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Abstract: Nowadays, extensive amounts of data are stored which require the
development of specialized methods for data analysis in an understandable
way. In medical data analysis many potential factors are usually intro-
duced to determine an outcome response variable. The main objective of
variable selection is enhancing the prediction performance of the predictor
variables and identifying correctly and parsimoniously the faster and more
cost-effective predictors that have an important influence on the response.
Various variable selection techniques are used to improve predictability and
obtain the “best” model derived from a screening procedure. In our study,
we propose a variable subset selection method which extends to the classi-
fication case the idea of selecting variables and combines a nonparametric
criterion with a likelihood based criterion. In this work, the Area Under
the ROC Curve (AUC) criterion is used from another viewpoint in order to
determine more directly the important factors. The proposed method re-
vealed a modification (εBIC) of the modified Bayesian Information Criterion
(mBIC). The comparison of the introduced εBIC to existing variable selec-
tion methods is performed by some simulating experiments and the Type I
and Type II error rates are calculated. Additionally, the proposed method
is applied successfully to a high-dimensional Trauma data analysis, and its
good predictive properties are confirmed.

Key words: AIC, AUC, best subset, BIC, logistic regression, modified BIC
(mBIC), prior, ROC, trauma, variable/feature selection.

1. Introduction

Variable and feature selection have become the focus of much research to
high-dimensional statistical modeling in diverse fields of sciences. Many studies
to variable selection are related to medicine and biology, such as Fan and Li (2001;
2002; 2006), Sierra et al. (2001), Svrakic et al. (2003), Fan et al. (2005), and
Genkin et al. (2007). The main problem in any model-building situation is to
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choose from a large set of covariates those that should be included in the “best”
model. “Best” predictive modeling is the process by which a model is created or
chosen to try to best predict the probability of an outcome Seymour (1993). In
many cases the best model is chosen on the basis of detection theory to try to
guess the probability of an outcome given a set amount of input training data.

There are two basic ways to address the problem of variable selection, i.e.,
variable ranking and variable subset selection. Many variable selection algorithms
include a simple, scalable criterion for ranking variables, and are widely used in
medical studies to discriminate between healthy and diseased patients, survival
or not. Ranking criteria include correlation criteria, which enforce a ranking
according to goodness of linear fit of individual variables (correlation criteria can
detect linear dependencies between variable and target; a simple way of lifting this
restriction is to make a non-linear fit of the target with single variables and rank
according to the goodness of fit), and information theoretic criteria which rely
on empirical estimates of the mutual information between each variable and the
target. On the other hand, several approaches to the variable selection problem
illustrate the usefulness of selecting subsets of variables that together have good
predictive power, as opposed to ranking variables according to their individual
predictive power Guyon and Elisseeff (2003).

The prediction issue is very important in medical problems. When given
patient-specific covariate information, the predictive model that is used should
be able to predict accurately the response-outcome (survival or not, the pres-
ence/absence of a disease). A right decision to keep a variable in the model
might be based not solely on the clinical significance but also on statistical signif-
icance. This study works on the problem of high-dimensional statistical modeling
through the analysis of the trauma annual data in Greece for the year 2005. The
dataset selected to be examined, which has been properly divided into training
and test sets, deals with a binary response variable (death or not). In addition,
the performance of the proposed variable subset selection procedure is examined
by simulating multiple tests, i.e., different types of predictor variables with a bi-
nary outcome (y = 1 or y = 0) are considered. The simulation study assumes a
binary logistic regression model (LR) which is the appropriate method to present
the relationship between the dichotomous response’s measurements and its pre-
dictor factors which are of any type. The interested reader for LR is referred to
Myers et al. (2002) and Montgomery et al. (2006) for more details.

This paper focuses mainly on selecting subsets of features that are useful to
build a good predictor and excluding simultaneously many redundant variables.
We propose a variable subset selection method which extends to the classification
case the idea of selecting variables. The proposed technique is compared to
existing variable selection methods, viz., best subset (AIC), best subset (BIC)
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and best subset (mBIC). For more details for best subset in regression see Miller
(2002).

The rest of this paper is organized as follows. In Section 2, a review of several
variable selection criteria is presented. In Section 3, we describe the proposed
variable subset selection method. In Section 4, we perform some simulation
experiments to evaluate the merits of the proposed method. Additionally, the
proposed method is applied to analyze real medical data and is compared to
other variable selection techniques. Finally, in Section 5, the obtained results are
discussed and some concluding remarks are made.

2. Variable Selection Criteria

The procedure of subset selection is used with certain criteria which combine
statistical measures with penalties for increasing the number of predictors in the
model. Basically, the criteria used in the best subset variable selection procedure
are classified into four categories: (1) Prediction criteria; (2) Information-based
criteria; (3) Data-reuse and Data-driven procedures; (4) Bayesian variable selec-
tion. In our study, we use only the information-based criteria which are related
to likelihood or divergence measures.

The most popular criteria include AIC (Akaike Information Criteria) and
BIC (Bayesian Information Criteria). AIC was proposed by Akaike (1974) and it
selects the model that minimizes AIC = −2l+ 2q. BIC was proposed by Schwarz
(1978) and has a similar form to AIC except that the log-likelihood is penalized
by q log(n) instead of 2q, selecting the model that minimizes BIC = −2l+q log(n),
where l is the log-likelihood of the model, q is the number of parameters in the
model and n is the number of observations.

Consider the situation in which a large database needs to be analyzed and we
expect that only a few explanatory variables influence the response. In this case
classical criteria, such as the AIC or the BIC information criteria usually over-
estimate the number of regressors. Bogdan et al. (2008) developed the modified
version of BIC (mBIC), which enables the incorporation of prior knowledge on
a number of regressors preventing this phenomenon of overestimation. In par-
ticular, mBIC is adapted using the binomial prior and recommends choosing the
model for which

−2l + q log(n) + 2q log

(
1− p
p

)
attains its minimum value, where p denotes the prior probability that a randomly
chosen regressor influences the response-outcome.

Variable subset selection techniques choose subsets of variables that together
have good predictive power. However, a variable that is useless when taken with
others can be useful by itself. Therefore, we propose a method which extends to
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the classification case the idea of variable subset selection, taking into account the
individual predictive power of each variable. We use as criterion the performance
of a classifier built with a single variable performing Receiver Operating Charac-
teristic (ROC) curves analysis (see Pepe, 2000a; 2000b), using in particular the
criterion of the Area Under the ROC Curve (AUC) (for more details see Hanley
and McNeil, 1982 and Bradley, 1997). Precisely, using the AUC metric, we es-
timate the probability that for a pair of patients of which one has survived and
the other has not, the surviving patient is given a greater probability of survival.
This probability was estimated from the test data.

3. The Proposed Best Subset Variable Selection Method

1. Separate data into training and test sets. Given the n ×m model matrix
D = [x1, x2, · · · , xm], where xj , j = 1, 2, · · · ,m, is a column of the matrix,
as well as an n×1 vector Y , which is the common response vector, compute
the AUC measure of every variable xj with respect to the Y .

2. Sort out the factors with respect to their AUC measures, sorting in de-
scending order the AUC vector. Hence, the vector of AUC values is AUC =
(AUC1,AUC2, · · · , AUCm), where AUCj , for j = 1, 2, · · · ,m, is the corre-
sponding value of the AUC measure for the j-th variable.

3. Retain the factors of the model that have corresponding AUCj larger than
θ = 0.5. These factors together constitute a better than a random guess
model. The threshold θ = 0.5 is set on the value of the response variable,
i.e., at the mid-point between the center of gravity of the two classes (y = 0
or y = 1).

4. Compute the prior probability that a randomly chosen regressor influences
Y , that is, the p = r/q, where r denotes the number of the identified
significant factors following the previous steps and q denotes the number of
parameters in the model, viz., x1, · · · , xm.

5. Finally, εBIC recommends choosing the model for which

−2l + q log(n) + 2εq log

(
1− p
p

)
(1)

attains its minimum value, for some predefined 0 < ε < 1, where l is the
log-likelihood of the model and n is the number of observations.

There are two things to note here:
First of all, separating data into training and testing sets is an important part

of evaluating models. Typically, when a data set is partitioned into a training
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set and testing set, most of the data is used for training (75%), and a smaller
portion of the data is used for testing (25%). This ratio is often used in data
mining, but this ratio varies according to the requirements of an experimental
study. Also, note here that setting of the threshold value θ, which determines
the number of significant factors is very crucial. The decision about θ is made
according to the fact that θ varies over the possible values of a variable, and
to be informative, the entire ROC curve should lie above the 45◦ line where
sensitivity(θ) = 1− specificity(θ) DeLong et al. (1988). The default cutoff value
in two class classifiers is 0.5. Some recent papers (e.g., Lachiche and Flach, 2003
and Rosset, 2004) discuss that 0.5 may not be the optimal threshold and the fact
that AUC is oblivious to that threshold is an illustration of the “bias” in using
AUC for model selection. However, our interest here is purely in comparing
training and test sets and their performance. The threshold is a point chosen
based on the ROC curve of the training data set. If this threshold remains optimal
on the test data, the AUC remains unbiased. So, even if our threshold may be
suboptimal for classification, it has no bearing on the validity of our comparisons
as long as the same threshold is used for training and testing evaluation, since
we retain the factors of the model that have corresponding AUC larger than 0.5
for both training and test sets. The classification threshold in this view is a part
of the model specification, not a separate parameter to be optimized. We thus
assume here equal probabilities for the two classes (y = 0 or y = 1) and equal
misclassification costs. Hence, the threshold value θ is set on 0.5.

4. Comparative Study

4.1 Criteria for Performance Evaluation

In the comparative study that follows, we compare the performance of four
best subset methods: the best subset (AIC), best subset (BIC), best subset
(mBIC) and the proposed best subset variable selection method (εBIC).

When testing a single hypothesis, one is usually concerned with testing the
null hypothesis H0 : βj = 0 versus an alternative H1 : βj 6= 0, for j = 1, 2, · · · ,m.
A Type I error occurs when declaring an inactive factor to be active, but H0 is
really true; a Type II error occurs when declaring an active effect to be inactive,
but H1 is really true. Recently, we have seen a recent increase in the size of data
sets available. It is now often up to the statistician to find as many interesting
features in a data set as possible rather than test a very specific hypothesis on
one item. In our simulation study, we deal with a problem of multiple testing
since hundreds of parameters are tested simultaneously (1000 iterations). We
thus compute the average Type I (reject the true null hypothesis) and Type II
(accept the false null hypothesis) error rate over 1000 iterations. Here, we test
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the null hypothesis H0 : β1 = β2 = · · · = βm = 0. This is a test of the null
that none of the independent variables have predictive power. This implies the
alternative hypothesis H1 : β1 6= 0 or β2 6= 0 or · · ·βm 6= 0.

For our real data analysis, we use a multiple testing error measure, viz., the
false discovery rate (FDR). The FDR is especially appropriate for analyses based
on real data in which one is interested in finding several significant results among
many tests. Benjamini and Hochberg (2000) suggest that the False Discovery
Rate (FDR) is the appropriate error rate to control in many applied multiple
testing problems and that the experimenter should be concerned with controlling
the FDR at a desired level, while maintaining the power (1-Type II error) of each
test as much as possible. At first, we compute the number of false positives FP,
i.e., the number of chosen variables that do not appear in the true model and the
number of false negatives FN, i.e., the number of true regressors which were not
detected. These numbers are then used to compute the values of the following
characteristics:

1. Power (1-Type II error), defined as (k−FN)/k, where k denotes the number
of explanatory variables with non-zero regression coefficients. The power is
not defined when k = 0, since the cases for which k = 0 are excluded from
this analysis.

2. False Discovery Rate (FDR), defined as FDR = FP/(FP+k−FN). If there
are no discoveries, then FP + k − FN = 0 yielding FDR = 0.

3. Number of misclassified regressors, defined as MR = FP + FN .

4. Prediction error d which is defined as d =
∑n

i=1 |Yi − Ŷi|/n, where n is
the number of observations. Prediction error computes the mean absolute
deviation between these observations and their predicted values. Mean
prediction error d is calculated for both training and test sets.

4.2 Simulation Study

For our simulation experiments, we develop logistic regression models with
n = 100 experimental runs, and m = 100 explanatory variables, with coefficients
taking random values from the vector β. Searching the space of possible models,
note that if a variable does not improve the appropriate penalized likelihood is
deleted as insignificant by estimating its β coefficient as 0. All simulations were
conducted using MATLAB software. From now on we shall assume that the
design matrix X = (xij) is standardized so that each column has mean 0 and
variance 1. During our simulation experiments, only main effects models were
taken into consideration.
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For each of 1000 iterations in our simulation experiments we used the following
simulation protocol:

1. Suppose that the model has the form

yi = P (xi) + ε,

where the quantity P (xi) is defined as

P(xi) = 1/(1 + e−x
′
iβ),

where the term x′iβ is equal to β1xi1 + · · ·+βmxim, i = 1, 2, · · · , n, and the
response variable yi takes on the value either 0 or 1.

2. The true active variables were selected randomly from the set of {1, · · · ,m}
potentially active factors. From columns 1, · · · ,m of X, k columns were as-
signed to active factors according to the following procedure: the true active
variables were selected randomly from the set of {1, · · · ,m} potentially ac-
tive factors and only main effects were taken into consideration. For each
experiment, we estimated all the main effects and labeled each effect as
either active or inactive. Then, by calculating the percentage of the esti-
mated active effects within each experiment, we estimated the number of
active effects that can be identified. Note here that for Case I (0 < p < 0.5)
we estimated that the number of active effects that can be identified does
not exceed m/2, where m is the number of columns of the design matrix.

3. To obtain the coefficients for the active factors, a sample of size k was drawn
from a N(4, 0.2), and ±1 signs randomly allocated to each number. For the
non-active variables, in the true model, their coefficients were obtained as
a random draw from a N(0, 0.2).

4. Here, the quantity ε may assume one of two possible values. If y = 1
then ε = 1 − P (xi) with probability P (xi), and if y = 0 then ε = −P (xi)
with probability 1− P (xi). Thus, ε has a distribution with mean zero and
variance P (xi)[1− P (xi)].

5. The design matrix is X = [x1, x2, · · · , x100] where x1, · · · , x100 are a mix of
dichotomous, ordinal and continuous variables, taking randomly different
values as described in Table 1.

The results of the proposed method (εBIC) for several ε, are compared to
best subset (AIC), best subset (BIC) and best subset (mBIC). It is worthy to
note that εBIC is equivalent to BIC if we take ε = 0 and equivalent to mBIC if
we take ε = 1. The final decision for ε is made according to the value which is
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Table 1: The chosen random structure for xj

xj Values

xj ±1 equally distributed
xj ±1 randomly distributed
xj generated randomly using rating scales based on four (0-3) ordinal levels
xj generated from a Normal distribution xi ∼ N(10, 5)
xj generated from a Normal distribution xi ∼ N(0, 0.5)
xj generated from a uniform distribution xi ∼ U(a = 5, b = 15)

observed to be good choice from simulation trials. The optimal ε value is chosen
so that ε succeeds the smallest Type I and Type II error values simultaneously
for the following key reason. Type I and Type II error rates are important and
should be kept as low as possible. The low Type I error rates are important
since the ability to exclude unnecessary factors reduces the cost of additional
experiments and low Type II error rates are especially desirable since the main
goal is to find out the important factors that influence most the response.

In our simulation study, several different ε values (0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95) were examined in
order to provide a more generalized suggestion about how to choose the optimal
ε value, and to cover all possible cases since variable selection may have different
purposes in different cases. We have thus considered the following two cases for
p, viz., the prior probability that a randomly chosen regressor influences Y :

1. Case I: If 0 < p < 0.5, the penalty term 2εq log ((1− p)/p) is positive. In this
case, the greater ε is, the more penalized term will be.

2. Case II: If 0.5 < p < 1, the penalty term 2εq log ((1− p)/p) is negative. In
this case, the greater ε is, the less penalized term will be.

Note here that the case of p = 0.5 corresponds to the usual BIC.
We performed the simulations 1000 times for each Case I and Case II, and

the obtained results are summarized in Table 2 and Table 3 respectively. In these
tables, the first column lists the used criterion. The two columns named “Type I”
and “Type II” present the Type I error rate and Type II error rate, respectively,
averaged over 1000 iterations for each best subset method.

We observe from Table 2 (Case I: 0 < p < 0.5) that AIC and BIC have a
strong tendency to overestimate the number of regressors, since the Type I error
rate equals 0.3275 for AIC and 0.1650 for BIC, respectively. The highest average
probability of the Type I error is for AIC, since AIC typically includes more
regressors (for a sample size of n ≥ 8 the penalty on model dimension using AIC
is smaller than the penalty using BIC). The standard version of mBIC helps to
control the overall Type I error reducing its value to 0.14. As demonstrated by
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Table 2: Empirical performance of best subset variable selection methods for
Case I

Criterion Type I Type II

AIC 0.3275 0.0667

BIC 0.1650 0.1067

mBIC 0.1400 0.1150

εBIC (ε = 0.1) 0.1550 0.1083

εBIC (ε = 0.15) 0.1575 0.1000

εBIC (ε = 0.2) 0.1500 0.1100

εBIC (ε = 0.25) 0.1550 0.1000

εBIC (ε = 0.3) 0.1500 0.1117

εBIC (ε = 0.35) 0.1550 0.1017

εBIC (ε = 0.4) 0.1450 0.1133

εBIC (ε = 0.45) 0.1500 0.1050

εBIC (ε = 0.5) 0.1450 0.1133

εBIC (ε = 0.55) 0.1500 0.1067

εBIC (ε = 0.6) 0.1425 0.1133

εBIC (ε = 0.65) 0.1475 0.1067

εBIC (ε = 0.7) 0.1425 0.1133

εBIC (ε = 0.75) 0.1450 0.1134

εBIC (ε = 0.8) 0.1400 0.1133

εBIC (ε = 0.85) 0.1375 0.1134

εBIC (ε = 0.9) 0.1400 0.1133

εBIC (ε = 0.95) 0.1350 0.1150

Table 2, the εBIC prevents overestimation and performs better than AIC and
BIC, since the proposed method has smaller values for Type I errors for all
examined ε. The proposed method also succeeds lower Type II error values for
almost all considered ε compared to mBIC, The proposed method also succeeds
lower Type II error values for almost all considered ε compared to mBIC, and
these correspond to cases where the majority of the active effects are detected
correctly. We also observe that εBIC succeeded lower Type I and Type II error
values simultaneously for ε = 0.85 compared to mBIC.

We observe from Table 3 (Case II: 0.5 < p < 1) that the highest average
probability of the Type I error is for AIC, as expected. In this case, mBIC does
not prevent overestimation and BIC performs better than mBIC reducing the
Type I error value to 0.1625. As demonstrated by Table 3, the εBIC succeeds to
control the overall Type I error compared to AIC and mBIC, since the proposed
method has smaller values for Type I errors for all examined ε. The proposed
method also succeeds lower Type II error values for all considered ε compared to
BIC. We also observe that εBIC performs better than BIC for ε = 0.1.
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Table 3: Empirical performance of best subset variable selection methods for
Case II

Criterion Type I Type II

AIC 0.3275 0.0533

BIC 0.1625 0.0933

mBIC 0.2000 0.0817

εBIC (ε = 0.1) 0.1625 0.0917
εBIC (ε = 0.15) 0.1775 0.0917
εBIC (ε = 0.2) 0.1800 0.0900
εBIC (ε = 0.25) 0.1775 0.0833
εBIC (ε = 0.3) 0.1850 0.0867
εBIC (ε = 0.35) 0.1850 0.0833
εBIC (ε = 0.4) 0.1850 0.0867
εBIC (ε = 0.45) 0.1875 0.0917
εBIC (ε = 0.5) 0.1850 0.0867
εBIC (ε = 0.55) 0.1900 0.0917
εBIC (ε = 0.6) 0.1850 0.0867
εBIC (ε = 0.65) 0.1925 0.0900
εBIC (ε = 0.7) 0.1850 0.0867
εBIC (ε = 0.75) 0.1975 0.0900
εBIC (ε = 0.8) 0.1925 0.0850
εBIC (ε = 0.85) 0.1975 0.0850
εBIC (ε = 0.9) 0.1950 0.0817
εBIC (ε = 0.95) 0.1975 0.0817

We shall now give a more generalized suggestion about which one among
AIC, BIC, mBIC or εBIC is better according to the case under consideration,
since model selection may have different purposes in different cases.

According to the results in Table 2, if 0 < p < 0.5, we suggest the use of
AIC, BIC, or εBIC for 0 < ε < 0.5 as a model selection criterion, if overfitting
is acceptable in order to ensure that all possible influent regressors can be in-
cluded. The experimenter can choose which one among AIC, BIC, or εBIC for
0 < ε < 0.5 is better, according to what extent of overfitting is acceptable under
consideration. On the other hand, if choosing influent regressors is crucial, we
suggest the use of εBIC for 0.5 < ε < 1 as a model selection criterion.

According to the results in Table 3, if 0.5 < p < 1, we suggest the use of AIC,
mBIC, or εBIC for 0.5 < ε < 1 as a model selection criterion, if overfitting is
acceptable so that all possible regressors will be included. The experimenter can
choose which one among AIC, mBIC, or εBIC for 0.5 < ε < 1 is better, according
to what extent of overfitting is acceptable under consideration. On the other
hand, if choosing one more additional regressor included is serious, we suggest
the use of BIC or εBIC for 0 < ε < 0.5 as a model selection criterion.

Table 4 displays the average execution times (sec) for the best subset methods
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with AIC, BIC and mBIC in both considered cases. Table 5 displays the average
execution times (sec) for the proposed best subset method with εBIC (for several
ε in both considered cases).

Table 4: Execution times (sec)

Method Best Subset (AIC) Best Subset (BIC) Best Subset (mBIC)

1.7784 ∗ 104 1.8096 ∗ 104 1.8174 ∗ 104

Table 5: Execution times (sec) for εBIC

εBIC ε = 0.1, 0.15 ε = 0.2, 0.25 ε = 0.3, 0.35 ε = 0.4, 0.45 ε = 0.5

3.6114 ∗ 104 5.4366 ∗ 104 7.2462 ∗ 104 9.0871 ∗ 104 10.8889 ∗ 104

εBIC ε = 0.55 ε = 0.6, 0.65 ε = 0.7, 0.75 ε = 0.8, 0.85 ε = 0.9, 0.95

10.8889 ∗ 104 12.7063 ∗ 104 14.5315 ∗ 104 16.3489 ∗ 104 18.1585 ∗ 104

In a nutshell, this simulation study demonstrates that the proposed method
tends to declare at a higher rate inactive effects to be active and at a much
lower rate active effects to be inactive. Thus, the proposed method is indeed
conservative in this sense. Since the aim is mainly to find out the important
factors that influence most the response and should be considered for further
investigation, the low Type II error rates are especially desirable, even though
both Type I and Type II error rates are important and should be kept as low
as possible. The proposed method achieves this task successfully. The fact that
εBIC is slower compared to the other best subset methods which perform almost
similarly (see Table 4 and Table 5) does not influence these desirable predictive
properties of the proposed method. Note here that the mBIC criterion incorpo-
rates the prior distribution for the number of effects assuming the binomial prior,
while when prior knowledge on the number of regressors is not available, Bogdan
et al. (2004) proposed choosing a constant c in such a way that the family-wise
error rate (FWER, the probability of detecting at least one false positive) for the
sample size n ≥ 200 is controlled at the level below 10%. This modified version of
mBIC (εBIC) can be used in any experiment, allowing the incorporation of prior
knowledge by calculating p, viz., the probability that a randomly chosen regressor
influences Y , through the proposed AUC-based variable selection method.

4.3 Analysis Based on Trauma Data

The proposed method presented in the previous section is now applied to
a real medical dataset and is compared to other traditional variable selection
techniques. The data derive from an annual registry conducted during the period
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01/01/2005−31/12/2005 by the Hellenic Trauma and Emergency Surgery Society
involving 30 General Hospitals in Greece. The study is designed to assess the
effects of differing prognostic factors on the outcome of injured persons. For each
patient the main outcome of interest, which is vital status at the last follow-
up, dead (y = 1) versus alive (y = 0), is reported. The dataset consists of 8862
observations and 92 factors that include demographic, transport and intrahospital
data used to detect possible risk factors of death. According to medical advices,
all the prognostic factors should be treated equally during the statistical analysis
and there is no factor that should be always maintained in the model. The
Trauma data set which is used to compare the results of variable selection methods
is presented in Table 6.

Table 6: Trauma study

Continuous covariates

x1: weight, kg

x2: age, years

x3: Glasgow Coma Score, score

x4: pulse, N/min

x6: systolic arterial blood pressure, mmHg

x7: diastolic arterial blood pressure, mmHg

x8: Hematocrit (Ht), %

x9: haemoglobin (Hb), g/dl

x11: white cell count, /ml

x12: platelet, /ml

x14: potassium, /ml

x15: glucose, mg %

x16: creatinine, mg %

x17: urea, mg %

x18: amylase, score

x20: Injury Severity Score, score

x21: Revised Trauma Score, score

In the experiment, the data set is split into training (75%) and test (25%)
sets for data analysis in order to evaluate the prediction performance on new
data. Firstly, we consider one predictor at a time to see how well each predictor
alone predicts the target variable (y = 0 or y = 1). This first step is added to
the analytical process because it allows the variable set to be reduced in size,
creating a more manageable set of attributes for modeling. The variables are
ranked according to a specified criterion depending on the measurement levels of
the predictors. A common technique used in data mining is ranking the attributes
based on the measure of importance which is defined as (1− p), where p is the
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Table 6: (continued) Trauma Study

Categorical covariates

x19: evaluation of disability (0 = expected permanent big, 1 = expected permanent

small, 2 = expected impermanent big, 3 = expected impermanent small,

4 = recovery)

x23: cause of injury (0 = fall, 1 = trochee accident, 2 = athletic, 3 = industrial,

4 = crime, 5 = other)

x24: means of transportation (0 = airplane, 1 = ambulance, 2 = car, 4 = on foot)

x25: Ambulance (0 = no, 1 = yes)
x26: hospital of records

x27: substructure of hospital (0 = orthopaedic, 1 = CT, 2 = vascular surgeon,

3 = neurosurgeon, 4 = Intensive Care Unit)

x28: comorbidities (0 = no, 1 = yes)

x31: sex (0 = female, 1 = male)

x35: doctor’s speciality (0 = angiochirurgeon, 1 = non specialist, 2 = general doctor

3 = general surgeon, 4 = jawbonesurgeon, 5 = gynaecologist,

6 = thoraxsurgeon, 7 = neurosurgeon, 8 = orthopaedic,

9 = urologist, 10 = paediatrician, 11 = children surgeon, 12 = plastic surgeon)

x36: major doctor (0 = no, 1 = yes)

x41: dysphoria (0 = no, 1 = yes)

x52: collar (0 = no, 1 = yes)

x55: immobility of limbs (0 = no, 1 = yes)

x56: fluids (0 = no, 1 = yes)

x64: Radiograph E.R. (0 = no, 1 = yes)

x66: US (0 = no, 1 = yes)

x67: urea test (0 = no, 1 = yes)

x71: destination after the emergency room (0 = other hospital, 1 = clinic,

2 = unit of high care, 3 = intensive care unit I.C.U, 4 = operating room)

x72: surgical intervention (0 = no, 1 = yes)
x86: arrival at emergency room (0 = 00:00-04:00, 1 = 04:01-08:00, 2 = 08:01-12:00,

3 = 12:01-16:00, 4 = 16:01-18:00, 5 = 18:01-20:00, 6 = 20:01-24:00)

x87: exit from emergency room (0 = 00:00-04:00, 1 = 04:01-08:00, 2 = 08:01-12:00,

3 = 12:01-16:00, 4 = 16:01-18:00, 5 = 18:01-20:00, 6 = 20:01-24:00)

x101: head injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)

x102: face injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)

x104: breast injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)

x106: spinal column injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)

x107: upper limbs injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)

x108: lower limbs injury (0 = none, 1 = AIS 6 2, 2 = AIS > 2)
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p-value of a chosen statistical test of association between the candidate predictor
and the target variable.

In our study some predictors are continuous and some are categorical. The cri-
terion used for continuous predictors is the p-value based on an one-way ANOVA
F test, while the criterion for categorical predictors is restricted to the p-value
based on Pearson chi-square test Pearson (1983). These p-values are compared
and therefore are used to rank the predictors. In the initial data set, we had
92 explicative variables and after following the procedure of feature selection, we
execute and detect the most statistically significant of them, for significance level
α = 5%. Table 7 presents the importance values for the 44 significant variables of
the feature selection generated model. In fact, feature selection method allowed
us to minimize the set of regressor variables from 92 to 44 otherwise best subset
methods would not be applicable due to computational complexity (n = 8862
records).

Table 7: The most important fields of the data set

Fields x71 x3 x21 x101 x20 x64 x56 x19

Importance value (1− p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fields x8 x6 x26 x7 x35 x9 x36 x11 x66

Importance value (1− p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fields x108 x72 x55 x27 x67 x41 x107 x52

Importance value (1− p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fields x2 x16 x18 x104 x28 x12 x17

Importance value (1− p) 1.0 1.0 1.0 0.999 0.999 0.998 0.997

Fields x31 x1 x4 x24 x15 x102 x106 x25

Importance value (1− p) 0.996 0.994 0.988 0.988 0.988 0.985 0.978 0.965

Fields x86 x87 x14 x5

Importance value (1− p) 0.964 0.962 0.961 0.952

Regarding the proposed method, we sort out the factors with respect to their
AUC measures. We retain the factors of the model that have corresponding AUCj

larger than θ = 0.5. These factors are then declared to be significant (r = 6). Let
p denote the probability that a randomly chosen regressor influences Y. In our
study, p = r/q = 6/44. We set ε to be 0.85 for εBIC, since this value was found
to be the optimal value from the simulation study for Case I (0 < p < 0.5). The
results of the proposed method (εBIC) are compared to best subset (AIC), best
subset (BIC) and best subset (mBIC). The estimated β coefficients and standard
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errors of the selected model for each examined best subset method are listed in
Table 8. The insignificant variables are deleted by estimating their coefficients as
0. The execution times of all best subset methods are reported in Table 9.

Table 8: Estimated β coefficients and standard errors (in parentheses) for best
subset methods

Method MLE
Best Subset Best Subset Best Subset Best Subset

(AIC) (BIC) (mBIC) (εBIC)

Intercept -5.97 (0.21) -5.97 (0.21) -5.96 (0.21) -5.96 (0.21) -5.96 (0.21)

x2 0.72 (0.09) 0.71 (0.09) 0.73 (0.09) 0.73 (0.09) 0.73 (0.09)

x11 0.25 (0.07) 0.25 (0.07) 0.28 (0.07) 0.28 (0.07) 0.28 (0.07)

x16 0.09 (0.05) 0.09 (0.05) 0 (-) 0 (-) 0 (-)

x20 0.56 (0.05) 0.56 (0.05) 0.55 (0.05) 0.55 (0.05) 0.55 (0.05)

x23 0.06 (0.10) 0 (-) 0 (-) 0 (-) 0 (-)

x25 1.02 (0.15) 1.00 (0.14) 1.02 (0.14) 1.02 (0.14) 1.02 (0.14)

x27 -0.16 (0.09) -0.16 (0.09) 0 (-) 0 (-) 0 (-)

x71 1.46 (0.07) 1.47 (0.07) 1.43 (0.07) 1.43 (0.07) 1.43 (0.07)

x101 1.30 (0.08) 1.30 (0.08) 1.29 (0.08) 1.29 (0.08) 1.29 (0.08)

Table 9: Execution times (sec)

Method
Best Subset Best Subset Best Subset Best Subset

(AIC) (BIC) (mBIC) (εBIC)

8.535 ∗ 104 8.475 ∗ 104 8.548 ∗ 104 1.709 ∗ 105

We observe from Table 8 that BIC, mBIC and εBIC perform similarly and
have identical values for both β and standard errors. This fact does not come
as a surprise taking into account the properties of BIC, since in the case where
m is fixed (m = 44 regressors) and n increases (n = 8862 records) or n goes
to infinity, mBIC and εBIC criteria asymptotically approach BIC. AIC fails to
exclude two redundant variables (x16, x27) compared to BIC, mBIC and εBIC,
as expected, since AIC in many practical applications typically includes more
regressors, as discussed in Bogdan et al. (2008). The proposed AUC-based best
subset variable selection method succeeds to identify the same subset of significant
variables affecting death from Trauma, compared to the well-known BIC and
mBIC criteria, which includes x2, x11, x25, x20, x71 and x101.

In our trauma study, the training set is used to select the significant regressors
and to estimate their regression coefficients. After the model has been determined
by using the training set, we test the model by making predictions using the test
set. Because the data in the test set already contains known values for the
response variable we want to predict, it is easy to examine whether the model’s
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guesses are correct. The test set is used to compute the number of FP and FN,
and these numbers are then used to compute the performance criteria values
presented in Table 10. The results reported in Table 10 are averaged over 1000
different random partitions.

Table 10: Results over 1000 different random partitions

Best Subset Best Subset Best Subset Best Subset
(AIC) (BIC) (mBIC) (εBIC)

FP 15.4 12.7 12.5 12.4
FN 1.92 3.45 2.95 2.48

Power 0.808 0.655 0.705 0.752
FDR 0.655 0.659 0.639 0.622
MR 17.32 16.15 15.45 14.88

d test 0.325 0.213 0.204 0.198
d training 0.432 0.397 0.381 0.376

As demonstrated in Table 10, most of the signals detected are false positive
for all information criteria. The number of false positives detected by AIC is
15.4, and is considerably higher than the number of false positives detected by
BIC, mBIC and εBIC which perform similarly. The tendency of AIC to include
many false positives is also reflected in the higher value of MR. Note here that if
the cost of a false positive is the same as the cost of a false negative, then MR
is proportional to the total cost of the experiment. This strong tendency has a
relatively small influence on the prediction error using AIC. The small values of
the prediction error d for both training and test sets for AIC, demonstrate that
for large sample sizes the overestimation of the number of regressors does not
substantially deteriorate the predictive properties of AIC. Furthermore, the FDR
of the proposed method is 0.622, smaller than the corresponding value for AIC,
BIC and mBIC. The proposed method seems to perform better than best subset
methods with AIC, BIC and mBIC criteria, since it has also smaller misclassifi-
cation rate and prediction error for both training and test sets. Additionally, the
proposed method has the highest power value compared to BIC and mBIC.

Conclusively, the trauma study illustrates the merits of the proposed best
subset variable selection method. Despite having such high dimensional data set,
the proposed method achieved the main goal, i.e., to identify a rather small subset
of features which is sufficient for modeling. Further, the revealed prognostic
model for the outcome for trauma patients includes only the factors of highest
importance for prediction. As a result, the outcome prediction model is now
plausible and provides specific information which may assist as guidelines for
trauma management and may help trauma personnel to focus mostly on features
that are observed to be the most relevant for prediction.
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5. Concluding Remarks

Best subset variable selection remains as a challenging and promising area
of research. In this paper, we have proposed a method for selecting subsets of
features that are useful to build a good predictor. Since the use of a variable
selection method is mainly to screen the factors that should not be considered
for further investigation, the proposed method achieves this task successfully
excluding the redundant variables and maintaining only the factors of highest
importance. A drawback of the proposed best subset variable selection method is
the computational time. Generally, best subset methods are very time consuming
because all subsets approach is an exhaustive search, since it searches through all
possible subsets to find the optimal one. This computational difficulty prevents
the best subset methods from being widely used when there are a large number
of predictors in practical problems. However, the proposed method performed
satisfactorily on the problem of high-dimensional statistical modeling, identifying
the significant prognostic factors affecting death from trauma.

The simulation study demonstrated that the proposed method succeeded very
low values of Type II error rate which is very crucial in order not to omit impor-
tant factors of the model. Additionally, the Type I error rate was also maintained
at low level for several ε values. A threshold point that implies a low Type I error
rate has the ability to exclude unnecessary factors, so it can be helpful in reducing
the cost of additional experiments based on the selected factors. Furthermore,
the real data analysis demonstrated that the proposed method has very good
properties with respect to controlling the false discovery rate, minimizing the
number of misclassified regressors and the prediction error.

The innovation of the proposed method places in the the combination of a
nonparametric technique (AUC measure) with a likelihood based method (εBIC
information-based criterion) which is uncommon type of variable selection to
the best of our knowledge. In the proposed method, only main effects models
were considered. We are currently looking into problems involving models with
interactions. We aim to develop techniques that take into account the correlated
nature of the data and deal with intra-subject (between two measurements on
the same subject) correlation.
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