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Abstract: This paper develops a generalized least squares (GLS) estimator
in a linear regression model with serially correlated errors. In particular,
the asymptotic optimality of the proposed estimator is established. To ob-
tain this result, we use the modified Cholesky decomposition to estimate the
inverse of the error covariance matrix based on the ordinary least squares
(OLS) residuals. The resulting matrix estimator maintains positive definite-
ness and converges to the corresponding population matrix at a suitable rate.
The outstanding finite sample performance of the proposed GLS estimator
is illustrated using simulation studies and two real datasets.
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1. Introduction

The ordinary least squares (OLS) method is the best-known method for esti-
mating unknown regression coefficients of a linear regression model. When errors
in a linear regression model are assumed to be uncorrelated or have a known cor-
relation structure, the OLS estimator of regression coefficients is consistent and
optimal in the class of linear unbiased estimators. However, in practical applica-
tions, cases in which errors are serially correlated occur frequently. For example,
the observed data of global average temperatures over the past century exhibit a
steadily increasing trend plus serially correlated noise (Bloomfield, 1992); and in
clinical trails or stock markets, data from each subject are usually serially cor-
related, especially when subjects are measured repeatedly over time (Chan and
Choy, 2008). Therefore, we are led to consider the following linear regression
model,

yt = x>t β + εt, t = 1, · · · , n, (1)
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where yt is an observed variate, x>t = (xt,1, · · · , xt,p) is a p-dimensional non-
stochastic explanatory variable, β = (β1, · · · , βp)> is a vector of the parameters
of interest, and εt is independent of xt and is from the stationary infinite-order
autoregressive (AR) process,

εt + a1εt−1 + a2εt−2 + · · · = ηt, (2)

where {ηt} is a sequence of independent random disturbances with E(ηt) = 0 and
E
(
η2t
)

= σ2 > 0 for all t. The model coefficients in (2) are assumed to obey the
restriction

∞∑
i=1

|ai| <∞. (3)

The aim of this article is to develop an efficient estimator of β for such a model
as (1).

Over the past half-century, the linear regression model with autocorrelated
errors has received increasing attention. Due to a lack of knowledge of the error
covariance matrix, Σn = E

(
(ε1, · · · , εn)>(ε1, · · · , εn)

)
= [γi−j ]

n
i,j=1, numerous

articles reported that the OLS estimator is at least as efficient asymptotically as
the best linear unbiased estimator (BLUE, the generalized least squares (GLS)
estimator). Grenander (1954) proved that the asymptotic efficiency of the OLS
estimator compared to the BLUE is one under the assumptions that εt has a
continuous and positive spectral density, and the regressors, x1, · · · , xn, satisfy
certain regularity conditions, called “Grenander conditions”; this is discussed in
more detail in Section 3.1. The same results are also in Anderson (1994). Some
articles examined the efficiency of the GLS estimator with an estimated Σ−1n (the
estimated GLS estimator) relative to the OLS estimator. For example, Koreisha
and Fang (2001) investigated the properties of the estimated GLS estimator by
assuming that the errors obey a finite-order AR model; they further illustrated
the finite sample efficiency of the estimated GLS estimator over the OLS esti-
mator. Almost all studies, including those cited above, assumed that errors are
observable. However, this is impossible in practical situations. Amemiya (1973)
first studied the large sample properties of the GLS estimator with an estimated
Σ−1n obtained utilizing the least squares residuals for a linear regression model
with stationary and autoregressive-moving average errors. He assumed that the
residuals follow a “fixed-order” AR model to calculate an estimate of Σn, and
then constructed the estimated GLS estimator. Although he proved the asymp-
totic normality of his GLS estimator and showed that the limiting distribution
is equivalent to that of the BLUE, the assumption that the order of AR process
has been kept fixed is unnatural. (see Berk, 1974; Ing and Wei, 2003 for more
details). As mentioned above, the estimator of Σ−1n plays a significant role in
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studies of the GLS estimator. Thus, finding a consistent estimator of Σ−1n is the
primary task to achieve the goal of the present study.

Although covariance matrix estimates of multivariate data have been devel-
oped over several decades, only a few articles discussed this issue for time-series
data. For stationary time series data, Σn has n distinct elements, γk (= γ−k), k =
0, · · · , n− 1. Reliably estimating all of them based on only one realization is not
possible. Wu and Pourahmadi (2009) showed that the sample covariance matrix
of the stationary process, which is formed by plugging the sample autocovariance
estimate, γ̂k, instead of γk into Σn, is not a consistent estimator of Σn under the
operator norm. This result is to be expected, since γ̂k is unreliable when the lag,
k, is large. Xiao and Wu (2011) further attested that under the operator norm
the convergence rate of the sample covariance matrix is of order log n. Based on
the property that γk decreases with k, Wu and Pourahmadi (2009) extended the
idea of banding the sample covariance matrix in the multivariate case (see Bickel
and Levina, 2008) to the stationary time series case. They established operator
norm consistency of the banded sample covariance matrix estimator of Σn. Since
the banded sample covariance matrix is not guaranteed to be positive definite,
the estimator of Σ−1n cannot be obtained. The Schur product theorem in Horn
and Johnson (1990, Theorem 7.5.3) says that for any positive definite matrix, the
Schur product with a positive definite matrix preserves its positive definiteness.
That motivated the development of a tapered covariance matrix, which is a Schur
product of the sample covariance matrix and a positive definite matrix (Furrer
and Bengtsson, 2007; McMurry and Politis, 2010; Wu, 2011). The Schur product
A◦B is the matrix formed by the coordinate-wise multiplication of the elements
of matrices A and B.

The present study considers the GLS estimator with the estimated Σ−1n ob-
tained by a modified Cholesky decomposition. The method for estimating Σ−1n
is explained in Section 2.2. It circumvents the aforementioned problems, includ-
ing the following two facts: errors are unobservable and only one realization is
available for estimating Σ−1n , and including one constraint that the positive def-
initeness of Σn must hold. This paper is organized as follows. The method for
constructing the GLS estimator is explained in Section 2. The consistency of
the estimated Σ−1n and the asymptotic efficiency of the estimated GLS estimator
are proven in Section 3. In Section 4, simulation studies confirm the theoretical
results, and two real datasets are used to present the outstanding performance of
the proposed GLS estimator. Finally, we end the paper with a short concluding
section. All technical proofs are given in the Appendix.

2. The GLS Estimator of Regression Coefficients

2.1 Model and Notation
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Consider the following linear regression model

yn = X>n β + εn, (4)

where yn = (yn, yn−1, · · · , y1)>, Xn = (xn, · · · , x1)
>, and εn = (εn, · · · , ε1)>.

After observing x1, y1, x2, y2, · · · , xn, yn, β can be estimated. The BLUE of β,(
X>n Σ−1n Xn

)−1
X>n Σ−1n yn, (5)

which is denoted by β̂GLS, is studied. However, due to unknown Σ−1n , β̂GLS could
not be determined. To estimate Σ−1n , the unobservable errors are first estimated
by the least squares residuals, namely,

ε̂t = yt − x>t β̂OLS, t = 1, · · · , n, (6)

where β̂OLS = (X>nXn)−1X>n yn is the OLS estimator of β. The method for
estimating Σ−1n is described in the next subsection.

2.2 An Estimator of the Σ−1n

To avoid loss of positive definiteness of the estimated Σn, a modified Cholesky
decomposition of Σ−1n (Wu and Pourahmadi, 2003) is used to develop an estimator
for Σ−1n . The key idea is to predict εt based on its predecessors. More specifically,
εn is subjected to the transformation,

Anεn = (ηn,n−1, ηn−1,n−2, · · · , η2,1, ε1)> , (7)

where

An =


1 an−1,1 an−1,2 · · · an−1,n−1
0 1 an−2,1 · · · an−2,n−2
...

. . .
. . .

. . .
...

0 · · · 0 1 a1,1
0 · · · 0 1

 ,

and
ηt+1,j = εt+1 + a>(j)εt(j), j = 1, · · · , t, t = 1, · · · , n− 1,

with εt(j) = (εt, εt−1, · · · , εt−j+1)> and

a>(j) = (aj,1, · · · , aj,j) = arg min
c∈Rj

E
(
εt+1 + c>εt(j)

)2
.

The term ηt+1, j is the least squares residual obtained by regressing εt+1 on the
past value, εt(j). Thus, elements on the right-hand side of (7) are pairwise
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uncorrelated. Then, the autocovariance matrix of Anεn is AnΣnA
>
n = Dn,

where

Dn = Diag
(
E
(
η2n, n−1

)
, E
(
η2n−1, n−2

)
, · · · , E

(
η22, 1

)
, E(ε21)

)
.

The notation Diag(d), where d is a vector, stands for the diagonal matrix, whose
diagonal elements are the corresponding components of d. Thus,

Σ−1n = A>nD
−1
n An, (8)

which is called the modified Cholesky decomposition of Σ−1n . Define kn as a
prescribed positive integer satisfying that as n→∞,

kn →∞ and k3n/n→ 0. (9)

Due to the stationarity of the error process (2) and the parameters in (2) satisfying
(3), Lemma 4 of Berk (1974) yields that for all m > kn,

kn∑
i=1

|akn,i − am,i| ≤
kn∑
i=1

|akn,i − ai|+
kn∑
i=1

|am,i − ai| → 0 as kn →∞,

and
m∑

i=kn

|am,i| ≤
m∑

i=kn

|am,i − ai|+
m∑

i=kn

|ai| → 0 as kn →∞

hold. These results motivate us to further approximate matrices An and Dn by

An(kn) =

1 akn,1 · · · akn,kn 0 · · · 0
. . .

. . .
. . .

... 1 akn,1 · · · akn,kn 0
...

. . .
. . .

. . .

0 1 akn,1 akn,2 · · · akn,kn 0
1 akn,1 · · · akn,kn

... 1 akn−1,1 · · · akn−1,kn−1
. . .

. . .
...

0 · · · 0 1 a1,1
0 · · · 0 1



,

and

Dn(kn) = Diag

E (η2kn+1,kn

)
, · · · , E

(
η2kn+1,kn

)︸ ︷︷ ︸
n−kn

, · · · , E
(
η22, 1

)
, E(ε21)

 .
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The new matricesAn(kn) andDn(kn) reduce the number of unknown parameters,
since now only kn(kn + 1)/2 parameters need to be estimated. Matrices An(kn)
and Dn(kn) are easy to estimate. In view of (8), the Cholesky-based estimator
of Σ−1n is defined as

Σ̂−1n (kn, ε̂n) = Â>n (kn, ε̂n)D̂−1n (kn, ε̂n)Ân(kn, ε̂)n, (10)

where ε̂n = (ε̂n, · · · , ε̂1)>, Ân(kn, ε̂n) =

1 âkn,1(ε̂n) · · · âkn,kn(ε̂n) 0 · · · 0

0 1 âkn,1(ε̂n) · · · âkn,kn(ε̂n) 0 · · · 0

...
. . .

. . .
...

0 · · · 0 1 âkn,1(ε̂n) · · · âkn,kn(ε̂n)

0 · · · 0 1 âkn−1,1(ε̂n) · · · âkn−1,kn−1(ε̂n)

...
. . .

. . .
...

0 · · · 1 â1,1(ε̂n)

0 · · · 0 1


,

and D̂n(kn, ε̂n) =

1

Nn
Diag


n−1∑
t=kn

η̂2t+1,kn(ε̂n), · · · ,
n−1∑
t=kn

η̂2t+1,kn(ε̂n)︸ ︷︷ ︸
n−kn

, · · · ,
n−1∑
t=kn

η̂2t+1,1(ε̂n),

n−1∑
t=kn

ε̂2t

 ,

with Nn=n−kn, η̂t+1,j(ε̂n)= ε̂t+1+â
>(j, ε̂n)ε̂t(j), ε̂t(j) = (ε̂t, ε̂t−1 · · · , ε̂t−j+1)

>,
and

â(j, ε̂n) = (âj,1(ε̂n), · · · , âj,j(ε̂n))>

= −

 n−1∑
t=kn

ε̂t(j)ε̂
>
t (j)

−1 n−1∑
t=kn

ε̂t(j)ε̂t+1,

for j = 1, · · · , kn. The existence of (N−1n
∑n−1

t=kn
ε̂t(kn)ε̂>t (kn))−1 is shown in

Lemma 1. Based on the estimator of Σ−1n defined in (10), the GLS estimator
of β, called the “Cholesky-based generalized least squares (CGLS) estimator”, is
obtained by

β̂CGLS(kn, ε̂n) =
(
X>n Σ̂−1n (kn, ε̂n)Xn

)−1
X>n Σ̂−1n (kn, ε̂n)yn. (11)
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3. Assumptions and Some Asymptotic Properties

3.1 Technical Conditions

For the sake of establishing consistency of Σ̂−1n (kn, ε̂n) and asymptotic opti-
mality of β̂CGLS(kn, ε̂n), the design matrix, Xn, and errors, {εt}, are assumed to

satisfy the following conditions. Let s
(n)
i,j (h) =

∑n−h
t=1−h xt,ixt+h,j , i, j = 1, · · · , p,

h = 0,±1,±2 · · · , and note that xt,i = 0, if t /∈ {1, · · · , n}. This study assumes

limn→∞ s
(n)
i,i (0) =∞, i = 1, · · · , p, and the following conditions.

(C1) Let Xn meet the following Grenander’s conditions:

lim
n→∞

x2n+h,i

s
(n)
i,i (0)

= 0,

for i = 1, · · · , p, and any positive integer h. As n→∞, the limit of

s
(n)
i,j (h)√

s
(n)
i,i (0)s

(n)
j,j (0)

is assumed to exist, and is denoted by ρi,j(h) for all i, j, and h. Define
Λ(h) = [ρi,j(h)]pi,j=1, h = 0,±1,±2, · · · . {Λ(h)} is a sequence of positive
definite matrices. It follows that

Λ(h) =

∫ π

−π
e−ihλdM(λ),

where M(λ) is a nondecreasing matrix-valued function.

(C2) The errors, ε1, · · · , εn, are from process (2) with coefficients satisfying (3).
Moreover, the roots of the characteristic polynomial, A(z) = 1 + a1z +
a2z

2 + · · · , of the model (2) lie outside the unit circle.

(C3) Disturbances of the error model, {ηt}, satisfy sup−∞<t<∞E
(
|ηt|4

)
<∞.

Remark 1. Grenander’s conditions are common and can refer to Grenander and
Rosenblatt (1957), Amemiya (1973), and Anderson (1994), among others. Define
Sn =

∑n
t=1 xtx

>
t . Using (C1),

1

n
Sn −→ S as n→∞, (12)

where S is a positive definite matrix.



730 Estimation of Linear Regression Models with Serially Correlated Errors

Remark 2. Based on Theorem 3.8.4 of Brillinger (2001), (C2) implies that
εt =

∑∞
j=0 bjηt−j , where b0 = 1 and {bj} satisfies

∑∞
j=0 |bj | < ∞, and B(z) =∑∞

j=0 bjz
j 6= 0 for all |z| ≤ 1. These specifications yield the spectral density of

εt,

fε(λ) =
σ2

2π

∣∣∣∣ ∞∑
j=0

bje
−ijλ

∣∣∣∣2, (13)

which is continuous on [−π, π], and fmin and fmax exist such that

0 < fmin ≤ fε(λ) ≤ fmax <∞, −π ≤ λ ≤ π. (14)

Additionally, using (14) yields

sup
k≥1
‖Σk‖ ≤ 2πfmax and sup

k≥1
‖Σ−1k ‖ ≤ (2πfmin)−1, (15)

where Σk = E
(
(ε1, · · · , εk)>(ε1, · · · , εk)

)
is a k-dimensional covariance matrix.

3.2 The Consistency of Σ̂−1n (kn, ε̂n)

In presenting the main result of this section, some auxiliary lemmas must
be introduced in advance. In the sequel, C denotes a generic positive constant
whose value may vary from place to place but is independent of n and kn. For
any p × m matrix, Z, with real entries, {zi,j}, its operator norm is defined by
‖Z‖ = sup‖w‖=1 ‖Zw‖, where ‖w‖ is the Euclidean norm of the real vector w =

(w1, · · · , wm)>. ‖Z‖1 = max16j6m
∑p

i=1 |zi,j |, ‖Z‖∞ = max16i6p
∑m

j=1 |zi,j |,
and ‖w‖1 =

∑m
i=1 |wi|. Moreover, R̂(kn) = N−1n

∑n−1
t=kn

εt(kn)ε>t (kn) = [γ̂i,j ]
kn
i,j=1,

and R̂(kn, ε̂n) = N−1n
∑n−1

t=kn
ε̂t(kn)ε̂>t (kn).

Lemma 1. Assume {xt, yt} are generated from (1) and conditions (C1)-(C3)
hold. Define O1,n = {λmin(R̂(kn)) < πfmin} and O2,n = {λmin(R̂(kn, ε̂n) <
πfmin/2}, where kn satisfies (9), λmin(Z) denotes the minimum eigenvalue of the
square matrix Z, and O1

⋃
O2 denotes the union of events O1 and O2. Then

P (O1,n) = o(1), (16)

and
P (O1,n

⋃
O2,n) = o(1). (17)

Moreover,
max

1≤l≤kn
‖R̂−1(l)‖1IOc

1,n
= Op(1), (18)

max
1≤l≤kn

‖R̂−1(l)− R̂−1(l, ε̂n)‖1I(O1,n
⋃
O2,n)

c = Op

(
kn

N
3/4
n

)
, (19)
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and

max
1≤l≤kn

‖R̂−1(l)− R̂−1(l, ε̂n)‖I(O1,n
⋃
O2,n)

c = Op

(
kn
Nn

)
, (20)

where IOc stands for the indicator function of event Oc, the complement of event
O.

Lemma 2. Assume that (C2) and (C3) hold. Then,∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥
1

= Op(kn), (21)

and ∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥ = Op(k
1/2
n ). (22)

Lemma 3. Assume that the assumptions of Lemma 2 hold. Suppose kn =
o(n1/3). Then,

max
1≤l≤kn

∥∥∥∥ 1

N
5/6
n

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥ = Op(1), (23)

and

max
1≤l≤kn

∥∥∥∥ 1

N
5/6
n

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥
1

= Op(k
1/2
n ). (24)

Lemma 4. Assume that the assumptions of Lemma 1 hold. Then,∥∥∥∥ n−1∑
t=kn

(ε̂t(kn)ε̂t+1 − εt(kn)εt+1)

∥∥∥∥
1

= Op (kn) , (25)

and ∥∥∥∥ n−1∑
t=kn

(ε̂t(kn)ε̂t+1 − εt(kn)εt+1)

∥∥∥∥ = Op

(
k1/2n

)
. (26)

The proofs of Lemmas 1-4 are provided in the Appendix.

Theorem 1. Given the same assumptions as those of Lemma 1, then,

‖Σ̂−1n (kn, ε̂n)−Σ−1n ‖ = Op

( kn

n1/3

)1/2

+
∑
i>kn

|ai|

 . (27)

Proof. Define Ĥn(kn, ε̂n) = Ân(kn, ε̂n)−An and Ĝn(kn, ε̂n) = D̂−1n (kn, ε̂n)−
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D−1n . Then, the following holds true:

Σ̂−1n (kn, ε̂n)−Σ−1n

= Ĥ>n (kn, ε̂n)D−1n An +A>n Ĝn(kn, ε̂n)An +A>nD
−1
n Ĥn(kn, ε̂n)

+ Ĥ>n (kn, ε̂n)Ĝn(kn, ε̂n)An + Ĥ>n (kn, ε̂n)D−1n Ĥn(kn, ε̂n)

+A>n Ĝn(kn, ε̂n)Ĥn(kn, ε̂n) + Ĥ>n (kn, ε̂n)Ĝn(kn, ε̂n)Ĥn(kn, ε̂n).

Since E(ε21) ≥ σ2 and inft≥1E(η2t+1,t) ≥ σ2, then

‖D−1n ‖ ≤ 1/σ2.

Condition (3), together with Lemma 4 of Berk (1974), yields that

‖An‖1 <∞ and ‖An‖∞ <∞, (28)

and hence ‖An‖ <∞ holds.

To investigate the spectral norm of Ĥn(kn, ε̂n), the following is defined first:

H(1)
n (kn) =



0 · · · 0 −an−1,kn+1 · · · −an−1,n−1
0 −an−2,kn+1 · · · −an−2,n−2

. . .
. . .

...
... 0 −akn+1,kn+1

0
...

0 · · · 0


,

and H
(2)
n (kn, ε̂n) = Ĥn(kn, ε̂n) −H(1)

n (kn). It follows from Lemma 4 of Berk

(1974) that ‖H(1)
n (kn)‖2 ≤ ‖H(1)

n (kn)‖1‖H(1)
n (kn)‖∞ < C(

∑∞
i>kn
|ai|)2 holds.

Again applying Lemma 4 of Berk (1974) and the same algebraic manipulations

used in dealing with H
(1)
n (kn) to H

(2)
n (kn, ε̂n), the following is generated:

H(2)
n (kn, ε̂n) ≤ C

 max
1≤l≤kn

‖â(l, ε̂n)− a(l)‖1 +

∞∑
i>kn

|ai|

 .

This paper shows in the Appendix that

max
1≤l≤kn

‖â(l, ε̂n)− a(l)‖1 = Op

((
kn

n1/3

)1/2
)
, (29)
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through which the following is obtained:

‖Ĥn(kn, ε̂n)‖ = Op

( kn

n1/3

)1/2

+

∞∑
i>kn

|ai|

 .

Next, as is also shown in the Appendix,

‖Ĝn(kn, ε̂n)‖ = Op

n−1/3 +
∞∑
i>kn

|ai|

 . (30)

Hence, the proof is complete.
2

3.3 The Asymptotic Efficiency of the CGLS Estimator

The following theorem proves the asymptotic normality of the CGLS estima-
tor.

Theorem 2. Define Fn = (Diag (s))1/2 and assume that the assumptions of
Theorem 1 hold. Then, as n→∞,

Fn(β̂CGLS(kn, ε̂n)− β)
d−→ N

(
0,

(
1

2π

∫ π

−π

1

fε(λ)
dM(λ)

)−1)
, (31)

where s is the main diagonal of matrix Sn defined before (12),
d−→ denotes

convergence in distribution, fε(λ) is defined by (13), and M(λ) is defined in
condition (C1) of Section 3.1.

Proof. First,

β̂CGLS(kn, ε̂n)− β = (β̂CGLS(kn, ε̂n)− β̂GLS) + (β̂GLS − β), (32)

where β̂GLS is defined by (5). It is shown in the Appendix that

‖Fn(β̂CGLS(kn, ε̂n)− β̂GLS)‖ = op(1), (33)

and

Fn(β̂GLS − β)
d−→ N

(
0,

(
1

2π

∫ π

−π

1

fε(λ)
dM(λ)

)−1)
. (34)

Then, Slutsky’s theorem can be applied to complete the proof.
2
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Note that (34) first appeared in Amemiya (1973). Here, it is shown in a more
straightforward manner. Equations (31) and (34) indicate that the CGLS estima-
tor, β̂CGLS(kn, ε̂n), has the same asymptotic distribution as the BLUE, β̂GLS. In
conclusion, the CGLS is an asymptotically efficient (optimal) estimator. In the
next section, the finite sample performances of Σ̂−1n (kn, ε̂n) and β̂CGLS(kn, ε̂n)
are evaluated using some simulated data, and application of the proposed method
to two actual datasets is also illustrated.

4. Simulation and Data Analysis

4.1 Finite Sample Performance of Σ̂−1n (kn, ε̂n)

In this section, the finite sample performance of the Cholesky-based estima-
tor of Σ−1n , given in (10), is compared to those of three other estimators. The
estimation error of each estimator relative to the target matrix, Σ−1n , is calcu-
lated by averaging over 1000 replications. The relative estimation error of the
Cholesky-based matrix estimator is defined as

rC,n =
1

1000

1000∑
t=1

‖Σ̂−1n,t(k∗n,t, ε̂n)−Σ−1n ‖
‖Σ−1n ‖

, n = 50, 100, 200, 400, (35)

where
k∗n,t = arg min

1≤l≤ln
‖Σ̂−1n,t(l, ε̂n)−Σ−1n ‖,

with ln = 10 log n. The other three estimators and their corresponding estimation
errors are described as follows. One of the estimators is the sample covariance
matrix, Σ̂S,n, which is formed by plugging γ̂k = n−1

∑n−k
i=1 (εi− ε̄(n))(εi+k− ε̄(n)),

with ε̄(n) = n−1
∑n

i=1 εi, instead of γk into Σn, k = 0, 1, · · · , n − 1. Its relative

estimation error, rS,n, is defined in the same way as (35) but with Σ̂−1n,t(k
∗
n,t, ε̂n)

replaced by Σ̂−1S,n,t(ε̂n). The other two estimators are tapered covariance matrices,
which are Schur products of the sample covariance matrix and a positive definite
matrix. They consist of a main diagonal and l diagonals above and below the main
diagonal of Σ̂S,n, like a banded sample covariance matrix, but the off-diagonal
entries are tapered off rather than maintained intact. The first tapered covariance
matrix is constructed using the Bartlett window function, bl(z) = 1 − z/l if
0 ≤ z ≤ l and 0 otherwise. It is defined as

Σ̂B,n(l) = [bl(|i− j|)γ̂|i−j|]ni,j=1. (36)

The other one is defined as

Σ̂P,n(l) = [pl(|i− j|)γ̂|i−j|]ni,j=1, (37)
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where pl(z) = 1 − 6(z/l)2 + 6(z/l)3 if 0 ≤ z ≤ l/2, = 2(1 − z/l)3 if l/2 < z ≤ l
and 0 otherwise, which is the Parzen window function. The functions, bl(z) and
pl(z), decrease in z, since the corresponding sample autocovariance estimate, γ̂z,
is less reliable when the value of z is large. The estimation errors of these two
tapered estimators, rB,n and rP,n, are also defined in the same way as (35) but

Σ̂−1n,t(k
∗
n,t, ε̂n) is respectively replaced by Σ̂−1B,n,t(k

0
n,t, ε̂n) and Σ̂−1P,n,t(k

1
n,t, ε̂n), where

k0n,t = arg min
1≤l≤ln

‖Σ̂B,n,t(l, ε̂n)−Σn‖,

and
k1n,t = arg min

1≤l≤ln
‖Σ̂P,n,t(l, ε̂n)−Σn‖.

Values of rS,n, rB,n, rP,n, and rC,n, and average values of k0n,t, k
1
n,t, and k∗n,t over

1000 replications, respectively denoted by k0n, k
1
n, and k∗n, are shown in Tables 1

and 2. These values are obtained under model (1) with x>t = (1 xt), where xt’s
obey an i.i.d standard Gaussian distribution, β> = (β0 β1) = (2 0.5), and εt’s
are generated from one of the following data generating processes (DGPs).

DGP 1: εt = φ1εt−1 + ηt with φ1 ∈ {0.2, 0.5, 0.8};

DGP 2: εt = ηt − θ1ηt−1 with θ1 ∈ {0.2, 0.5, 0.8};

DGP 3: εt = φ1εt−1 +φ2εt−2 +ηt with (φ1, φ2) = (1.60,−0.64), (1.80,−0.90) or
(1.43,−0.51); and

DGP 4: εt = ηt − θ1ηt−1 − θ2ηt−2 with (θ1, θ2) = (1.60,−0.64), (1.80,−0.90) or
(1.43,−0.51);

where ηt’s obey an i.i.d standard Gaussian distribution.
Table 1 presents the above-mentioned values under model (1) with errors

generated by DGP 1 or 2. To facilitate an explanation of the values of k0n, k
1
n

and k∗n, the finite AR representations of DGP 2 with θ1 ∈ {0.2, 0.5, 0.8} are given
in the footnotes to Table 1. The results shown in Table 1 reveal that regardless
of the sample size, the value of rC is smallest for DGP 1 with φ1 ∈ {0.2, 0.5, 0.8}
and DGP 2 with θ1 ∈ {0.2, 0.5, 0.8}. In addition, a similar phenomenon occurs
in the cases of DGP 1 with φ1 ∈ {−0.2,−0.5,−0.8} and DGP 2 with θ1 ∈
{−0.2,−0.5,−0.8}. Thus, those results are omitted for simplicity. Results in
cases of φ1 < 0 or θ1 < 0 and in Table 1 together indicate that the performance
of the Cholesky-based estimator is remarkably superior to those of the other three
estimators as |φ1| or |θ1| is close to 1. According to the form of the Cholesky
decomposition we used, k∗n should depend on the magnitude of AR coefficients.
Our simulation results confirm this conjecture. Specifically, when errors obey
DGP 1 (an AR(1) process), the values of k∗n are equal to 1 for n = 50, 100, 200
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and 400. In contrast, k0n and k1n seem to depend on the magnitude of not only the
autocovariance but also the AR coefficients. These values of k0n and k1n increase
with increasing n in all cases of DGPs 1 and 2. When errors are generated by
DGP 3 or 4, Table 2 also shows that the Cholesky-based matrix estimator has
the smallest relative estimation error compared to the other three estimators
for all considered combinations of (φ1, φ2) or (θ1, θ2). Tables 1 and 2 support
the deduction that the Cholesky-based estimator for the inverse of the error
covariance matrix approaches the target matrix as n tends to infinity at the
fastest convergence rate among all matrix estimators considered here.

Table 1: Values of rS,n, rB,n, rP,n, rC,n, k
0
n, k

1
n, and k∗n under model (1) with

errors following DGP 1 or 2

φ1 θ1

n 0.2 0.5 0.8 0.2† 0.5‡ 0.8§
50 rS 9.838 6.431 4.745 12.347 8.581 2.775

rB(k0) 0.329( 3) 0.433( 7) 0.543(13) 0.286( 3) 0.501( 4) 0.897( 4)

rP(k1) 0.335( 4) 0.512( 9) 0.831(18) 0.297( 4) 0.471( 5) 0.858( 5)

rC(k∗) 0.318( 1) 0.216( 1) 0.177( 1) 0.290( 1) 0.232( 3) 0.247( 9)

100 rS 10.231 7.764 6.595 13.786 11.781 4.274

rB(k0) 0.246( 4) 0.352( 8) 0.533(19) 0.225( 3) 0.477( 4) 0.894( 5)

rP(k1) 0.243( 5) 0.387(11) 0.718(24) 0.219( 4) 0.419( 6) 0.854( 6)

rC(k∗) 0.199( 1) 0.138( 1) 0.111( 1) 0.207( 1) 0.195( 4) 0.241(12)

200 rS 12.400 9.605 8.793 14.830 11.590 6.072

rB(k0) 0.193( 4) 0.287(10) 0.460(23) 0.182( 4) 0.442( 5) 0.881( 5)

rP(k1) 0.184( 6) 0.294(13) 0.561(30) 0.167( 5) 0.362( 6) 0.828( 7)

rC(k∗) 0.140( 1) 0.100( 1) 0.079( 1) 0.144( 2) 0.149( 4) 0.207(14)

400 rS 15.373 12.648 11.889 19.838 15.013 8.467

rB(k0) 0.150( 5) 0.232(12) 0.374(28) 0.155( 4) 0.409( 6) 0.862( 6)

rP(k1) 0.138( 7) 0.218(14) 0.420(35) 0.136( 6) 0.326( 7) 0.790( 7)

rC(k∗) 0.095( 1) 0.068( 1) 0.055( 1) 0.111( 2) 0.117( 5) 0.150(15)

† Coefficients of the AR representation, φ1, · · · , φ15 = −2 × 10−1, −4 × 10−2, −8 ×
10−3, 1.6 × 10−3, 3.2 × 10−4, −6.4 × 10−5, −1.3 × 10−5, −2.6 × 10−6, −5.1 ×
10−7, −1.0 × 10−7, −2.0 × 10−8, −4.1 × 10−9, −8.2 × 10−10, −1.6 × 10−10 and
−3.3× 10−11.

‡ Coefficients of the AR representation, φ1, · · · , φ15 = −5×10−1, −2.5×10−1, −1.3×
10−1, −6.3×10−2, 3.1×10−2, 1.6×10−2, −7.8×10−3, 3.9×10−3, −2.0×10−3, −9.8×
10−4, −4.9× 10−4, −2.4× 10−4, −1.2× 10−4, −6.1× 10−5 and −3.1× 10−5.

§ Coefficients of the AR representation, φ1, · · · , φ15 = −0.800, −0.640, −0.512,
−0.410, −0.328, −0.262, −0.210, −0.168, −0.134, −0.107, −0.086, −0.069, −0.055,
−0.044 and −0.035.
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Table 2: Values of rS,n, rB,n, rP,n, rC,n, k
0
n, k

1
n, and k∗n under model (1) with

errors following DGP 3 or 4

(φ1, φ2)

n (1.60,−0.64) (1.80,−0.90) (1.43,−0.51)

50 rS 1.219 1.069 1.773
rB(k0) 0.904(18) 0.935(30) 0.809(15)
rP(k1) 0.787(24) 0.884(33) 0.671(21)
rC(k∗) 0.349( 2) 0.467( 2) 0.255( 2)

100 rS 1.301 1.117 2.256
rB(k0) 0.911(25) 0.938(37) 0.809(21)
rP(k1) 0.786(31) 0.860(40) 0.648(26)
rC(k∗) 0.501( 3) 0.529( 2) 0.330( 3)

200 rS 2.208 1.631 4.169
rB(k0) 0.896(31) 0.921(46) 0.782(24)
rP(k1) 0.712(38) 0.784(49) 0.559(31)
rC(k∗) 0.434( 3) 0.446( 2) 0.243( 3)

400 rS 4.703 3.277 7.315
rB(k0) 0.864(37) 0.898(54) 0.725(29)
rP(k1) 0.555(45) 0.651(56) 0.403(36)
rC(k∗) 0.231( 3) 0.259( 2) 0.123( 3)

(θ1, θ2)

n (1.60,−0.64)† (1.80,−0.90)‡ (1.43,−0.51)§
50 rS 0.914 0.972 0.924

rB(k0) 0.997( 5) 0.997( 5) 0.986( 5)
rP(k1) 0.991( 7) 0.994( 7) 0.965( 7)
rC(k∗) 0.728(20) 0.751(21) 0.550(16)

100 rS 0.933 0.983 1.365
rB(k0) 0.996( 6) 0.998( 6) 0.984( 6)
rP(k1) 0.986( 8) 0.993( 8) 0.948( 7)
rC(k∗) 0.639(28) 0.785(27) 0.385(20)

200 rS 1.024 0.981 2.006
rB(k0) 0.996( 7) 0.998( 7) 0.982( 7)
rP(k1) 0.982( 8) 0.992( 8) 0.926( 8)
rC(k∗) 0.583(36) 0.727(42) 0.364(17)

400 rS 1.385 1.050 2.938
rB(k0) 0.995( 8) 0.998( 8) 0.979( 8)
rP(k1) 0.971( 9) 0.990( 9) 0.902( 9)
rC(k∗) 0.436(34) 0.716(37) 0.405(25)

† Coefficients of the AR representation, φ1, · · · , φ15 = −1.600, −1.920, −2.048,
−2.048, −1.966, −1.835, −1.678, −1.510, −1.342, −1.181, −1.031, −0.893, −0.770,
−0.660 and −0.563.

‡ Coefficients of the AR representation, φ1, · · · , φ15 = −1.800, −2.340, −2.592,
−2.560, −2.275, −1.790, −1.176, −0.505, 0.149, 0.723, 1.167, 1.450, 1.560, 1.503
and 1.301.

§ Coefficients of the AR representation, φ1, · · · , φ15 = −1.430, −1.535, −1.466,
−1.313, −1.130, −0.946, −0.777, −0.629, −0.502, −0.398, −0.313, −0.244, −0.190,
−0.147 and −0.113.

4.2 Finite Sample Performance of the CGLS Estimator

In this section, we compare the finite sample efficiency of the CGLS estima-
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tor with those of three other GLS estimators. The competitive estimators are
described as follows. The first one is the sample generalized least squares (SGLS)
estimator, which has the same form as (5) but with Σn replaced by Σ̂S,n; the
other two GLS estimators with Σn estimated by tapered covariance matrices,
defined in (36) and (37), are tapered GLS estimators, respectively denoted by
TGLSB and TGLSP. Since the OLS method is the most popular tool for regres-
sion analysis, the relative efficiencies of these GLS estimates to the OLS estimate
are evaluated through the measure expressed as

ς̂βi =

∑1000
t=1 (β̂GLS,i − βi)2∑1000
t=1 (β̂OLS,i − βi)2

, i = 0, 1.

A ratio of > 1 indicates that the OLS estimate is more efficient than the GLS
estimate. Tables 3 and 4 summarize values of ς̂β0 and ς̂β1 for the four GLS
estimators, namely, SGLS, TGLSB, TGLSP and CGLS, under the simulation
settings of Tables 1 and 2, respectively. Estimates of the relative efficiency of the
GLS estimator given in (5) over the OLS estimator are also included in Tables 3
and 4, but only as a bench mark for comparison.

Tables 3 and 4 indicate that regardless of the sample size and the method
used for estimating the regression coefficients, values of ς̂β1 are < 1 except for the
SGLS estimator used in cases where the errors follow DGP 1 with φ1 = 0.2 or
DGP 2 with θ1 = 0.2. With the exception of errors that obey DGP 4, values of ς̂β1
appear to depend on the magnitude of the roots of the characteristic polynomial
of the underlying error model. In other words, when the roots of the characteristic
polynomial are close to 1, values of ς̂β1 are smaller. For example, in the case of
n = 50, when errors obey DGP 1 with φ1 = 0.2, ς̂β1 falls between 0.94 and 1.10,
whereas ς̂β1 falls between 0.26 and 0.50 when φ1 is changed to 0.8. Another
example is that for n = 50 and errors from DGP 3 with (φ1, φ2) = (1.80,−0.90)
(where the roots of its characteristic polynomial are 1 + 0.333i and 1 − 0.333i),
values of ς̂β1 are between 0.01 and 0.06, but values of ς̂β1 are between 0.08 and
0.24 for errors following DGP 3 with (φ1, φ2) = (1.43,−0.51) (where the roots
of its characteristic polynomial are 1.471 and 1.333). Values of ς̂β0 shown in
Tables 3 and 4 reveal that except in cases where errors are from DGP 1 or 2
and the SGLS is used to estimate the intercept term of the regression model,
the OLS estimators are less efficient than all GLS estimators considered. Tables
3 and 4 show that when n = 50, the CGLS estimator performs worse than
the TGLS estimators in most cases. However, when n is increased to 400, the
CGLS estimator outperforms the other three estimators, with the exception of
estimating β0 in cases of DGP 1 with φ1 = 0.5 and DGP 3 with (φ1, φ2) =
(1.8,−0.9). In addition, from the results shown in Tables 3 and 4, we find that
when n = 400, values of ς̂βi,CGLS

− ς̂βi,GLS
are > 0 and < 0.026 for i = 0, 1. Indeed,
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Table 3: Values of ς̂β0 and ς̂β1 under the setting of Table 1

φ1
0.2 0.5 0.8

n Method ς̂β0
ς̂β1

ς̂β0
ς̂β1

ς̂β0
ς̂β1

50 GLS 0.998 0.941 0.984 0.631 0.932 0.269
SGLS 1.040 1.093 1.030 0.837 1.002 0.499
TGLSB 1.000 0.971 0.993 0.683 0.963 0.309
TGLSP 1.000 0.964 0.993 0.675 0.962 0.312
CGLS 0.998 0.984 0.985 0.656 0.948 0.274

100 GLS 1.000 0.929 0.997 0.612 0.980 0.286
SGLS 1.031 1.040 1.031 0.819 1.025 0.564
TGLSB 1.001 0.944 0.998 0.634 0.984 0.319
TGLSP 1.000 0.941 0.998 0.627 0.984 0.324
CGLS 1.002 0.947 1.000 0.619 0.986 0.288

200 GLS 1.001 0.927 1.004 0.614 1.004 0.253
SGLS 1.031 1.120 1.029 0.865 1.024 0.549
TGLSB 1.001 0.947 1.002 0.636 1.000 0.269
TGLSP 1.001 0.941 1.002 0.633 1.000 0.271
CGLS 1.002 0.943 1.005 0.620 1.005 0.253

400 GLS 1.000 0.937 1.004 0.605 0.993 0.283
SGLS 1.021 1.108 1.027 0.835 1.029 0.562
TGLSB 1.000 0.946 1.003 0.619 0.993 0.290
TGLSP 1.000 0.946 1.003 0.616 0.993 0.294
CGLS 1.000 0.946 1.004 0.605 0.992 0.283

θ1
0.2 0.5 0.8

n Method ς̂β0
ς̂β1

ς̂β0
ς̂β1

ς̂β0
ς̂β1

50 GLS 0.975 0.920 0.824 0.689 0.521 0.511
SGLS 1.022 1.108 0.938 0.927 0.733 0.773
TGLSB 0.984 0.949 0.876 0.769 0.651 0.642
TGLSP 0.983 0.947 0.867 0.750 0.620 0.609
CGLS 0.980 0.964 0.862 0.777 0.664 0.695

100 GLS 1.001 0.911 0.984 0.611 0.761 0.240
SGLS 1.027 1.102 1.026 0.870 0.878 0.550
TGLSB 1.002 0.945 0.988 0.690 0.832 0.479
TGLSP 1.001 0.936 0.987 0.668 0.816 0.428
CGLS 1.003 0.942 0.987 0.670 0.800 0.344

200 GLS 0.997 0.936 0.968 0.603 0.706 0.195
SGLS 1.049 1.130 1.032 0.856 0.847 0.481
TGLSB 0.998 0.936 0.971 0.639 0.756 0.356
TGLSP 0.998 0.935 0.969 0.626 0.737 0.306
CGLS 0.997 0.940 0.970 0.618 0.712 0.232

400 GLS 1.000 0.920 0.996 0.633 0.861 0.250
SGLS 1.026 1.101 1.022 0.887 0.951 0.547
TGLSB 1.000 0.940 0.996 0.679 0.888 0.395
TGLSP 1.000 0.935 0.996 0.664 0.879 0.348
CGLS 1.000 0.930 0.996 0.652 0.867 0.272
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Table 4: Values of ς̂β0 and ς̂β1 under the setting of Table 2

(φ1, φ2)

(1.60,−0.64) (1.80,−0.90) (1.43,−0.51)

n Method ς̂β0
ς̂β1

ς̂β0
ς̂β1

ς̂β0
ς̂β1

50 GLS 0.890 0.037 0.853 0.013 0.932 0.087
SGLS 0.960 0.119 0.891 0.056 0.987 0.236

TGLSB 0.939 0.047 0.911 0.021 0.957 0.105
TGLSP 0.932 0.050 0.908 0.023 0.952 0.105
CGLS 0.974 0.038 0.914 0.014 0.972 0.088

100 GLS 0.892 0.006 0.886 0.004 0.924 0.019
SGLS 0.978 0.068 0.955 0.042 1.001 0.162

TGLSB 0.935 0.010 0.929 0.007 0.951 0.029
TGLSP 0.928 0.011 0.919 0.008 0.946 0.030
CGLS 0.936 0.008 0.934 0.004 0.946 0.023

200 GLS 0.971 0.004 0.944 0.003 0.963 0.019
SGLS 0.997 0.087 0.971 0.059 1.012 0.200

TGLSB 0.975 0.006 0.946 0.005 0.974 0.022
TGLSP 0.975 0.007 0.944 0.006 0.971 0.023
CGLS 0.986 0.005 0.955 0.003 0.968 0.019

400 GLS 0.964 0.009 0.976 0.005 0.980 0.027
SGLS 1.026 0.169 1.024 0.118 1.036 0.278

TGLSB 0.972 0.010 0.978 0.006 0.984 0.029
TGLSP 0.971 0.010 0.979 0.007 0.983 0.028
CGLS 0.968 0.009 0.980 0.005 0.982 0.027

(θ1, θ2)

(1.60,−0.64) (1.80,−0.90) (1.43,−0.51)

n Method ς̂β0
ς̂β1

ς̂β0
ς̂β1

ς̂β0
ς̂β1

50 GLS 0.042 0.013 0.141 0.007 0.156 0.032
SGLS 0.178 0.220 0.240 0.185 0.280 0.249

TGLSB 0.240 0.192 0.287 0.163 0.327 0.209
TGLSP 0.158 0.122 0.217 0.095 0.257 0.140
CGLS 0.486 0.736 0.585 0.718 0.326 0.552

100 GLS 0.036 0.018 0.078 0.005 0.197 0.043
SGLS 0.226 0.199 0.224 0.153 0.321 0.208

TGLSB 0.229 0.200 0.241 0.166 0.341 0.162
TGLSP 0.138 0.112 0.154 0.079 0.264 0.100
CGLS 0.559 0.430 0.429 0.301 0.225 0.174

200 GLS 0.052 0.010 0.182 0.005 0.203 0.035
SGLS 0.143 0.163 0.299 0.111 0.378 0.208

TGLSB 0.154 0.114 0.300 0.108 0.334 0.152
TGLSP 0.086 0.047 0.221 0.041 0.253 0.081
CGLS 0.063 0.080 0.238 0.053 0.216 0.052

400 GLS 0.182 0.013 0.388 0.003 0.405 0.018
SGLS 0.251 0.183 0.455 0.112 0.507 0.222

TGLSB 0.264 0.135 0.445 0.077 0.474 0.122
TGLSP 0.202 0.051 0.402 0.019 0.421 0.045
CGLS 0.183 0.039 0.394 0.010 0.407 0.034
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the CGLS estimator is expected to be as efficient as the GLS estimator (BLUE)
for large n. In conclusion, the simulation results reported in this section agree
with the theoretical results established in Theorem 2. At the end of this section,
we note that although the performance of the CGLS estimator is sometimes worse
than those of the TGLSB and TGLSP in situations with small sample sizes, the
Cholesky-based estimator of the inverse covariance matrix outperforms the other
estimators even when n = 50. This finding suggests that the Cholesky-based
matrix estimator is often a good choice if one is only interested in estimating the
covariance matrix of a serial process.

4.3 Real Data Analysis

This section illustrates practical applications of the CGLS estimator using two
datasets. The most interesting question is whether the CGLS estimator can yield
a predictor, ŷt = β̂>CGLSxt, with the smallest prediction error among all candidate
predictors built by the SGLS, TGLSB, TGLSP and CGLS estimators. To answer
this question, each dataset is split into two parts. The first part contains the first
90% of the observations, {(x1, y1), · · · , (xT , yT )}, used to obtain the four GLS
estimates, where T = b0.9 × nc with n being the sample size and bac denoting
the largest integer ≤ a. The second part contains the remaining observations,
{(xT+1, yT+1), · · · , (xn, yn)}. Based on the four GLS estimates, we can obtain
the predicted values, ŷt, t = T + 1, · · · , n and calculate the average squared
prediction error (ASPE) defined by

ASPE =
1

n− T

n∑
t=T+1

(yt − ŷt)2. (38)

Table 5 presents values of ASPE based on the four GLS estimators. Note that
the values of k0, k1, and k∗ in Table 5 are obtained by minimizing (38).

Now we introduce the datasets. The first dataset given in Durbin and Watson
(1951) reports the annual consumption of spirits in the United Kingdom from
1870 to 1938. The sample size, n, is equal to 69. The response variable, yi, is the
annual per capita consumption of spirits, and the explanatory variables, xi,1 and
xi,2, are per capita real income and price of spirits deflated by a general price
index, respectively. All observations are recorded in logarithmic form. Fuller
(1996, Example 9.7.1) analyzed the data using the following regression model

yt = β0 + β1xt,1 + β2xt,2 + β3t+ β4(t− 35)2 + εt,

where 1869 is the origin for t, and εt is assumed to be from a stationary process.
The OLS predictor based on all observations is

ŷt,OLS = 2.14 + 0.69xt,1 − 0.63xt,2 − 0.0095t− 0.00011(t− 35)2. (39)
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Fuller (1996, Example 9.7.1) showed that the errors are serially correlated by the
Durbin-Watson test, and that the errors obey a first-order AR model. The second
dataset given in Bryant and Smith (1995) pertains to spot prices of natural gas in
Louisiana and Oklahoma from January 1988 to October 1991. The value of n is
46. They described that the spot price for Louisiana natural gas was known on or
before the first day of trading on the Oklahoma market, and the Oklahoma spot
price typically ran about 85% of the Louisiana spot price, even though seasonal
variations existed in these two markets. The following regression model,

yt = β0 + β1xt + εt, t = 1, · · · , 46,

was used to fit this dataset by Wei (2006, Example 15.1), where yt and xt denote
the spot prices for Oklahoma and Louisiana, respectively. The OLS predictor is

ŷt,OLS = 0.12 + 0.8xt. (40)

Wei (2006, Example 15.1) showed that the errors follow a first-order AR model
with autoregressive conditionally heteroscedastic (ARCH) disturbances. These
findings from Fuller (1996, Example 9.7.1) for the first dataset and from Wei
(2006, Example 15.1) for the second one that the errors are serially correlated
allow us to apply the proposed estimator to these two datasets. In Table 5, values
of ASPE show that the CGLS predictor produces the smallest prediction error
among the predictors considered so far in each of the datasets. From Sections 4.1
to 4.3, results reveal that the CGLS method can be a good alternative for both
estimation and prediction.

Table 5: Values of the ASPE for the OLS and four GLS predictors

ASPE

Annual consumption of Spot prices of
spirits dataset natural gas dataset

OLS 0.3506 19.3710
SGLS 0.3332 10.1860

TGLSB(k0) 0.2947(24) 12.9870(37)
TGLSP(k1) 0.3055( 1) 12.9870( 1)
CGLS(k∗) 0.2633( 1) 7.0244(17)

5. Conclusions

In this article, we develop a method for estimating regression models with
time series errors. The proposed method evades three common problems with
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this research topic. The first one is that the unobservable errors are estimated
by the least squares residuals, which allows the proposed method to be used
in practice. The second one is that a reduction in the number of parameters
needed to calculate the inverse of the error covariance matrix is achieved. This
enhances estimation reliability. The third one is that the proposed inverse co-
variance matrix estimator retains positive definiteness. This study establishes the
convergence for the proposed estimator of the inverse covariance matrix and the
asymptotic normality of the Cholesky-based generalized least squares estimator.
Both the simulation study and real data analysis illustrate the outperformance
of the proposed matrix estimator and its corresponding GLS estimator.

Appendix

Proof of Lemma 1. We begin by proving (16). It is easy to see that O1,n ⊆
{‖R̂(kn)−Σkn‖ > πfmin}. This, together with (14), Chebyshev’s inequality, and
the following result that E(‖R̂(kn) − Σkn‖2) = o(1), finishes the proof of (16).
By an argument used in the proof of Lemma 2 of Ing and Wei (2003), one obtains

E
(
‖R̂(kn)−Σkn‖2

)
≤

kn∑
i=1

kn∑
j=1

E
(
(γ̂i,j − γi−j)2

)
≤ C

(
k2n
Nn

)
, (A.1)

where γi−j denotes the (i, j)th element of Σkn . Thus, (16) is proven. To show
(17), we start by noting that

E
 n−1∑
t=kn

(ε̂t−iε̂t−j − εt−iεt−j)

21/2

≤
∥∥∥∥
(

1

n

n∑
t=1

xtx
>
t

)−1 ∥∥∥∥
E

(∥∥∥∥ 1

n1/2

n∑
t=1

xtεt

∥∥∥∥4
)
E

∥∥∥∥ 1

n1/2

n−1∑
t=kn

xt−iεt−j

∥∥∥∥4


1/4

+

∥∥∥∥
(

1

n

n∑
t=1

xtx
>
t

)−1 ∥∥∥∥
E

(∥∥∥∥ 1

n1/2

n∑
t=1

xtεt

∥∥∥∥4
)
E

∥∥∥∥ 1

n1/2

n−1∑
t=kn

xt−jεt−i

∥∥∥∥4


1/4

+

∥∥∥∥
(

1

n

n∑
t=1

xtx
>
t

)−1 ∥∥∥∥2∥∥∥∥ 1

n

n−1∑
t=kn

xt−ix
>
t−j

∥∥∥∥
{
E

(∥∥∥∥ 1

n1/2

n∑
t=1

xtεt

∥∥∥∥4
)}1/2

, (A.2)

for 0 ≤ i, j < kn. This follows from Minkowski’s and Hölder’s inequalities. By
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Jensen’s inequality, Lemma 2 of Wei (1987), and
∑∞

i=1 |bi| <∞, one obtains

E

(∥∥∥∥ 1

n1/2

n∑
t=1

xtεt

∥∥∥∥4
)
≤ p

p∑
i=1

1

n2
E

(
n∑
t=1

xt,iεt

)4

≤ C 1

n2

 n∑
t=1

 ∞∑
j=0

bj

22

< C.

Combining this with (A.2) and (12) yields

E

 n−1∑
t=kn

(ε̂t−iε̂t−j − εt−iεt−j)

2

= O(1), 0 ≤ i, j < kn, (A.3)

which implies that the following result holds true:

E
(
‖R̂(kn, ε̂n)− R̂(kn)‖2

)
≤ C

(
kn
Nn

)2

. (A.4)

It is easy to see that O2,n ⊆
{
‖R̂(kn, ε̂n)− R̂(kn)‖ > πfmin/2

}
. This, together

with Chebyshev’s inequality and (A.4), yields

P (O2,n) = o(1). (A.5)

Then, (17) is an immediate consequence of (16) and (A.5).
To prove (18), we first note that for any M > 0,

P

(
n1/3 max

1≤j≤l
|γ̂i,j − γi−j | > M

)
≤

l∑
j=1

P
(
n1/3|γ̂i,j − γi−j | > M

)
= o(1), l = 1, · · · , kn,

by Chebyshev’s inequality and an argument used in the proof of Lemma 2 of Ing
and Wei (2003). Then, it implies that

max
1≤l≤kn

‖R̂(l)−Σl‖1 = max
1≤l≤kn

l∑
i=1

max
1≤j≤l

|γ̂i,j − γi−j | = Op

(
kn

n1/3

)
. (A.6)

In addition, since ‖D−1(n)‖1 < 1/σ2 and (28), ‖Σ−1n ‖1 = O(1). Then, the
following result is true:

max
1≤l≤kn

‖Σ−1l ‖1 = O(1). (A.7)

Combining (A.7) with (A.6) yields max1≤l≤kn

(
‖Σ−1l ‖1‖R̂(l)−Σl‖1

)
= op(1).

This, together with (A.7), implies that

max
1≤l≤kn

‖R̂−1(l)‖1IOc
1,n
≤
{

1− max
1≤l≤kn

(
‖Σ−1l ‖1‖R̂(l)−Σl‖1

)}−1
max

1≤l≤kn
‖Σ−1l ‖1

= Op(1).
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Thus, (18) is proven.
Next, to show (19), we start by observing that

max
1≤l≤kn

‖R̂(l, ε̂n)− R̂(l)‖1 ≤ max
0≤j≤kn−1

kn−1∑
i=0

1

Nn

∣∣∣∣ n−1∑
t=kn

(ε̂t−iε̂t−j − εt−iεt−j)
∣∣∣∣. (A.8)

By Chebyshev’s inequality and (A.3), it holds true that for any M > 0,

P

 max
0≤j≤kn−1

n−1/4
∣∣∣∣ n−1∑
t=kn

(ε̂t−iε̂t−j − εt−iεt−j)
∣∣∣∣ > M


≤

kn−1∑
j=0

P

n−1/4∣∣∣∣ n−1∑
t=kn

(ε̂t−iε̂t−j − εt−iεt−j)
∣∣∣∣ > M


≤ C

(
kn

n1/2

)
= o(1). (A.9)

Combining (A.8) with (A.9) yields

max
1≤l≤kn

‖R̂(l, ε̂n)− R̂(l)‖1 ≤ C
(
kn

n3/4

)
.

Then,

max
1≤l≤kn

‖R̂−1(l)− R̂−1(l, ε̂n)‖1I(O1,n
⋃
O2,n)

c

≤
{

1− max
1≤l≤kn

(
‖R̂−1(l)‖1IOc

1,n
‖R̂(l, ε̂n)− R̂(l)‖1

)}−1
max

1≤l≤kn

(
‖R̂−1(l)‖21IOc

1,n
‖R̂(l, ε̂n)− R̂(l)‖1

)
= Op

(
kn

n3/4

)
.

Finally, to show (20), we use an argument similar to that used to prove (19), and
hence it suffices for (20) to show that

max
1≤l≤kn

‖R̂(l, ε̂n)− R̂(l)‖ = Op

(
kn
Nn

)
. (A.10)

By (A.3), one gets

E

(
max

1≤l≤kn
‖R̂(l, ε̂n)− R̂(l)‖2

)

≤
kn∑
i=1

kn∑
j=1

1

N2
n

E

 n−1∑
t=kn

(ε̂t+1−iε̂t+1−j − εt+1−iεt+1−j)

2

≤ C
(
kn
Nn

)2

.
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This, together with Chebyshev’s inequality, yields (A.10). Thus, (20) is proven.

Proof of Lemma 2. It follows from (15) and an argument used in the proof of
Lemma 2 of Ing and Wei (2003) that

E

 1

Nn

n−1∑
t=kn

εt+1−iεt+1

2

≤ C
(
γ2i + E

(
(γ̂i,0 − γi)2

))
= O(1), i = 1, · · · , kn.

(A.11)
By Chebyshev’s inequality and Jensen’s inequality, one has that for any δ > 0,
there exists M > δ−1/2 such that

P

 1

kn

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥
1

> M

 ≤ 1

M2kn

kn∑
i=1

E

 1

Nn

n−1∑
t=kn

εt+1−iεt+1

2

< δ.

Thus, the proof of (21) is complete. In addition, (A.11) also implies

E

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥2
 ≤ Ckn.

Combining this and Chebyshev’s inequality yields (22).

Proof of Lemma 3. Lemmas 3 and 4 of Ing and Wei (2003) yield that

E

∥∥∥∥ 1

N
1/2
n

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥2
 ≤ Cl (‖a− a(l)‖2R +O(1)

)
, 1 ≤ l ≤ kn, (A.12)

where a = (a1, a2, · · · )>. For an infinite-dimensional vector w = (w1, w2, · · · )>
with ‖w‖ <∞,

‖w‖2R = w>Rw = E

 ∞∑
j=1

wjεt+1−j

2

=

∫ π

−π
|
∞∑
j=1

wje
−ijλ|2fε(λ)dλ.

By (3) and (14), one obtains

‖a− a(l)‖2R ≤ E

∑
j>l

ajεt+1−j

2

≤ 2πfmax

∑
j>l

a2j <∞, 1 ≤ l ≤ kn. (A.13)
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It follows from (A.12), (A.13), and Chebyshev’s inequality that for any M > 0,

P

 max
1≤l≤kn

∥∥∥∥ 1

N
5/6
n

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥ > M

 ≤ kn∑
l=1

P

∥∥∥∥ 1

N
5/6
n

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥ > M


= o(1).

Thus, (23) holds true. The second statement of Lemma 3 can be shown by (23)
and some algebraic manipulations. The details are thus omitted.

Proof of Lemma 4. By Chebyshev’s inequality, Jensen’s inequality, and (A.3),
we can show that for any δ > 0, there exists M > δ−1/2 such that

P

 1

kn

∥∥∥∥ n−1∑
t=kn

(ε̂t(kn)ε̂t+1 − εt(kn)εt+1)

∥∥∥∥
1

> M


≤ 1

M2k2n
E

∥∥∥∥ n−1∑
t=kn

(ε̂t(kn)ε̂t+1 − εt(kn)εt+1)

∥∥∥∥2
1


≤ 1

M2kn

kn∑
i=1

E

 n−1∑
t=kn

(ε̂t−iε̂t+1 − εt−iεt+1)

2

< δ.

Then, (25) holds. Moreover, by an similar argument used in proving (25), the
proof of (26) is complete. The details are omitted.

We are now ready to prove (29), (30), (33) and (34).

Proof of (29). First we define

B(l, ε̂n) =
(
R̂−1(l)− R̂−1(l, ε̂n)

)
I(O1,n

⋃
O2,n)

c , l = 1, · · · , kn,

and

c(l, ε̂n) =
1

Nn

n−1∑
t=kn

(ε̂t(kn)ε̂t+1 − εt(kn)εt+1) , l = 1, · · · , kn,

where R̂(l), R̂(l, ε̂n), O1,n, and O2,n are as defined previously. Then, one can
write

â(l, ε̂n)− a(l) = B(l, ε̂n)

c(l, ε̂n) +
1

Nn

n−1∑
t=kn

εt(l)εt+1


−R̂−1(l)IOc

1,n

c(l, ε̂n) +
1

Nn

n−1∑
t=kn

εt(l)ηt+1,l

 .
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Thus, it follows from Lemmas 1-4 that

max
1≤l≤kn

‖â(l, ε̂n)− a(l)‖1

= max
1≤l≤kn

‖B(l, ε̂n)‖1

‖c(l, ε̂n)‖1 +

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(l)εt+1

∥∥∥∥
1


+ max

1≤l≤kn
‖R̂−1(l)IOc

1,n
‖1

‖c(l, ε̂n)‖1 + max
1≤l≤kn

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(l)ηt+1,l

∥∥∥∥
1


= Op

((
kn

n1/3

)2
)
.

Proof of (30). We begin the proof by noting that

‖Ĝkn(n, ε̂n)‖

≤
∣∣∣∣ 1

Nn

n−1∑
t=kn

(ε̂2t − E(ε21))

∣∣∣∣+ max
1≤j≤kn

∣∣∣∣ 1

Nn

n−1∑
t=kn

(η̂2t+1,j(ε̂n)− η̂2t+1,j)

∣∣∣∣
+ max

1≤j≤kn

∣∣∣∣ 1

Nn

n−1∑
t=kn

(η̂2t+1,j − η2t+1,j)

∣∣∣∣+ max
1≤j≤kn

∣∣∣∣ 1

Nn

n−1∑
t=kn

η2t+1,j − E(η2j+1,j)

∣∣∣∣
+ max
kn<j<n

∣∣E(η2kn+1,kn)− E(η2j+1,j)
∣∣ := I + II + III + IV + V, (A.14)

where η̂t+1,j = εt+1 + â>(j)εt(j) with

â(j) = −

 n−1∑
t=kn

εt(j)ε
>
t (j)

−1 n−1∑
t=kn

εt(j)εt+1.

(A.3) implies that

E

 1

Nn

n−1∑
t=kn

(ε̂2t+1 − ε2t+1)

2

≤ CN−2n . (A.15)

This, together with an argument used in the proof of Lemma 2 of Ing and Wei
(2003), yields that

E(I2) ≤ C

E
 1

Nn

n−1∑
t=kn

(ε̂2t − ε2t )

2

+ E

 1

Nn

n−1∑
t=kn

(ε2t − E(ε21))

2 ≤ CN−1n .
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Thus, by Markov’s inequality, one gets

I = Op(N
−1/2
n ). (A.16)

With some algebraic calculations, one has

II ≤
∣∣∣∣ 1

Nn

n−1∑
t=kn

(ε̂2t+1 − ε2t+1)

∣∣∣∣
+ max

1≤j≤kn

∣∣∣∣
 1

Nn

n−1∑
t=kn

ε̂t(j)ε̂t+1

> R̂−1(kn, ε̂n)IOc
2,n

 1

Nn

n−1∑
t=kn

ε̂t(j)ε̂t+1


−

 1

Nn

n−1∑
t=kn

εt(j)εt+1

> R̂−1(kn)IOc
1,n

 1

Nn

n−1∑
t=kn

εt(j)εt+1

∣∣∣∣
≤
∣∣∣∣ 1

Nn

n−1∑
t=kn

(ε̂2t+1 − ε2t+1)

∣∣∣∣+

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥2 max
1≤j≤kn

‖B(j, ε̂n)‖

+‖c(j, ε̂n)‖
(

max
1≤j≤kn

‖B(j, ε̂n)‖+ max
1≤j≤kn

‖R̂−1(j)‖IOc
1,n

)
‖c(j, ε̂n)‖+ 2

∥∥∥∥ 1

Nn

n−1∑
t=kn

εt(kn)εt+1

∥∥∥∥
 ,

where B(j, ε̂n) and c(j, ε̂n) are defined in the proof of (29). Then, it follows from
Lemmas 1, 2 and 4 and (A.15) that

II = Op

(
k2n
Nn

)
. (A.17)

To deal with III, we first note that

III ≤ C max
1≤j≤kn

∣∣∣∣∣
 1

Nn

n−1∑
t=kn

εt(j)ηt+1,j

> R̂−1(kn)IOc
1,n

 1

Nn

n−1∑
t=kn

εt(j)ηt+1,j

∣∣∣∣∣.
By Lemmas 1 and 3, one obtains

III = Op(N
−1/3
n ). (A.18)

To deal with IV, by Theorem 1 of Ing and Wei (2003), one shows that

E

∣∣∣∣ 1

Nn

n−1∑
t=kn

η2t+1,j − E(η2j+1,j)

∣∣∣∣2
 ≤ CN−1n , j = 1, · · · , kn.
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Combining this with Chebyshev’s inequality and kn = o(n1/3), one can assert
that for any δ > 0, there exists M > 0 such that

P

 max
1≤j≤kn

N1/3
n

∣∣∣∣ 1

Nn

n−1∑
t=kn

η2t+1,j − E(η2j+1,j)

∣∣∣∣ > M

 = o(1).

Thus, the following result holds true:

IV = Op

(
N−1/3n

)
. (A.19)

Finally, to deal with V, the fact that ‖a(j) − a‖R ≤ ‖a(kn) − a‖R, j > kn and
some algebraic manipulations imply that

V = Op (‖a(kn)− a‖R) . (A.20)

Combining (A.14) with (A.16)-(A.18), (A.19), and (A.20) gives (30).

Proof of (33). One writes

Fn(β̂CGLS(kn, ε̂n)− β̂GLS) = (L1 +L2)
−1L3 − (L1 +L2)

−1L1L
−1
2 L4, (A.21)

where

L1 = F−1n X>n

(
Σ̂−1n (kn, ε̂n)−Σ−1n

)
XnF

−1
n , L2 = F−1n X>n Σ−1n XnF

−1
n ,

L3 = F−1n X>n

(
Σ̂−1n (kn, ε̂n)−Σ−1n

)
εn, and L4 = F−1n X>n Σ−1n εn.

By (12) and the existence of Σ̂−1kn (n, ε̂n), one shows that

‖ (L1 +L2)
−1 ‖ = (λmin(L1 +L2))

−1 < C. (A.22)

By an argument similar to that used in the previous statement, (12) and (15)
yield

‖L−12 ‖ < C. (A.23)

In addition, it follows from (3), (12), Theorem 1, and kn = o(n1/3) that

‖L1‖ ≤
∥∥Σ̂−1n (kn, ε̂n)−Σ−1n

∥∥∥∥∥∥ 1

n
Sn

∥∥∥∥ ‖n1/2F−1n ‖2 = op(1). (A.24)

In view of (A.21)-(A.24), it suffices for (33) to show that

‖L3‖ = op(1), (A.25)
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and
‖L4‖ = Op(1). (A.26)

To prove (A.25), we first let F−1n X>n =
(
x∗1, x

∗
2, · · · , x∗p

)>
. Then, one has

‖L3‖2 =

p∑
i=1

(
x∗>i

(
Σ̂−1n (kn, ε̂n)−R−1(n)

)
εn

)2
≤ p‖Σ̂−1n (kn, ε̂n)−Σ−1n ‖2‖εnε>n ‖ max

1≤i≤p
‖x∗i ‖2.

This, together with (15), Theorem 1, and the fact that ‖x∗i ‖ = 1, 1 ≤ i ≤ p gives
(A.25). By an argument similar to that used to prove (A.25), the proof of (A.26)
is complete. The details are thus omitted.

Proof of (34). Define en=F−1n X>n Σ−1n εn. Then, one has

Fn(β̂GLS − β) =
(
F−1n X>n Σ−1n XnF

−1
n

)−1
en, (A.27)

This proof can be completed by combining (A.27) and the following two results:

lim
n→∞

F−1n X>Σ−1n XF
−1
n =

1

2π

∫ π

−π

1

fε(λ)
dM(λ), (A.28)

and

en
d−→ N

(
0,

1

2π

∫ π

−π

1

fε(λ)
dM(λ)

)
as n→∞. (A.29)

(A.28) follows from Theorem 10.2.7 of Anderson (1994). To show (A.29), we
define en,m = F−1n X>n Σ−1n εn,m with εn,m denoted by

εn,m =

 m∑
j=0

bjηn−j ,

m∑
j=0

bjηn−1−j , · · · ,
m∑
j=0

bjη1−j

> ,
where m is a positive integer dependent on n and increasing to infinity. Note
that εn,m can be decomposed as εn,m = Γn,mηn(n+m), where

Γn,m =



1 b1 b2 · · · bm 0 · · · 0 · · · 0
0 1 b1 · · · bm−1 bm 0 · · · 0 · · · 0
0 0 1 · · · bm−2 bm−1 bm · · · 0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

... · · ·
...

0 0 0 · · · 1 · · · bm−2 bm−1 bm · · · 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 · · · 1 · · · bm−2 bm−1 bm


,
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and ηn(n + m) =
(
ηn, ηn−1, · · · , η0, η−1, · · · , η−(m−1)

)>
. If we can show that

for each m,

en,m
d−→ e∗m as n→∞, (A.30)

and

e∗m
d−→ N

(
0,

1

2π

∫ π

−π

1

fε(λ)
dM(λ)

)
as m→∞. (A.31)

In addition, for any δ > 0, the following convergence result is proven:

lim
m→∞

lim sup
n→∞

P (‖en,m − en‖ ≥ δ) = 0. (A.32)

Then, Theorem 4.2 of Billingsley (1968) enables us to conclude that (A.29) holds
true.

To show (A.30) and (A.31), we defineX>n Σ−1n Γn,m = (un, un−1, · · · , u0, · · · ,
u−(m−1)

)
and let α = (α1, · · · , αp)> satisfy ‖α‖ = 1. Then, one has

α>en,m = α>F−1n

n∑
j=−(m−1)

ujηj := σ

 n∑
j=−(m−1)

(
α>F−1n uj

)21/2
n∑

j=−(m−1)

Wj ,

where

Wj =
α>F−1n uj

σ

(
n∑

j=−(m−1)

(
α>F−1n uj

)2)1/2
ηj .

It follows from (12), (15) and
∑∞

i=1 |bi| <∞ that

0 <
n∑

j=−(m−1)

(
α>F−1n uj

)2
≤
(
‖XF−1n ‖ ‖Σ−1n ‖ ‖Γ>n,m‖

)2
< C. (A.33)

It is not difficult to see that {Wj} is a sequence of independent random vari-
ables with E(Wj) = 0 and

∑n
j=−(m−1) V ar (Wj) = 1. Define Fj and F ∗j as the

distribution functions of ηj and Wj . Then, for any δ>0,

n∑
j=−(m−1)

∫
|w|>δ

w2dF ∗j (w) ≤ 1

σ2
sup
j

∫
|η|>δη∗n

η2dFj(η),

where η∗n = σ(
n∑

j=−(m−1)
(α>F−1n uj)

2)1/2/ sup
j
|α>F−1n uj |. Letting A(n)Γn,m =
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υ∗i, j

}
, one has

sup
j
|α>F−1n uj | ≤

1

σ2
sup
j

∣∣∣∣ p∑
m=1

αm√∑n
i=1 x

2
i,m

n∑
i=1

υ∗n−i+1,j

di

i−1∑
l=0

ai−1,lxi−l,m

∣∣∣∣
≤ C max

16m6p

max
16l6n

|xl,m|√∑n
i=1 x

2
i,m

sup
0≤i<n

i∑
l=0

|ai,l| sup
j

n∑
i=1

|υ∗i,j |, (A.34)

where di is the ith component on the main diagonal of Dn. By (C1), Lemma 4
of Berk (1974), (3), (28), and

∑∞
i=1 |bi| <∞, one obtains

lim
n→∞

max
16m6p

max
16l6n

|xl,m|√∑n
i=1 x

2
i,m

= 0, sup
0≤i<n

i∑
l=0

|ai,l| <∞, (A.35)

and

sup
j

n∑
i=1

|υ∗i,j | ≤ ‖A(n)‖1‖Γn,m‖1 ≤ ∞. (A.36)

Then, it follows from (A.33)-(A.36) that limn→∞ η
∗
n = ∞. By the Lindeberg-

Feller central limit theorem, one gets
∑n

j=−(m−1)Wj
d−→ N (0, 1) as n → ∞ for

each m. Thus, α>en,m has a limiting normal distribution with zero mean and
variance

lim
n→∞

α>E
(
en,me

>
n,m

)
α = σ2 lim

n→∞

n∑
j=−(m−1)

(
α>F−1n uj

)2
<∞.

Note that limn→∞E
(
εn,mε

>
n,m

)
= Σn. This, together with (A.28), implies that

lim
m→∞

lim
n→∞

E
(
en,me

>
n,m

)
= lim

n→∞
lim
m→∞

E
(
en,me

>
n,m

)
= lim

n→∞
F−1n X>n Σ−1n XnF

−1
n

=
1

2π

∫ π

−π

1

fε(λ)
dM(λ).

Consequently, the proofs of (A.30) and (A.31) are complete.
To show (A.32), Chebyshev’s inequality tells us that for δ > 0,

P (‖en,m − en‖ ≥ δ) ≤
E
(
‖en,m − en‖2

)
δ2

. (A.37)

Since (A.28) and (A.37) imply that as m and n increase to infinity,

E
(
‖en,m − en‖2

)
= tr

{
F−1n X>n Σ−1n E

(
(εn − εn,m) (εn − εn,m)>

)
Σ−1n XnF

−1
n

}
= tr

{
F−1n X>n Σ−1n

(
Σn − E

(
εn,mε

>
n,m

))
Σ−1n XnF

−1
n

}
= o(1),

the proof is complete.
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