence at a significance level of 0.05.
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Table 2: Ljung-Box test of independency

Data Q(k) df p-value

A1(t+ 1)−A1(t) 15.1886 24 0.9151

A2(t+ 1)−A2(t) 19.9168 24 0.7015

We also check the increments for the assumption of identical independent
distribution (iid) by applying the test proposed by McLeod and Li (1983). The
null hypothesis assumes that the data are iid. The test statistic is similar to
Ljung-Box test (6), except that for the sample ACF, r̂k, which is replaced by the
sample autocorrelations of the squared data. This is due to the fact that if the
data are iid then square of the data are iid as well. The McLeod-Li test can also
be used to assess the conditional Heteroscedasticity of the data. The test statistic
is chi-squared distributed with k degrees of freedom under the null hypothesis of
iid. Figure 2 shows the p-values of the McLeod-Li test, evaluated up to lag 14.
The red dashed line represents the 5% confidence level. Based on this test, we
cannot reject the null hypothesis of identical independent distribution.
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Figure 2: p-values of the McLeod-Li test in Italy for A1(t + 1) − A1(t) (left)
and A2(t+ 1)−A2(t) (right)

We can now test the bivariate normality assumption in Cairns et al. (2006) by
using the method, proposed by Doornik and Hansen (2008). The latter compares
their suggested test with four other tests for multivariate normality and conclude
that it has the best size and power properties over the other tests considered. This
test is relatively simple, it controls most sizes very well and can be applied for
samples as low as 10 observations. The Doornik-Hansen’s test for multivariate
normality is based on the skewness and kurtosis of multivariate data that is
transformed to insure independence, as explained in Appendix A. The package
and corresponding function that we used to perform Doornik-Hansen’s test are
asbio and DH.test, respectively.

The results are reported in Table 3. The multivariate section of Table 3
indicates that the test statistic is significant and based on the p-value of the test,
the bivariate normality assumption is rejected at a significance level of 0.05. The
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table also contains the univariate tests for normality. The univariate normality
assumption is rejected at the 5% significance level. Consequently, the multivariate
normality assumption does not hold.

Table 3: Doornik and Hansen (2008) normality test

Mortality data for Italy Test statistics df p-value

Multivariate 25.20 4 4.6× 10−4

Univariate
19.74 2 5.2× 10−4

5.46 2 0.065

Moreover, we applied a Shapiro-Wilk test for multivariate data sets using
the package mvnormtest. Details of Shapiro-Wilk’s test can be found in Royston
(1982a, 1982b, 1995). Table 4 summarizes the results. The normality assumption
is rejected based on this test as well.

Table 4: Multivariate Shapiro-Wilk normality test

Mortality data Test statistic p-value

Italy 0.7629 1.48× 10−4

Here, we address the importance of the measurement error, as explained in
Cannon (2010). It originates from the fact that the CBD methodology, first
estimates the factors, then it analyses their dynamic properties. This may affect
the statistical results given in this section.

To propose an appropriate model, we need a more flexible class of distributions
namely generalized hyperbolic distributions. We briefly review this class in the
next section.

4. Generalized Hyperbolic Distributions

In this section, we define the family of generalized hyperbolic (GH) distribu-
tions based on Chapter 3 of McNeil et al. (2005).

The random vector X is said to have a d-dimensional GH distribution with
parameters (λ, χ, ψ,µ,Σ,γ), denoted as X ∼ GH(λ, χ, ψ,µ,Σ,γ) if

X
d
= µ+Wγ +

√
WAZ, (7)

where
d
= denotes equality in distribution and

(i) Z ∼ Nk(0, Ik),

(ii) A ∈ Rd×k,
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(iii) µ,γ ∈ Rd,

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and
has a generalized inverse Gaussian distribution, denoted GIG(λ, χ, ψ). (See
Appendix B for details.)

The joint density function of the GH distribution in non-singular case (Σ has
rank d) is

fX(x) =

∫ ∞
0

fX|W (x|w)fW (w)dw

=

∫ ∞
0

e(x−µ)′Σ−1γ

(2π)
d
2 |Σ|

1
2

exp

{
−Q(x)

2w
− γ′Σ−1γ

2/w

}
fW (w)dw

= c×
Kλ− d

2

(√
(χ+Q(x))(ψ + γ′Σ−1γ)

)
e(x−µ)′Σ−1γ(√

(χ+Q(x))(ψ + γ′Σ−1γ)
) d

2
−1

, −∞ < x <∞,

(8)

where the normalizing constant is

c =
(
√
ψ/χ)λ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ|

1
2Kλ(

√
χψ)

,

and fW is the density function of the GIG random variable W . Here Kλ(·) is
the modified Bessel function of the third kind and Q(x) denotes the Mahalanobis
distance (x− µ)′Σ−1(x− µ). These parameters admit the following interpreta-
tions:

• λ, χ, ψ specify the shape of the distribution and how much weight is assigned
to the tails compared with the center. The larger those parameters are the
closer the distribution is to the normal distribution.

• µ is the location parameter.

• Σ = AA
′

is the dispersion-matrix. It controls inter-correlations between
components of X and has to fulfill the usual conditions for covariance ma-
trices, i.e., symmetry and positive definiteness as well as a full rank property.

• γ is the skewness parameter. If γ = 0, then the distribution is symmetric.

The characteristic function of the GH distribution can be expressed as:

φX(u) = E
(
eiu
′X
)

= eiu
′µĤ

(
1

2
u′Σu− iu′γ

)
, (9)
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where Ĥ(θ) =
∫∞

0 e−θνdF (ν) is the Laplace-Stieltjes transform of the distribution
function F of the GIG random variable W . See McNeil et al. (2005) for more
details.

The GH distribution family includes some special cases under different names,
listed as follows:

• If λ = (d+ 1)/2, we have a multivariate hyperbolic (hyp) distribution.

• If λ = −1/2, a normal inverse Gaussian (NIG) distribution is obtained.

• If χ = 0, λ > 0, we have a variance gamma (VG) distribution.

• If ψ = 0, λ < 0, one gets a generalized hyperbolic Student’s t distribution.
The shape parameter for this particular case is ν = −2λ, which determines
the degrees of freedom.

In the next section, we use the GH distributions to model the error terms in the
CBD model.

5. Proposed Model

We first define the generalized hyperbolic Lévy process based on the GH
distribution. Then we use this process to model the increments A(t+ 1)−A(t).
The generalized hyperbolic Lévy process is defined by

XGH = {X(t), t > 0}, (10)

where X(0) = 0, with stationary and independent increments and X(t) has
characteristic function,

E [exp(iuX(t))] = (φX(u))t , (11)

where φX(u) is the characteristic function of the GH distribution, defined in (9).
Similarly to Cairns et al. (2006), we adopt the following mortality curve:

log

(
q̃(t, x)

p̃(t, x)

)
= A1(t+ 1) +A2(t+ 1)(x), (12)

and assume that for t > 0

A(t+ 1)−A(t) = X(1), (13)

where X(1) is a bivariate GH Lévy process with the unit time scale. Here A(t) =
(A1(t), A2(t))′ are two stochastic factors. In other words, we change the normality
assumption in the CBD model with a bivariate GH Lévy process, while we keep
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the same structure as the CBD model for the evolution of survival probabilities.
It is worth mentioning that the iid assumption of the increments for the GH Lévy
process has already been tested for the selected data set in Section 3. Therefore,
we can now fit the proposed model and compare it with the CBD model.

6. Model Comparisons

This section compares the CBD model with the proposed model. On the
other hand, we emphasize the fact that the results given here regarding the CBD
model and the normality assumption have been statistically rejected as shown in
Section 3. For the sake of comparison, we use the log-likelihood function (LLF),
Akaike information criterion (AIC), Bayesian information criterion (BIC) and the
likelihood ratio test. The AIC is defined as

AIC = −2 LLF + 2NPS, (14)

where NPS is the effective number of parameters being estimated. The BIC is
defined as

BIC = −2 LLF + NPS× log(NOS), (15)

where NOS is the number of observations. Hence, both the AIC and the BIC
not only reward goodness of fit by considering the log-likelihood function, but
also include a penalty that is an increasing function of the number of estimated
parameters. This penalty discourages over-fitting. Higher values of the LLF and
smaller values of the AIC and the BIC, show an improved goodness of fit for the
considered mortality model.

The likelihood-ratio test can be used to check whether a special case of the
GH distribution is the true underlying distribution. The LRT test statistic is
defined as:

Λ =
sup{L(θ|Y ) : θ ∈ Θ0}
sup{L(θ|Y ) : θ ∈ Θ}

, (16)

where L denotes the likelihood function with respect to the parameter θ and data
Y , and Θ0 is a subset of the parameter space Θ. The null hypothesis H0 states
that θ ∈ Θ0 and the alternative hypothesis H1 states that θ ∈ Θc

0, where Θc
0 is the

complement of Θ0. Under the null hypothesis and certain regularity conditions,
it can be shown that −2 log Λ is asymptotically chi-squared distributed with ν
degrees of freedom. Here ν is the number of free parameters specified in Θ minus
the number of free parameters specified in Θ0. The null hypothesis is rejected
if −2 log Λ exceeds the confidence level-quantile of the chi-squared distribution
with ν degrees of freedom. In this study, H0 is the bivariate normal distribution
in the CBD model and H1 is the special case of the GH distribution.
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6.1 Empirical Analysis

For the purpose of in-sample model performance, we use the mortality data
from 1969-1999. Then, to assess the out-of-sample model performance, we fore-
cast the development of the mortality rates for the 9 subsequent years. We first,
estimate A(t) in (13) by using the least square technique, then we fit eight GH
distributions with the maximum likelihood method. The considered distributions
are: Student’s t, NIG, hyp and generalized hyperbolic distributions (ghyp) with
density function defined in (8), both in symmetric and asymmetric cases. We use
the package ghyp in order to fit above distributions for X(1) defined by (13).

Table 5 provides in-sample goodness of fit measures based on the LLF, the
AIC and the BIC statistics, together with their corresponding ranks. A commonly
used rule of thumb consists in considering that two models are significantly dif-
ferent if the difference in the AIC is larger than 10, as discussed in Burnham and
Anderson (2002). Raftery (1995) suggests that a model significantly outperforms
a competitor if the difference in their respective BIC values exceeds 5. Therefore,
all three criteria show a preference for the GH distributions when comparing to
the normal distribution with the lowest rank. The symmetric ghyp distribution
is the best distribution based on the BIC and the AIC. According to the LLF,
the asymmetric ghyp distribution offers the best fit for our mortality data set.

Table 5: In-sample goodness of fit measures

GH Distribution Symm. LLF AIC BIC
LLF AIC BIC
Rank Rank Rank

ghyp T 233.39 -454.79 -446.38 2 1 1

NIG T 231.84 -451.68 -443.27 4 2 3

ghyp F 233.66 -451.32 -440.12 1 3 4

t T 230.53 -451.06 -444.06 6 4 2

hyp T 229.96 -447.93 -439.52 8 5 5

NIG F 231.91 -447.81 -436.60 3 6 7

t F 230.73 -447.46 -437.65 5 7 6

hyp F 230.03 -444.07 -432.86 7 8 8

Normal T 221.29 -432.57 -425.56 9 9 9

We use the function lik.ratio.test to perform likelihood ratio tests. Table 6
provides the test statistics, degrees of freedom and the p-values. The likelihood
ratio tests are statistically significant for the selected GH distributions. This
table indicates that the considered mortality data set is more likely to come from
the GH distribution than a bivariate normal distribution.
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Table 6: Likelihood-ratio test

Model Symm. L-statistic df p-value

ghyp T 5.52× 10−06 1 8.62× 10−07

NIG T 2.61× 10−06 1 4.30× 10−06

ghyp F 4.20× 10−06 2 4.20× 10−06

hyp T 1.7× 10−04 1 3.1× 10−05

NIG F 2.40× 10−05 2 2.40× 10−05

t F 7.91× 10−05 1 1.38× 10−05

hyp F 1.59× 10−04 2 1.59× 10−04

Overall, Tables 5 and 6 provide some evidence to support the use of the GH
distributions for modeling X(1) in (13).

6.2 Mortality Projection

In this section, the out-of-sample performance of the proposed model is in-
vestigated. The reference cohort is the set of males aged 65 in 1999. We first,
explain how to use (12) in order to project the mortality rates for nine years
corresponding to t = 2000, · · · , 2008. We generate nine iid copies of X(1) from
the fitted symmetric ghyp distribution based on the mortality data over the pe-
riod of 1969-1999. Then, we apply (13) together with the estimated value of
A(1999) in order to obtain A(t) for t = 2000, · · · , 2008. Next, we use (12)
to project the mortality rates for the considered reference cohort, denoted by
q̂(1999 + i, 65 + i), i = 1, 2, · · · , 9. Finally, to evaluate the out-of-sample per-
formance, we repeat the above procedure 20,000 times and record the projected
mortality rates. Similarly to Wang et al. (2011), we find the mean absolute
percentage error (MAPE) for each replication j = 1, 2, · · · , 20, 000, defined as
follows:

MAPEj = 100%× 1

9

9∑
i=1

∣∣∣∣ q̃(1999 + i, 65 + i)− q̂(1999 + i, 65 + i)

q̃(1999 + i, 65 + i)

∣∣∣∣ ,
where q̃(t, x) is the realized mortality rate at time t for the cohort aged x. Table
7 illustrates the differences in mortality projection between the symmetric ghyp
distribution and normal distribution, based on the mean, 90th percentile, and the
95th percentile of the MAPE. In this table, the model with a better predictive
power will have lower mean and percentiles. We find that the symmetric ghyp
distribution provides better mortality projection performance based on the mean,
90th percentile, and the 95th percentile of MAPE.
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Table 7: Percentile of MAPE of mortality projection (Unit: %)

Model Symm. Mean 90% 95%

ghyp T 8.76 14.48 16.55
Normal T 9.74 16.13 18.32

7. Additional Data Sets

In this section, we consider three additional mortality data sets including
males in Russia, Spain and the U.S. obtained from HMD as given in Table 8. We
summarize our empirical results here. Similarly to the Italian data set explained
in Section 3, we first obtain the increments A(t + 1) − A(t) using (3). Next,
the data sets are tested against the linear independence (Ljung-Box test), the iid
assumption (McLeod-Li test) and the serial autocorrelation using the ACF plot.
The null hypothesis of linear independence cannot be rejected at a significance
level of 0.05 based on Ljung-Box test. The bivariate normality assumption is then
tested using Doornik-Hansen test and the results are reported in Table 9. The
periods of our in-sample analysis for each data set are denoted in the parentheses.
The bivariate normality assumption is rejected at 5% significance level for the
U.S. and Russia. However, we cannot reject the normality assumption for the
Spain.

Table 8: Mortality data used for Russia, Spain and the U.S.

Country Age Year

Russia 60-90 1960-2010
Spain 55-85 1970-2008

The U.S. 60-91 1985-2007

Table 9: Multivariate Doornik and Hansen (2008) normality test

Mortality data Test statistics df p-value

Russia (1960-1993) 28.99 4 7.9× 10−6

Spain (1970-1999) 2.58 4 0.63
The U.S. (1985-2000) 10.99 4 0.026

We then fit the GH distributions and compare it with the bivariate normal
distribution based on the AIC, the BIC criteria and LLF. We provide the results
for the preferred GH distribution and the normal distribution together with their
corresponding ranks in Table 10. According to this table, the GH distribution fits
better than normal distribution even for Spain in which the normality assumption
cannot be rejected.
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Table 10: In-sample goodness of fit measures (Russia, Spain & the U.S.)

Data GH Dist. Symm. LLF AIC BIC
LLF AIC BIC
Rank Rank Rank

Russia
t T 235.53 -459.07 -450.09 5 1 1

Normal T 226.26 -442.51 -435.03 9 9 9

Spain
ghyp F 246.08 -474.16 -461.85 1 1 1

Normal T 219.32 -428.65 -421.81 9 6 5

U.S.
ghyp T 175.44 -336.87 -331.92 2 1 1

Normal T 145.72 -281.44 -277.90 9 8 6

Also, the preferred GH distributions given in Table 10 are compared to the
normal distribution using likelihood ratio test and results are reported in Table
11. All three tests are statistically significant at 5% confidence level. Therefore,
according to the LRT, we can conclude that the considered data sets are more
likely to come from the GH distribution than a bivariate normal distribution.

Table 11: Likelihood-ratio test, Russia, Spain and the U.S.

Mortality data Model Symm. L-statistic df p-value

Russia t T 9.34× 10−05 1 1.65× 10−05

Spain ghyp F 2.40× 10−12 3 1.43× 10−12

U.S. ghyp T 1.24× 10−13 2 1.24× 10−13

Moreover, the out-of-sample performance of the preferred models in this sec-
tion is tested against normal distribution using MAPE. Table 12 gives the refer-
ence cohort and the projected years for each data set. We perform 20,000 simula-
tions and obtain the mean, 90th percentile, and the 95th percentile of the MAPE
as explained in Section 6.2. The results are summarized in Table 13. Based on
the results given in this table, we find that the symmetric t and asymmetric ghyp
distribution can lead to a more reliable mortality projections in Russia and Spain,
respectively. For the U.S., the symmetric ghyp distribution can slightly perform
better than normal distribution.

Table 12: Reference cohort used for projections in Russia, Spain the U.S.

Mortality data Cohort age Reference year Projected years

Russia 65 1993 1994-2010

Spain 65 1999 2000-2008

U.S. 65 2000 2001-2007
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Table 13: Percentile of MAPE of mortality projection for Russia, Spain the
U.S. (Unit: %)

Mortality data Model Symm. Mean 90% 95%

Russia
t T 17.06 30.19 36.48

Normal T 19.54 33.30 37.99

Spain
ghyp F 13.58 21.45 24.12

Normal T 13.90 22.87 25.91

U.S.
ghyp T 4.19 6.03 6.92

Normal T 4.58 6.35 6.91

8. Conclusions

In this paper, we show that the bivariate normality assumption in the CBD
model is sometimes not appropriate for some mortality data. We test normal-
ity using the multivariate normality test of Doornik and Hansen (2008) and the
multivariate Shapiro-Wilk normality test. We reject the bivariate normality as-
sumption for Italy, Russia and the U.S.

Generalized hyperbolic distributions were proposed to model the increments
of A(t). We estimate the parameters by maximum likelihood. Four GH distribu-
tions, in the symmetric and asymmetric cases, are compared with the CBD model
based on the AIC, BIC, LLF and likelihood ratio test. We find that the symmetric
ghyp distribution provides the best fit for Italy and the U.S. and also gives better
mortality projections according to the MAPE. The symmetric t and asymmetric
ghyp models were the best ones for the Russia and Spain, respectively.

To summarize the paper, we suggest testing the bivariate normality assump-
tion in the CBD model before using it for projections. In addition, the GH
distributions can be considered as an alternative to the normal distribution in
the CBD model.

Appendix A: Doornik-Hansen’s Test

In this section, we briefly explain the multivariate normality test proposed
by Doornik and Hansen (2008). Denote a p × n matrix of n observations on a
p-dimensional vector by X ′ = (x1, · · · ,xn) with sample mean x̄ = n−1

∑n
i=1 xi

and sample covariance matrix S = n−1
∑n

i=1(xi− x̄)(xi − x̄)′. Let V = diag(σ̂1,
· · · , σ̂p) be the diagonal matrix which has the variances on the diagonal and
obtain the correlation matrix C = V −1/2SV −1/2. The eigenvalues of C can
then be used to define a diagonal matrix Λ = diag(λ1, · · · , λp). Next, each
observation is transformed according to yi = HΛ−1/2H ′V −1/2(xi − x̄) to obtain
a p × n transformed matrix Y ′ = (y1, · · · ,yn). Here, the columns of H are the
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corresponding eigenvectors of C, such that H ′H = Ip and Λ = H ′CH. Denote
the univariate skewness and kurtosis for each of the p-transformed vectors of n
observations by B′1 = (

√
b11, · · · ,

√
b1p) and B′2 = (b11, · · · , b1p), respectively.

The multivariate Doornik-Hansen’s test statistic is:

Ep = Z ′1Z1 +Z ′2Z2,

that has approximately a chi-squared distribution with 2p degrees of freedom,
where Z ′1 = (z11, · · · , z1p) and Z ′2 = (z21, · · · , z2p) are determined by (A.1) and
(A.2) as follow:

β =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
,

w2 = −1 + {2(β − 1)}
1
2 ,

δ =
1

{log (
√
w2)}

1
2

,

y =
√
b1

{
w2 − 1

2

(n+ 1)(n+ 3)

6(n− 2)

} 1
2

,

z1 = δ log {y + (y2 + 1)
1
2 }, (A.1)

δ = (n− 3)(n+ 1)(n2 + 15n− 4),

a =
(n− 2)(n+ 5)(n+ 7)(n2 + 27n− 70)

6δ
,

c =
(n− 7)(n+ 5)(n+ 7)(n2 + 2n− 5)

6δ
,

k =
(n+ 7)(n+ 5)(n3 + 37n2 + 11n− 313)

12δ
,

α = a+ b1c,

χ = (b2− 1− b1)2k,

z2 =

{( χ
2α

) 1
3 − 1 +

1

9α

}
(9α)

1
2 . (A.2)

Appendix B: The Generalized Inverse Gaussian Distribution

The GIG(λ, χ, ψ), is defined by

fGIG(ω) =

(
ψ

χ

)λ
2 ωλ−1

2Kλ

(√
χψ
) exp

{
−1

2

(χ
ω

+ ψω
)}

, ω > 0, (B.1)
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with parameters satisfying

(χ > 0, ψ ≥ 0, λ < 0), or

(χ > 0, ψ > 0, λ = 0), or else

(χ ≥ 0, ψ > 0, λ > 0).

Special cases of the GIG distribution are the gamma distribution, when χ = 0
and λ > 0, as well as the inverse gamma distribution, with ψ = 0 and λ < 0.
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