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Abstract: A randomly truncated sample appears when the independent vari-
ables T and L are observable if L < T . The truncated version Kaplan-Meier
estimator is known to be the standard estimation method for the marginal
distribution of T or L. The inverse probability weighted (IPW) estimator
was suggested as an alternative and its agreement to the truncated version
Kaplan-Meier estimator has been proved. This paper centers on the weak
convergence of IPW estimators and variance decomposition. The paper
shows that the asymptotic variance of an IPW estimator can be decom-
posed into two sources. The variation for the IPW estimator using known
weight functions is the primary source, and the variation due to estimated
weights should be included as well. Variance decomposition establishes the
connection between a truncated sample and a biased sample with know prob-
abilities of selection. A simulation study was conducted to investigate the
practical performance of the proposed variance estimators, as well as the
relative magnitude of two sources of variation for various truncation rates.
A blood transfusion data set is analyzed to illustrate the nonparametric
inference discussed in the paper.

Key words: Inverse probability weighted estimator, Markov processes, ran-
domly truncated sample.

1. Introduction

A truncated sample contains realizations of the random variables (L, T ) sub-
ject to the constraint L < T . Truncation refers to the unobservability of the
random variables when L > T . Two types of truncation exist in a truncated
sample, that is, T is left truncated by L and L is right truncated by T . Indepen-
dence between T and L needs to be carefully defined. Tsai (1990) clarified that,
for a truncated sample, independence between T and L is unidentifiable in the
unobserved quadrant L > T . Independence in the observed quadrant L < T is
defined as quasi-independence. Truncation under quasi-independence is known as
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random truncation, and the sample is particularly called as a randomly truncated
sample.

A fundamental problem with a randomly truncated sample is to estimate the
marginal distributions of L and T . Let F and G be the distribution function of T
and L, respectively. The standard estimation method for F andG is the truncated
version Kaplan-Meier estimators (Kaplan and Meier, 1958; Lynden-Bell, 1971;
Woodroofe, 1985). These estimators were shown to be NPMLE (Keiding and
Gill, 1990), and their asymptotic properties were studied by Woodroofe (1985),
and Wang, Jewell and Tsai (1986) among others.

The inverse probability weighting is a common concept in survey statistics
(Horvitz and Thompson, 1952). As a feature of survey design, subjects in the
population have unequal probabilities of selection. The standard adjustment is to
weight the individual measurement by the reciprocal of the probability of selec-
tion. For a sample with known sampling rule, Vardi (1985, Section 8) suggested
an inverse probability weighted (IPW) form for estimating the distribution func-
tion of a random variable. Vardi pointed out that the proposed estimator is
NPMLE and described its limiting distribution. Wang (1989) studied the IPW
estimator for a randomly truncated sample, with additional knowledge of the
parametric distribution of one variable. The reciprocal of a probability based on
the known parametric distribution was used as the weight in the IPW estima-
tor. Wang demonstrated in a simulation study that the IPW estimator using the
knowledge of the given parametric distribution is dramatically more efficient than
the truncated version Kaplan-Meier estimator. In Wang’s paper, the asymptotic
variance of the IPW estimator was decomposed into the variation for the IPW es-
timator using known weight functions, which agrees with the variation of Vardi’s
IPW estimator (1985), and the variation due to estimation of the weight func-
tions. In another paper, Wang (1991) studied the asymptotic properties of the
nonparametric IPW estimator based on a censored and truncated sample. Shen
(2003) elucidated the equivalence between the IPW estimators and the truncated
version Kaplan-Meier estimators for a randomly truncated sample in which both
distributions are completely unspecified.

This paper emphasizes on the weak convergence result of the IPW estimators
for a randomly truncated sample, based on Keiding and Gill’s Markov process
model (1990). The previous study conducted by Wang (1991) has investigated
the asymptotic properties of the IPW estimator. There are several differences
between the current study and Wang’s study. First, Keiding and Gill’s framework
offers a convenient path for analytically describing the asymptotic variances of
the IPW estimators, as well as discovering a connection to Vardi’s result (1985).
Second, the variation process of a martingale was employed in this study to
derive the asymptotic distributions of the IPW estimators. Furthermore, the
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backwards counting process and martingale process were formally defined so that
it is convenient to investigate the inference of the IPW estimator of F .

The Markov process model is presented in this paper, followed by an exten-
sion to the nonparametric inference of the IPW estimators. One goal of the paper
is to investigate the practical performance of the variance estimators, as well as
variance decomposition. The simulation study result shows essentially the same
performance between the regular variance estimator derived from a truncated
version Kaplan-Meier estimator, and the variance estimator for an IPW estima-
tor. It can be further concluded that, for an IPW estimator, the variation due to
estimation of weights increases for a higher rate of truncation.

The remainder of the paper is organized as follows. Section 2 describes Kei-
ding and Gill’s representation of the truncation model, as well as the truncated
version Kaplan-Meier estimators. Section 3 provides the weak convergence result
of the IPW estimators. The result of the simulation study is presented in Section
4. A blood transfusion data set is analyzed in Section 5. The concluding remarks
are given in Section 6.

2. Truncation Model and Kaplan-Meier Estimators

Suppose that a truncated sample contains realizations of (L, T ) with the con-
straint L < T , and quasi-independence is assumed. Let G and F be the dis-
tribution functions of L and T , and let S = 1 − F . We assume that F and G
are continuous functions on [0,∞). The truncated sample can be summarized as
(L̃i, T̃i), for i = 1, · · · , n, and L̃i < T̃i.

Keiding and Gill (1990) used a Markov process to describe random truncation
models. Some details of Keiding and Gill’s work are provided in this section. The
conditional truncation model given L < T can be described by three states of a
process U(x),

�0 �1 2
λ1(x) λ2(x)

where U(x) = 0 when x < L ∧ T , U(x) = 1 when L ≤ x < T and U(x) = 2
when L < T ≤ x. λ1(x) and λ2(x) are respectively the intensities of transition
from State 0 to 1, and from State 1 to 2, given L < T . It can be further
recognized that λ2(x) coincides with the intensity of T , φ(x) = dF (x)/{1−F (x)}.
The cumulative intensities are given by Λ1(x) =

∫ x
0 λ1(u)du, Λ2(x) = Φ(x) =∫ x

0 λ2(u)du =
∫ x
0 φ(u)du.

Define the counting processes, NT,i(x) = I(L̃i ≤ T̃i ≤ x), NL,i(x) = I(L̃i ≤
x), Yi(x) = I(L̃i ≤ x ≤ T̃i). Let NT (x) =

∑n
i=1NT,i(x), NL(x) =

∑n
i=1NL,i(x)
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and Y (x) =
∑n

i=1 Yi(x). Λ̂1(x) and Φ̂(x) are respectively the Nelson-Aalen esti-
mators of Λ1(x) and Φ(x), with the explicit expressions

Λ̂1(x) =

∫ x

0

dNL(u)∑n
i=1 I(L̃i ≥ u)

and Λ̂2(x) = Φ̂(x) =

∫ x

0

dNT (u)

Y (u)
.

Λ̂1(x)−Λ1(x) and Φ̂(x)−Φ(x) are square integrable martingales and orthogonal
between each other. It is known that

√
n(Φ̂(x)−Φ(x)) converges in distribution

to a Gaussian process with variation process
∫ x
0 {φ(u)du/y(u)}, where y(u) =

E[n−1Y (u)].

The product-limit estimator of S has the form

Ŝ(x) = 1− F̂ (x) =
∏

u∈[0,x]

(
1− dΦ̂(u)

)
=

∏
u∈[0,x]

(
1− dNT (u)

Y (u)

)
. (2.1)

It is the standard result that [Ŝ(x)/S(x)− 1] relates to a square integrable mar-
tingale. The variation processes of a martingale lead to the variance estimators of
Ŝ(x) (Andersen et al., 1993). The predictable variation process yields the famous
Greenwood’s formula, while the optional variation process yields the common
variance estimator,

σ̂2L,KM(x) = Ŝ(x)2
∫ x

0

dNT (u)

Y (u)2
. (2.2)

Regarding estimation of the distribution function of L, the standard method
is to define the reverse-time hazard, or retro-hazard, γ∗(x) = dG(x)/G(x). The
retro-hazard was introduced to reflect the hazard rate of the transformed variable
Lτ = τ −L, which is left truncated by Tτ = τ −T . More specifically, γ∗(x) agrees
with the hazard rate of Lτ at τ − x (Lagakos et al., 1988, Section 3). Here τ is
a large constant and, practically, one can choose a value greater than the largest
observed value of the truncated sample. Keiding and Gill considered the process
using the reversed time,

�0 �1 2
λ∗
1(x) λ∗

2(x)

λ∗1(x) and λ∗2(x) are respectively the intensity processes of transitions from State 1
to 0, and from State 2 to 1, given L < T . It should be noted that λ∗1(x) agrees with
γ∗(x). Let Λ∗1(x) = Γ∗(x) =

∫ x
∞ λ

∗
1(u)du =

∫ x
∞ γ

∗(u)du and Λ∗2(x) =
∫ x
∞ λ

∗
2(u)du.

Both Γ∗1(x) and Λ∗2(x) are defined as decreasing functions so that they can be
treated as the cumulative hazard functions of the transformed variables. Define
the counting processes N∗L,i(x) = I(L̃i ≥ x) and N∗T,i(x) = I(T̃i ≥ x). Let
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N∗L(x) =
∑n

i=1N
∗
L,i(x) and N∗T (x) =

∑n
i=1N

∗
T,i(x). The Nelson-Aalen estimators

of the cumulative retro-hazards are given by

Λ̂∗1(x) = Γ̂∗(x) =

∫ x

∞

dN∗L(u)

Y (u)
, Λ̂∗2(x) =

∫ x

∞

dN∗T (u)∑n
i=1 I(T̃i ≤ u)

.

Γ̂∗(x) − Γ∗(x) and Λ̂∗2(x) − Λ∗2(x) are orthogonal square integrable martingales.√
n(Γ̂∗(x)−Γ∗(x)) converges in distribution to a Gaussian process with variation

process
∫ x
∞{γ∗(u)du/y(u)}. The product-limit estimator of G(x) is

Ĝ(x) =
∏

u∈(x,∞)

(
1− d

∑n
i=1 I(L̃i ≤ u)

Y (u)

)
. (2.3)

Similarly, Ĝ(x)/G(x)− 1 can be shown to be a square integrable martingale, and
variation processes of a martingale lead to the variance estimators. The common
variance estimator for Ĝ(x) is given by

σ̂2L,KM(x) = Ĝ(x)2
∫ x

∞

dN∗L(u)

Y (u)2
. (2.4)

3. IPW Estimators

Let H(x, y) be the joint distribution function of L and T given L < T , and
let β = P (L < T ) denote the un-truncated probability. Then

H(x, y) = P (T ≤ x, L ≤ y|L < T ) = β

∫ x

0
G(s ∧ y)dF (s).

Let G∗(x) and F ∗(x) be respectively the marginal distributions of L and T , given
L < T . G∗(x) and F ∗(x) are given by

G∗(x) = P (L∗ ≤ x) = H(∞, x) = β−1
∫ x

0
[1− F (s−)]dG(s) (3.1)

and

F ∗(x) = P (T ∗ ≤ x) = H(x,∞) = β−1
∫ x

0
G(s)dF (s). (3.2)

The rearrangement of the above equations leads to

G(x) = β

∫ x

0
[1− F (s−)]−1dG∗(s) (3.3)

and
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F (x) = β

∫ x

0
G(s)−1dF ∗(s). (3.4)

(3.1)-(3.4) suggest several equivalent forms for β,

β =

∫ ∞
0

G(s)dF (s) =

∫ ∞
0

[1− F (s−)]dG(s)

=

[∫ ∞
0

[1− F (s−)]−1dG∗(s)

]−1
=

[∫ ∞
0

G(s)−1dF ∗(s)

]−1
.

One can use the product-limit estimators, 1 − F̂ (x) and Ĝ(x), for the functions
1− F (x) and G(x). F ∗(x) and G∗(x) can be directly estimated by the empirical
estimators, F̂ ∗(x) = n−1

∑n
i=1 I(T̃i ≤ x) and Ĝ∗(x) = n−1

∑n
i=1 I(L̃i ≤ x).

There will be four plug-in estimators for β,

β̂1 =

∫ ∞
0

Ĝ(s)dF̂ (s),

β̂2 =

∫ ∞
0

[1− F̂ (s−)]dĜ(s),

β̂3 =

[∫ ∞
0

[1− F̂ (s−)]−1dĜ∗(s)

]−1
,

β̂4 =

[∫ ∞
0

Ĝ(s)−1dF̂ ∗(s)

]−1
.

Note that all four estimators are evaluated the same. A formal proof of the
equivalence between β̂3 and β̂4 can be found in Shen (2005), in a general context
in which both truncation and censoring are present. The estimator β̂1 is more
frequently used and its asymptotic properties were studied by among others Chao
(1987) and He and Yang (1998). The asymptotic distribution of β̂3 was studied
by Keiding and Gill (1990).

In (3.3) and (3.4), using the product-limit estimators for G,F and the empir-
ical estimators for G∗, F ∗, one will have the IPW estimators of G and F .

ĜIPW(x) = β̂3

∫ x

0
[1− F̂ (u−)]−1dĜ∗(u) = β̂3 n

−1
n∑
i=1

1

1− F̂ (L̃i−)
I(L̃i ≤ x),

β̂3 =

[∫ ∞
0

[1− F̂ (u−)]−1dĜ∗(u)

]−1
=

[
n−1

n∑
i=1

1

1− F̂ (L̃i−)

]−1
,

F̂ IPW(x) = β̂4

∫ x

0
Ĝ(u)−1dF̂ ∗(u) = β̂4 n

−1
n∑
i=1

1

Ĝ(T̃i)
I(T̃i ≤ x),

β̂4 =

[∫ ∞
0

Ĝ(u)−1dF̂ ∗(u)

]−1
=

[
n−1

n∑
i=1

1

Ĝ(T̃i)

]−1
.
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Regarding the distribution of T , it is more convenient to investigate the IPW
estimator of S = 1− F . Define S∗(x) = 1− F ∗(x) and its empirical estimator is
given by Ŝ∗(x) = n−1

∑n
i=1 I(T̃i > x). Then the IPW estimator of S is

ŜIPW(x) = 1− F̂ IPW(x) = β̂4

∫ x

∞
Ĝ(u)−1dŜ∗(u) = β̂4 n

−1
n∑
i=1

1

Ĝ(T̃i)
I(T̃i > x),

β̂4 =

[∫ 0

∞
Ĝ(u)−1dŜ∗(u)

]−1
=

[
n−1

n∑
i=1

1

Ĝ(T̃i)

]−1
.

Shen (2003) showed that the IPW estimators are essentially alternative ex-
pressions of the Kaplan-Meier estimators given in (2.1) and (2.3). Vardi (1985)
studied distribution estimation based on s samples subject to s sets of sampling
rule. When s = 1, the problem reduces to distribution estimation on a biased
sample with known probabilities of selection. Vardi suggested the inverse proba-
bility weighted estimator and presented the asymptotic properties of the estima-
tor (Section 8). Marginal distribution estimation based on a truncation model
has some similarities to the problem studied by Vardi. In a truncated sample, the
observed values (L̃1, · · · , L̃n) (or (T̃1, · · · , T̃n)) can be viewed as a biased sample
with unknown, but estimable, probabilities of selection. It will be shown in the
remainder of this section and the appendices that the asymptotic variance of each
IPW estimator contains two components: one component is identical to Vardi’s
variance formula for a biased sample with known probabilities of selection, and
the other component is the variation due to estimated weights.

The following conditions are required for weak convergence properties of the
IPW estimators,∫ ∞

0
[1− F (u−)]−1dG(u) <∞,

∫ ∞
0

G(u)−1dF (u) <∞.

The weak convergence results are presented in this section and the derivations
are elaborated in Appendices A and B. The IPW estimator

√
n[ĜIPW(x)−G(x)]

converges in distribution to a zero-mean normal random variable with variance

β

∫ x

0
[1− F (u−)]−1dG(u) + βG(x)2

∫ ∞
0

[1− F (u−)]−1dG(u)

− 2βG(x)

∫ x

0
[1− F (u−)]−1dG(u) +

∫ x

0
G(u)2(1−G(x))2

φ(u)du

y(u)

+

∫ ∞
x

G(x)2(1−G(u))2
φ(u)du

y(u)
.

The expression of the first row agrees with Vardi’s result for a biased sample
with known probability of selection. The remainder is shown in Appendix A
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to reflect the variation caused by estimation of weights. The IPW estimator√
n[ŜIPW(x) − S(x)] converges in distribution to a zero-mean normal random

variable with variance

β

∫ x

∞
G(u)−1dS(u) + βS(x)2

∫ 0

∞
G(u)−1dS(u)− 2βS(x)

∫ x

∞
G(u)−1dS(u)

+

∫ x

∞
S(u)2[1− S(x)]2

γ∗(u)du

y(u)
+

∫ 0

x
S(x)2[1− S(u)]2

γ∗(u)du

y(u)
.

The variance of ĜIPW(x) can be estimated by

σ̂2L(x) = σ̂2L,1(x) + σ̂2L,2(x), (3.5)

where

σ̂2L,1(x) = n−1
{
β̂3

∫ x

0
[1− F̂ (u)]−1dĜ(u) + β̂3Ĝ(x)2

∫ ∞
0

[1− F̂ (u)]−1dĜ(u)

− 2β̂3Ĝ(x)

∫ x

0
[1− F̂ (u)]−1dĜ(u)

}
, (3.6)

σ̂2L,2(x) =

∫ x

0
Ĝ(u)2(Ĝ(x)− 1)2

dNT (u)

Y (u)2
+

∫ ∞
x

Ĝ(x)2(Ĝ(u)− 1)2
dNT (u)

Y (u)2
. (3.7)

Similarly, the variance of ŜIPW(x) can be estimated by

σ̂2T (x) = σ̂2T,1(x) + σ̂2T,2(x), (3.8)

σ̂2T,1(x) = n−1
{
β̂4

∫ x

∞
Ĝ(u)−1dŜ(u) + βŜ(x)2

∫ 0

∞
Ĝ(u)−1dŜ(u)

− 2β̂4Ŝ(x)

∫ x

∞
Ĝ(u)−1dŜ(u)

}
, (3.9)

σ̂2T,2(x) =

∫ x

∞
Ŝ(u)2[1− Ŝ(x)]2

dN∗L(u)

Y (u)2
+

∫ 0

x
Ŝ(x)2[1− Ŝ(u)]2

dN∗L(u)

Y (u)2
. (3.10)

4. Simulation Study

The goal of the simulation study is to investigate the practical performances
of the variance estimators, as well as to assess the relative proportion of two
sources of variation. Two sets of simulation study were conducted separately for
the variance estimators given in Formulas (3.5) and (3.8). In both sets of study,
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the underlying distributions of L and T are respectively uniform and shifted
exponential distributions, with explicit formulas given by

G(x) = x/c, 0 ≤ x ≤ c,

and

F (x) = 1− eλ(x−u), x > u, u > 0.

It is known that only conditional distribution functions can be estimated based
on a truncated sample. Let a = min{L̃1, · · · , L̃n} and b = max{T̃1, · · · , T̃n}.
Practically, the conditional distributions Gb(x) = P (L ≤ x|L ≤ b) and Fa(x) =
P (T ≤ x|T ≥ a) are estimable. If the interior support of G has an upper limit
c and c < b, then G(x) = Gb(x). Similarly, if the lower limit of the support of
F is greater than a, F (x) = Fa(x). Let a(i), b(i) be respectively the smallest L̃
values and the largest T̃ values for the ith replicate. By choosing the uniform
distribution for G, shifted exponential for F , and selecting appropriate parameter
values, we can guarantee that c < b(i) and d > a(i), ∀ i. Therefore, the evaluable
distribution functions will not vary across replicates and the simulation result
can be assessed using the true functions G and F .

The first set of the simulation study focused on estimation of G. Among the
settings generated in this category, G was fixed to be the uniform distribution on
the interval [0, 1]. F followed shifted exponential, F (x) = 1− exp{λ(x−u)}, x >
u, u > 0, where the values of λ and u were selected to yield the truncation rates
25% and 50%, respectively. The truncation rate is defined as (N−n)/N , where n
is the size of the truncated sample and N is the size of the population from which
the truncated sample is selected. Two levels of n, 200 and 400, were considered
in the simulation study, and a total of 1000 replicates were generated for each
setting. The estimation outcome was evaluated at four x values that yield 0.2,
0.4, 0.6, 0.8 in G(x). Let Ĝ(i)(x) be the Kaplan-Meier estimate of G(x) for
the ith sample, and note that the IPW estimate agrees with the Kaplan-Meier
estimate. Bias and sample variance are included in Table 1, and these quantities
were computed by

Bias = E[Ĝ(x)]−G(x), where E[Ĝ(x)] =
1

1000

1000∑
i=1

Ĝ(i)(x),

var[Ĝ(t)] =
1

1000− 1

1000∑
i=1

[
Ĝ(i)(x)− E[Ĝ(x)]

]2
.

In Table 1, columns with labels σ̂2L,KM, σ̂2L, σ̂
2
L,1, σ̂

2
L,2 are averages of indi-

vidual variance estimates across all replicates, using Formulas (2.2), (3.5)-(3.7),
respectively. Two components that make up σ̂2L are explicitly reported to reveal
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the relative magnitude between two sources of variation, while individual con-
tribution is further illustrated by the average percentage of σ̂2L,1/σ̂

2
L. The 95%

confidence intervals were computed for all the samples, using σ̂2L, and its major
component σ̂2L,1, respectively. The actual coverage rates are included in the last
two columns of Table 1.

Table 1: Simulation result for estimating the distribution function of L

n L% G(x) Bias var(Ĝ(x)) σ̂2
L,KM

(x) σ̂2
L(x) σ̂2

L,1(x) σ̂2
L,2(x)

σ̂2
L,1(x)/σ̂

2
L(x) σ̂2

L(x) σ̂2
L,1(x)

(%) coverage coverage

200 25 0.2 0.002 0.77 0.76 0.77 0.68 0.09 88 0.944 0.926

0.4 0.002 1.32 1.31 1.32 1.16 0.15 88 0.937 0.920

0.6 0.001 1.50 1.43 1.44 1.32 0.13 91 0.941 0.930

0.8 0.002 1.07 1.03 1.04 0.99 0.05 95 0.934 0.931

50 0.2 -0.000 0.75 0.80 0.81 0.60 0.21 74 0.950 0.907

0.4 -0.002 1.62 1.69 1.70 1.29 0.41 76 0.949 0.912

0.6 -0.002 2.07 2.16 2.18 1.78 0.40 82 0.953 0.926

0.8 -0.002 1.72 1.77 1.79 1.61 0.18 90 0.952 0.944

400 25 0.2 0.000 0.36 0.38 0.39 0.34 0.05 88 0.955 0.944

0.4 -0.000 0.67 0.66 0.66 0.58 0.08 88 0.945 0.927

0.6 -0.001 0.71 0.72 0.73 0.66 0.07 91 0.946 0.938

0.8 -0.000 0.50 0.52 0.52 0.50 0.03 95 0.954 0.948

50 0.2 -0.000 0.39 0.40 0.41 0.30 0.11 73 0.941 0.912

0.4 -0.000 0.80 0.85 0.85 0.65 0.21 76 0.958 0.915

0.6 -0.000 1.07 1.09 1.09 0.89 0.20 82 0.951 0.924

0.8 -0.000 0.82 0.89 0.89 0.80 0.09 90 0.957 0.943

The second set of simulation targeted at estimation of S = 1 − F . A to-
tal of four settings were generated, in which the shifted exponential, F (t) =
1 − exp{−(x − 0.2)}, x > 0.2, was used as the underlying distribution. The un-
derlying distribution of L was uniform [0, c], where value of c varied to meet the
predetermined truncation rates, 25% and 50%, respectively. Each setting con-
tained 1000 replicates with two levels of n, 200 and 400. Estimation outcomes
were calculated at x values yielding 0.8, 0.6, 0.4, 0.2 in S(x). Simulation results
were summarized in Table 2, which contains the similar entries as Table 1.

The following findings can be concluded from Tables 1 and 2. First, the vari-
ance estimators directly derived from the IPW estimators are evaluated very close
to the regular variance estimators, and both type of variance estimates closely
measure the variation contained among distribution probability estimates. Sec-
ond, when the IPW estimator based variance is decomposed into two components,
the variation due to the IPW estimator using known weight function is the major
source. It explains 80%-90% of total variation under a light truncation. With a
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Table 2: Simulation result for estimating the survival function of T

n L% S(x) Bias var(Ŝ(x)) σ̂2
T,KM

(x) σ̂2
T (x) σ̂2

T,1(x) σ̂2
T,2(x)

σ̂2
T,1(x)/σ̂

2
T (x) σ̂2

T (x) σ̂2
T,1(x)

(%) coverage coverage

200 25 0.8 -0.001 1.87 1.97 1.95 1.73 0.22 89 0.946 0.928

0.6 0.000 2.07 2.10 2.12 1.78 0.34 84 0.953 0.928

0.4 -0.001 1.43 1.48 1.50 1.30 0.20 87 0.950 0.924

0.2 -0.001 0.74 0.74 0.76 0.71 0.05 93 0.942 0.937

50 0.8 0.000 2.73 2.72 2.67 2.33 0.34 88 0.936 0.915

0.6 0.000 3.05 2.92 2.95 2.34 0.61 80 0.951 0.920

0.4 0.001 2.20 2.06 2.09 1.53 0.56 73 0.935 0.885

0.2 -0.000 0.95 0.87 0.88 0.63 0.25 71 0.941 0.872

400 25 0.8 0.002 0.97 0.99 0.98 0.88 0.10 90 0.944 0.926

0.6 0.001 0.99 1.06 1.06 0.89 0.17 84 0.962 0.942

0.4 0.001 0.72 0.75 0.75 0.65 0.10 87 0.957 0.944

0.2 0.001 0.38 0.37 0.38 0.35 0.03 93 0.944 0.940

50 0.8 0.001 1.42 1.37 1.36 1.19 0.16 88 0.938 0.925

0.6 0.001 1.52 1.47 1.48 1.18 0.30 80 0.947 0.918

0.4 0.002 1.04 1.04 1.05 0.77 0.28 73 0.953 0.910

0.2 0.001 0.41 0.44 0.44 0.32 0.13 71 0.955 0.913

50% of truncation, the major component still accounts for at least 70% of the
total variation. Finally, although the variation due to estimation of the weights
is a minor component of the total variation, it should not be practically omitted
because the actual coverage rate becomes obviously worse. On the contrary, the
confidence intervals using the variance estimator with both components achieve
the nominal coverage level.

A nonparametric IPW estimator agrees with the truncated version Kaplan-
Meier estimator, and consequently is the nonparametric maximum likelihood es-
timator (NPMLE) when the truncation distribution is fully unspecified. When
the parametric distribution of the truncation variable can be determined, Wang
(1989) showed that the semiparametric IPW estimator becomes the MLE and is
more efficient than the truncated version Kaplan-Meier estimator. If additional
evidence suggests G(•; θ) be the parametric form of the distribution function of
L, the semiparametric estimator,

F̂ (x; θ) =

[
n−1

n∑
i=1

1

G(T̃i; θ)

]−1
× n−1

n∑
i=1

1

G(T̃i; θ)
I(T̃i ≤ x),

maximize the marginal likelihood

Lm(T̃; θ, F ) =
∏
i

G(T̃i; θ)dF (T̃i)∫
G(u; θ)dF (u)

.



684 Nonparametric Inference for IPW Estimators

θ̂, the MLE of θ, maximizes the conditional likelihood

Lc(L̃|T̃, θ) =
∏
i

dG(L̃i; θ)

G(T̃i; θ)
.

The final estimator, F̂ (x; θ̂), maximizes the full likelihood Lm × Lc. This semi-
parametric IPW estimator is associated with higher degree of efficiency, and
should be advocated whenever the truncation distribution is parameterized.

5. Analysis of Blood Transfusion Data

All AIDS onsets are required to be reported to Center of Disease Control and
Prevention (CDC). If patients infected HIV virus from blood transfusion, the
exact infection dates can be retrospectively obtained. The AIDS incubation time
is the duration from infection of HIV virus to onset of AIDS. Given a cut-off date,
an AIDS could not be collected by CDC if the incubation time is greater than
the duration between the infection date and the cut-off date. Thus, the observed
incubation times are right truncated.

Kalbfleisch and Lawless (1989) provided one blood transfusion data set, in-
cluding 295 AIDS cases diagnosed by the cut-off date July 1, 1986 and reported
to CDC no later than January 1, 1987. The infection dates for those 295 AIDS
cases spanned from April 1978 to February 1986. Suppose one is interested in es-
timating the AIDS incubation time for the individuals in population consisting of
all transfusion-related patients infected by July, 1986. The infected subjects were
unobservable if their AIDS diagnoses occurred after the cut-off data. As a con-
sequence, the AIDS incubation time is right truncated by the duration between
infection and July 1, 1986. This data set has been used as a typical example
of right truncation and analyzed by many researchers. Bilker and Wang (1996)
carefully noted that, for this particular AIDS data set, left truncation was also
present because AIDS was first diagnosed in 1982. The subjects infected before
1982 were not likely to be included in the sample if onset of AIDS happened be-
fore the disease was recognized. Therefore, the incubation time was left truncated
by the duration between infection date and beginning of 1982. In this study, the
blood transfusion data set was used as an illustrative example of right truncation,
and the underlying left truncation was not considered.

The AIDS cases were broken down into three age groups, 1-4, 5-59 and 60+,
known as “children”, “adults” and “elderly patients”, respectively. Distribution
estimates for three age groups are shown in Figure 1, together with two sets of
linear confidence intervals. The confidence intervals using the regular variance
estimator are shown as dashed lines. The variance estimator given in Section
3 was evaluated, and the subsequent confidence intervals were plotted in dotted
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Figure 1. The estimated distribution functions of AIDS incubation time for (a) Children,

(b) Adults and (c) Elderly Patients. Each panel contains two sets of 95% confidence intervals,

using the regular variance estimator (dashed line) and the variance estimator derived from

the IPW estimator (dotted line).

24

Figure 1: The estimated distribution functions of AIDS incubation time for (a)
Children, (b) Adults and (c) Elderly Patients. Each panel contains two sets
of 95% confidence intervals, using the regular variance estimator (dashed line)
and the variance estimator derived from the IPW estimator (dotted line)

lines. In children and elderly patients, two sets of confidence intervals highly
agree with each other. In adults, the confidence interval using the new variance
estimator is slight wider.

6. Concluding Remarks

This paper studies nonparametric inference of IPW estimators based on a
randomly truncated sample. Development of the inference relied on Keiding and
Gill’s Markov process model. This conceptual framework leads to the analytical
description of asymptotic variances of IPW estimators. Variance decomposition
investigated in this paper was aimed at revealing the dissimilarity in precision
assessment about an IPW estimator between a truncated sample and a biased
sample with known probabilities of selection.
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The nonparametric inference developed in this paper can be extended to the
context of both censoring and truncation. Let C be the censoring variable, and
let X = min(T,C). The censored and truncated sample can be characterized by
(L,X) subject to the condition L < T . Under this context, Wang (1991) proposed
the IPW estimator of G and established its asymptotic properties, while the
inference of the IPW estimator of F has not been studied. The explicit expression
of the IPW estimator of F can be found in Shen (2003). This estimator uses the
cumulative probability estimates of both L and C. It’s asymptotic distribution
can be similarly derived using the Keiding and Gill’s Markov process model.
The total variation of the IPW estimator should contain the additional variation
caused by estimation of the probability of the censoring variable. Further research
is needed to fully describe the asymptotic distribution of the IPW estimator of
F .

The IPW estimators, instead of the truncated version Kaplan-Meier estima-
tors, have to be considered under certain contexts of truncation. The nonpara-
metric inference discussed in this paper will help to elucidate the asymptotic
properties of these IPW estimators. One application of the IPW estimator is dis-
tribution function estimation with certain type of dependently truncated sample.
Jones and Clowley (1992) introduced a Cox-model-based test for examining the
association in truncated data, treating L as a covariate of T . The hazard rate
of T is specified as λT (x;L) = λT0(x) exp(αL). Rejection of the null hypothesis
α = 0 indicates dependence between T and L. When this Cox model truly de-
scribes the dependence in a truncated sample, how to estimate the distribution
of L has not been studied yet. The IPW estimator is a solution and its asymp-
totic distribution needs to be explored. Other application of the IPW estimator
includes causal inference with truncated data. The form of weighted average of
the IPW estimator can be easily extended to incorporate the propensity scores
(Anstrom and Tsiatis, 2001).

Appendix A: Asymptotic Distribution of ĜIPW(x)

Let (aF , bF ) be the interior of the convex support of F , where aF = inf{x :
F (x) > 0} and bF = sup{x : F (x) < 1}. aG and bG are similarly defined for G.
The distribution functions F and G are identifiable if aG < bF .

We first consider the asymptotic distribution of the IPW estimator ĜIPW(x).
In the following context, ≈ denotes asymptotic equivalence.

√
n[ĜIPW(x)−G(x)]

=
√
n

[
β̂3

∫ x

0
[1− F̂ (u−)]−1dĜ∗(u)− β

∫ x

0
[1− F (u−)]−1dG∗(u)

]
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≈ √n(β̂3 − β)

∫ x

0
[1− F (u−)]−1dG∗(u)

+ β

∫ x

0
[1− F (u−)]−1d

[√
n
(
Ĝ∗(u)−G∗(u)

)]
+ β

∫ x

0

√
n

(
1

1− F̂ (u−)
− 1

1− F (u−)

)
dG∗(u).

The asymptotic distribution of β̂3 was studied by Keiding and Gill (1990,
Section 6). Using the delta method, one can show that

√
n(β̂3 − β) ≈ − β2

[∫ ∞
0

[1− F (u−)]−1d
[√

n
(
Ĝ∗(u)−G∗(u)

)]
+

∫ ∞
0

√
n

(
1

1− F̂ (u−)
− 1

1− F (u−)

)
dG∗(u)

]
.

Using the above result and noting that β
∫ x
0 [1 − F (s−)]−1dG∗(s) = G(x), one

will have √
n[ĜIPW(x)−G(x)] ≈WL,1(x) +WL,2(x),

where

WL,1(x) = β

∫ x

0
[1− F (u−)]−1d

[√
n
(
Ĝ∗(u)−G∗(u)

)]
− βG(x)

∫ ∞
0

[1− F (u−)]−1d
[√

n
(
Ĝ∗(u)−G∗(u)

)]
,

WL,2(x) = β

∫ x

0

√
n

(
1

1− F̂ (u−)
− 1

1− F (u−)

)
dG∗(u)

− βG(x)

∫ ∞
0

√
n

(
1

1− F̂ (u−)
− 1

1− F (u−)

)
dG∗(u).

In Keiding and Gill’s Markov-process-based truncation model, Λ̂1−Λ1 and Φ̂−Φ
are regularly assumed to be orthogonal martingales. As a consequence, WL,1(x)
and WL,2(x) are also orthogonal and their covariance is zero. It follows that the

asymptotic variance of ĜIPW(x) − G(x) is the sum of the variances of WL,1(x)

and WL,2(x). Since Ĝ∗(x) is the empirical estimator of G∗(x), WL,1(x) has mean
zero and the variance is given by

β2

[∫ x

0
[1− F (u−)]−2dG∗(u)−

(∫ x

0
[1− F (u−)]−1dG∗(u)

)2
]
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+ β2G(x)2

[∫ ∞
0

[1− F (u−)]−2dG∗(u)−
(∫ ∞

0
[1− F (u−)]−1dG∗(u)

)2
]

− 2β2G(x)

[∫ x

0
[1− F (u−)]−2dG∗(u)

−
∫ x

0
[1− F (u−)]−1dG∗(u)

∫ ∞
0

[1− F (u−)]−1dG∗(u)

]
.

The above expression can be simplified as

β

∫ x

0
[1− F (u−)]−1dG(u) + βG(x)2

∫ ∞
0

[1− F (u−)]−1dG(u)

− 2βG(x)

∫ x

0
[1− F (u−)]−1dG(u).

The central limit theorem leads to the limiting normal distribution of WL,1(x).
The martingale of the counting process NT,i(x) should be clarified in or-

der to study the limiting distribution of WL,2(x). NT,i(x) has the intensity
process Yi(x)φ(x). Let MT,i(x) = NT,i(x) −

∫ x
0 Yi(u)φ(u)du and MT,i(x) is

the counting process martingale. Let MT (u) =
∑n

i=1MT,i(u). It is known

that Φ̂(x) − Φ(x) =
∫ x
0 {dMT (u)/Y (u)} with the predictable variation process∫ x

0 {φ(u)du/Y (u)}. The following steps explain the variance of WL,2(x). First,
using the delta method,

WL,2(x) ≈ β
∫ x

0

1

1− F (u−)

√
n[Φ̂(u)− Φ(u)]dG∗(u)

− βG(x)

∫ ∞
0

1

1− F (u−)

√
n[Φ̂(u)− Φ(u)]dG∗(u)

=

∫ x

0

√
n[Φ̂(u)− Φ(u)]dG(u)−G(x)

∫ ∞
0

√
n[Φ̂(u)− Φ(u)]dG(u).

Integration by parts leads to the expression

=
√
n

{
G(x)(Φ̂(x)− Φ(x))−

∫ x

0
G(u)d[Φ̂(u)− Φ(u)]

− G(x)(Φ̂(∞)− Φ(∞)) +G(x)

∫ ∞
0

G(u)d[Φ̂(u)− Φ(u)]

}
=
√
n

∫ x

0
G(u)(G(x)− 1)

dMT (u)

Y (u)
+
√
n

∫ ∞
x

G(x)(G(u)− 1)
dMT (u)

Y (u)
.

Based on the martingale central limit theorem, WL,2(x) converges in distribution
to a zero-mean normal random variable, and the variance is given by∫ x

0
G(u)2(1−G(x))2

φ(u)du

y(u)
+

∫ ∞
x

G(x)2(1−G(u))2
φ(u)du

y(u)
.
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Appendix B: Asymptotic Distribution of ŜIPW(x)

ŜIPW(x) = β̂4

∫ x

∞
Ĝ(u)−1dŜ∗(u), β̂4 =

(∫ 0

∞
Ĝ(u)−1dŜ∗(u)

)−1
.

Similarly, it can be shown that
√
n[ŜIPW(x)−S(x)] = WT,1(x) +WT,2(x), where

WT,1(x) = β

∫ x

∞
G(u)−1d{√n[Ŝ∗(u)− S∗(u)]}

− βS(x)

∫ 0

∞
G(u)−1d{√n[Ŝ∗(u)− S∗(u)]},

WT,2(x) = β

∫ x

∞

√
n[Ĝ(u)−1 −G(u)−1]dS∗(u)

− βS(x)

∫ 0

∞

√
n[Ĝ(u)−1 −G(u)−1]dS∗(u).

Since Λ̂∗2(x)−Λ∗2(x) and Γ̂∗(x)− Γ∗(x) are orthogonal martingales, WT,1(x) and
WT,2(x) have the orthogonal relationship. Therefore, the asymptotic variance

of ŜIPW(x) − S(x) can be obtained by adding up the variances of WT,1(x) and

WT,2(x). Since Ŝ∗(x) is the empirical estimator, the variance of WT,1(x) is given
by

β

∫ x

∞
G(u)−1dS(u) + βS(x)2

∫ 0

∞
G(u)−1dS(u)− 2βS(x)

∫ x

∞
G(u)−1dS(u).

The counting process N∗L,i(x) has the intensity process Yi(x)γ∗(x). One can

define the martingale, M∗L,i(x) = N∗L,i(x) −
∫ x
∞ Yi(u)γ∗(u)du and let M∗L(x) =∑n

i=1M
∗
L,i(x). It can be shown that Γ̂∗(u) − Γ∗(u) =

∫ x
∞{dM∗L(u)/Y (u)} with

the predictable variation process
∫ x
∞{γ∗(u)du/Y (u)}. Applying the delta method

on WT,2(x) and noting the result that β
∫ x
∞G(s)−1dS∗(s) = S(x), one will have

WT,2(x) ≈
∫ x

∞

√
n[Γ̂∗(u)− Γ∗(u)]dS(u)− S(x)

∫ 0

∞

√
n[Γ̂∗(u)− Γ∗(u)]dS(u).

Integration by parts leads to

√
n

{
S(x)[Γ̂∗(x)− Γ∗(x)]−

∫ x

∞
S(u)d[Γ̂∗(u)− Γ∗(u)]− S(x)[Γ̂∗(0)− Γ∗(0)]

+ S(x)

∫ 0

∞
S(u)d[Γ̂∗(u)− Γ∗(u)]

}
=
√
n

∫ x

∞
S(u)[1− S(x)]

dM∗L(u)

Y (u)
+
√
n

∫ 0

x
S(x)[1− S(u)]

dM∗L(u)

Y (u)
.
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Utilizing the martingale central limit theorem, WT,2(x) converges in distribution
to a zero-mean normal random variable with the variance∫ x

∞
S(u)2[1− S(x)]2

γ∗(u)du

y(u)
+

∫ 0

x
S(x)2[1− S(u)]2

γ∗(u)du

y(u)
.
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