Influence of Choices of Statistical Models on Neural Spike Trend

Shu-Chuan Chen^{1*}, Lung-An Li², Shen Li¹and Jiping He¹ ¹Arizona State University and ²Academia Sinica

Abstract: The Center for Neural Interface Design of the Biodesign Institute at Arizona State University conducted an experiment to investigate how the central nervous system controls hand orientation and movement direction during reach-to-grasp movements. ANOVA (Analysis of Variance), a conventional data analysis widely used in neural science, was performed to categorized different neural activities. Some preliminary studies on data analysis methods have shown that the principal assumption of ANOVA is violated and some characteristics of data are missing from taking the ratio of recorded data. To compensate the deficiency of ANOVA, ANCOVA (Analysis of covariance) is introduced in this paper. By considering neural firing counts and temporal intervals respectively, we expect to extract more useful information for determining the correlations among different types of neurons with motor behavior. Comparing to ANOVA, ANCOVA can be one step further to identify which direction or orientation is favored during which epoch. We find that a considerable number of neurons are involved in movement direction, hand orientation, or both combined, and some are significant in more than one epoch, which indicates there exists a network with unknown pathways connecting neurons in motor cortex throughout the entire movement. For the future studies we suggest to integrate this study into neural networking in order to simulate the whole reach-to-grasp process.

Key words: ANCOVA, central nervous system, neural networking.

1. Introduction

Patients suffering from neurological diseases and injuries such as stroke and neural trauma may lose voluntary muscle control in the upper extremity. Developing a cortically controlled neuroprosthetic system for rehabilitation and recovery of arm control becomes more urgent and demanding for these people to live independently with a higher quality of life. Therefore, The Center for Neural Interface Design of the Biodesign Institute at Arizona State University

^{*}Corresponding author.

conducted an experiment to investigate how the central nervous system (CNS) controls hand orientation and movement direction during reach-to-grasp movements. Researchers recorded the activity of 906 motor cortical cells in a monkey trained to reach and grasp one of two targets oriented at various angles. Analysis of Variance(ANOVA), a conventional data analysis widely used in neural science, was performed to categorize different neural activities. Some preliminary studies on data analysis methods have shown that the principal assumption of ANOVA is violated. Also ANOVA loses some characteristics of data due to taking the ratio of recorded data. To compensate the deficiency of ANOVA, Analysis of covariance (ANCOVA) is introduced in this project. By considering neural firing counts and temporal intervals respectively, we expect to extract more useful information for determining the correlations among different types of neurons with motor behavior. The objective of this project is to explore the possible methods of data analysis which would easily be accepted and be applied by the neuroscientists. ANCOVA is a merger of ANOVA and serves as the vanguard in this project. There are some other models like neural network which can be studied in future works. This research will advance our knowledge on the cortical control of hand orientation and arm movement, and provide information to develop a robust extraction algorithm to decode neural signals so as to control a neuroprosthetic device under real life reach-to grasp situations.

2. Data Description

2.1 Methodology

A. Experimental Apparatus and Design

The experimental protocol for surgical procedure, animal training and care, data collection and analyses reported in this paper is reviewed and approved by the Institutional Animal Use and Care Committee of Arizona State University. The experimental apparatus consists of a central holding pad and two rectangular targets (Figure 1(a)). Two touch sensors are fitted on opposite sides of each target for detecting a truly firm grasp. A successful trial is produced by grasping the target firmly using a power grip, making contact with both sensors. The monkey was trained to perform reach and grasp any one of the two targets (left target 1, right target 2) at a given orientation (45° , 90° , or 135°) as instructed. The sequence of events for the reach-to-grasp task is shown in Figure 1(b). Each trial started with central light on, cueing the monkey to place its hand on the central holding pad. After a random center holding time (CHT), a target light came on, cueing the monkey to reach for the indicated target and make a firm grasp. The target light would go off after a minimum target hold period post the target hit. The monkey would return the hand to the central pad and wait for the next trial (Figure 1(b)).

Figure 1: Experimental setup. (a) The front view of the apparatus and the target orientation definition. (b) The sequence of events for the reach-to-grasp task and the trial epochs. The cue reaction time (CRT) was defined as the time from target light on to central pad release; the movement time (MT) was defined as the time from central pad release to target hit; the target holding time (THT) was defined as the time from target hit to target release

B. Data Collection

A recording chamber was placed on the contralateral hemisphere of the performing arm (left hemisphere in this case) over the area of motor cortex, targeting the forearm and hand control areas. The electrical activity of single motor cortical neurons was recorded with five independently driven microelectrodes (Thomas Recording). The penetrations covered the hand representation area of M1, and some of PMd and PMv. Each electrode made one penetration a day, and the recording depth would be adjusted for new neurons after every 108 successful trials (18 trials to each target condition: 3 angles of each target for 2 targets) to record different cells. Figure 2 shows the locations of the recorded neurons.

Figure 2: Top view of the recording location based on the chamber's coordinates. Each cross represents an electrode penetration. The recording location in the chamber's coordinates was recorded everyday before cortical signal recording. The chamber location in the stereotaxic coordinates was measured during the surgery. The rotation matrix from the stereotaxic coordinates to the chamber's coordinates was calculated. Then we converted the coordinates of the major landmarks (ArS, ArSp, and CS) in the stereotaxic coordinates into that in the chamber's coordinates. ArS: arcuate sulcus, ArSp: arcuate sulcus spar, CS: central sulcus

C. Data Analysis from Previous Studies

Spike data were obtained by performing off-line sorting using the Neural Explore program from Plexon. A total number of 979 motor cortical cells was recorded totally. A two-way analysis of variance (ANOVA) was used to evaluate whether changes in the average cell discharge were significantly modulated by target orientation, or movement direction, or their interaction effect (P < 0.05). The firing rates during CHT were considered as the baseline firing rates. For 105 out of 979 (10.7%) neurons, their neuronal discharge frequencies within CHT were significantly altered by target orientation. During CHT, the monkey's hand was resting on the central holding pad, the target was not presented and movement had not started. There were two reasons that could account for the changes: one was the visual input of different target orientations, the other was movement preparation. We also found 22 (2.3%) sensory cells in the motor cortex. These cells showed significant higher firing frequency during the CHT, CRT and THT when the monkey's hand was either touching the central holding pad or holding

the target, but lower firing frequency during MT when there was no cutaneous sensory input. The next step was to find task-related cells. We define a cell as task-related if its average firing rates within any of the last three epochs was at least 2SDs greater than its baseline firing rate. Another 284 neurons (29%) showed no significant increase of discharge frequency during any of the last three epochs. The remaining 568 out of 979 neurons (58%) were found to be task-related and were further classified.

2.2 Results from Previous Studies

A. Hand Kinematics

The features of the experiment paradigm are that hand orientation is determined by the target orientation (Figure 3(a)); movement direction is determined by the left/right target; transport velocity profiles show no dependence on target orientation (Figure 3(b)).

Figure 3: Dependence of movement parameters on target orientation. (a) Averaged hand rotation trajectories (solid) +/- SDs (dashed) during movements to targets oriented at 45 (red), 90 (blue), 135 (black). Each solid curve is averaged from all trials of movements to the same target fixed at the same orientation in one day. (b) Averaged wrist transport velocity profiles to different orientations. The color index is the same as plot (a). Time zero is aligned at central pad release

B. General Nature of Orientation-related-only Cells

Figure 4 shows perievent histograms of an exemplary motor cortical neuron. The left column shows the cell's activity during movements to the left target; the right column shows the cell's activity during movements to the right target. The three rows correspond to three levels of target orientations. Each raster illustrates the firing pattern of the cell during 18 trials of movements to the same target condition. The neuron began to fire approximately 100-msec before movement onset. The effect of target orientation caused a significant change in the overall level of cell activity before, during and after movements (ANOVA, P < 0.05). The changes in firing activity caused by target orientation were consistently observed among movements to the two targets, and no clear difference was observed between firing patterns to the two targets.

Figure 4: Perievent histogram of a motor cortical cell encoding hand orientation during reaching and grasping the targets oriented at three different angles. Time zero is aligned at central pad release (movement onset). The empty triangles represent left target light on; the empty squares represent right target light on; the solid diamonds represent target hit. The raster are ordered by ascending movement duration. The histograms were calculated with the bin of 10-msec and smoothed using a Gaussian filter with filter width of 3 bins

C. Direction-related-only Cells

We also found some direction-related-only cells. For these neurons, the discharge frequency during movement to one of the target was significantly higher (ANOVA, effect of movement direction, P < 0.05) than that to the other target. And the difference in the neuronal discharge patterns caused by movement direction was consistently observed across movements to the three different target orientations.

D. Orientation-direction-interaction Cells

Another type of cells was found to have significant orientation-directioninteraction effect (P < 0.05). Figure 5 shows perievent histograms of an illustrative cell. We noticed that most orientation-direction-interaction cells better encode target hit than central pad release, so we aligned the raster at target hit. A significant orientation-direction interaction effect indicates that the orientation effect was not uniform between both targets. There might be a shift in the orientation preference between two movement directions. Note that in the illustrative cell (Figure 5), for the left target, the neuron's discharge frequencies during movements to 90° and 135° target are higher than that during movements to 45° target; while for the right target, it is the firing during movements to the 45° target that has the greatest discharge frequency.

2.3 Discussion from Previous Studies

The present study was conducted to examine the motor cortical control of hand orientation during reach-to-grasp. We fixed initial hand position and target locations to keep the movement directions fixed, and investigated reach-to-grasp movements to targets oriented at various angles. We found single motor cortical neurons contributed to the control of hand orientation. Changes in hand orientation altered the discharge activity of motor cortical neurons before, during and after reach-to-grasp movements.

The present findings reveal that the discharge of a lot of single motor cortical neurons co-varied only with hand orientation independent of movement direction during reach-to-grasp movements. This is in contradiction to the suggestion that the position and orientation of the hand in space are unlikely to be controlled through separate independent neural pathways [12]. Our result shows that hand orientation constitutes an important control parameter of 3-D prehension movements, and any hypothesis proposed for prehension movement that does not take into account hand orientation as a constraint is inadequate. At the same time, we found significant amount of orientation-direction-interaction cells, and there

Figure 5: Perievent histogram of a motor cortical cell encoding orientationdirection-interaction during reach-to-grasp. The raster were grouped in the same way as we did in Figure 4. Time zero is aligned at target hit. The empty triangles represent left target light on; the empty squares represent right target light on; the solid squares represent central pad release. The raster are ordered by the trial sequence

is also a motor cortical area in which we found both cells encode only hand orientation and cells encode only movement direction, which indicate there probably exists a common pathway in M1 that controls both parameters.

3. Methodology

Observed from the behavior of neurons in our study, most neurons will not fire in a specified tiny time interval, says, of length 40-msec, but will fire in many other 40-msec time intervals. Among 18 replicates of each neuron, we did find that some neurons might not fire at first few 40-msec, usually the first one or two 40-msec intervals. We observed the mean firing counts per 40-msec time interval of 18 replicates is either flat (a constant), or a linear trend over these 40-msec time intervals. We can regard 40-msec as per unit time interval.

Let t_0 be the time from zero no firing counts being observed, and MT be the whole time of a specified action for a neuron.

Case I: All time intervals have constant firing count c except the first few time intervals. Then the total firing counts of a neuron over the time MT is

$$tc = \int_0^{t_0} 0dt + \int_{t_0}^{MT} cdt = c(MT - t_0) = \alpha_0 + c * MT.$$
(3.1)

Here, α_0 might be zero. If it is zero, the total firing counts over the time MT will be reasonably expressed as a ratio, tc/MT.

Anyway, the total firing counts over the time MT can be represented as a linear function of time MT. It makes no sense that c is negative as c, being counts, is either zero or positive.

Case II: The firing counts have a linear trend over those 40-msec time intervals. Then the total firing counts of a neuron over the time MT is

$$tc = \int_0^{t_0} 0dt + \int_{t_0}^{a+bt} dt = \alpha_0 + a * MT + \frac{b}{2} * MT^2.$$
(3.2)

The total firing counts over the time MT will be a quadratic function of time MT as long as b is not zero. If the neuron is firing increasingly or decreasingly along 40-msec time intervals, the linear trend a + b * t will have a non-zero slope b.

Thus, if the total firing count is a quadratic function of the time MT with statistically significant positive coefficient of MT^2 , the neuron is firing more and more along the time. If the total firing count is a quadratic function of the time MT with statistically significant negative coefficient of MT^2 , the neuron is firing less and less along the time.

If the neuron is firing more and more or less and less, it seems much likely it is involving some action. On the contrary, if the neuron is firing constantly along the time, it seems the neuron is just firing spontaneously. That is, the firing counts are some noises. If this is true, we are supposed to looking for functioning neurons is to find out neuron's total firing count being a quadratic function of time MT.

For neurons firing increasingly (decreasingly) in the early period of the whole time interval of length MT, then firing decreasingly (increasingly) in the late period, it can be shown the total firing count is again a quadratic function of the time MT, too. The coefficient of MT^2 of this function is determined by the linear trend of firing in the late period.

The real neuron firing count when it functions along the time might be a high order polynomial of time, or a nonlinear function. Our approach is that we approximate this complicate function by its first order Taylor expansion. Under this approach, we can directly examine whether the relationship between the total firing count and the time MT is a quadratic or not.

4. Results

We did ANCOVA analysis described in Section 3. To support our proposed analysis, we investigated the neuron firing behavior by performing the perievent histogram of a motor cortical cell encoding orientation-direction-interaction during reach-to-grasp using NeuroExplorer. The raster were grouped in the same way as we described in the previous section. Time zero is aligned at Central Pad Release. The blue triangles represent the target light on and central light off. The raster are ordered by the trial sequence. Figure 6 is the perievent histograms for Neuron ID Aug12set7_sig004a. The left column shows the cell's activity during

Figure 6: Neuron ID Aug12set7_sig004a. Perievent histogram of a motor cortical cell encoding orientation-direction-interaction during reach-to-grasp. The raster were grouped in the same way as we did in previous Figures. Time zero is aligned at Central Pad Release. The blue triangles represent the target light on and central light off. The raster are ordered by the trial sequence

movements to the left target; the right column shows the cell's activity during movements to the right target. The three rows correspond to three levels of target orientations. Each raster illustrates the firing pattern of the cell during 18 trials of movements to the same target condition. The effect of target 90° orientation has quadratic effect significantly (ANCOVA, P < 0.05). Also the interaction of T_6 and Orientation 90° has quadratics effect. No clear difference was observed between firing patterns to the two targets. The scatter plots and fitted lines of Neuron ID Aug12set7_sig004a are presented in Figures 7, 8, and 9.

Figure 7: The scatter plots and fitted line from ANCOVA model consider Direction only for Neuron ID Aug12set7_sig004a

Figure 8: The scatter plots and fitted line from Orientation only ANCOVA model for Neuron ID Aug12set7_sig004a

NID= 67

Figure 9: The scatter plots and fitted line from ANCOVA model considering interaction for Neuron ID Aug12set7_sig004a

Figure 10 shows the perievent histograms for Neuron ID Aug12set7_sig004b. The effects of target 45° orientation, and the interaction of the right direction and target 45° orientation have linear effect. The effect of target 90° orientation, and the interactions of left direction and 45°, left direction and 90°, right direction and 90° have quadratics effect. No statistically significant difference was observed between firing patterns to the two targets. The scatter plots and fitted lines of Neuron ID Aug12set7_sig004b are shown in Figures 11, 12 and 13.

A. Summary of the results from the direction only model:

Using the notations of T_1 for the left target, and T_6 for the right target, Table 1 shows the summary of the results from the ANCOVA analysis for the neuron activities in all intervals. The first column is for the T_1 effect and the second column is for the T_6 effect. In the first two columns, the symbol "2" indicates there is significant quadratic effect and "0" indicates there is no effect. The fifth column is the number of neurons overlapped between CHT and CRT, the seventh column is the number of neurons overlapped between CRT and MT, and the ninth column is the number of neurons overlapped between MT and THT. From Table 1, the first row shows that among 979 neurons, one neuron in CHT interval, 5 neurons in CRT, 11 in MT and 2 in THT have significant equal T_1^2 effect and T_6^2 effect. There is no overlapped neuron between two adjacent time intervals.

Figure 10: Neuron ID Aug12set7_sig004b. Perievent histogram of a motor cortical cell encoding orientation-direction-interaction during reach-to-grasp. The raster were grouped in the same way as we did in previous Figures. Time zero is aligned at Central Pad Release. The blue triangles represent the target light on and central light off. The raster are ordered by the trial sequence

Figure 11: The scatter plots and fitted line from ANCOVA model consider Direction only for Neuron ID Aug12set7_sig004b

Figure 12: The scatter plots and fitted line from ANCOVA model consider Orientation only for Neuron ID Aug12set7_sig004b

Figure 13: The scatter plots and fitted line from ANCOVA model considering interaction for Neuron ID Aug12set7_sig004b

T_1	T_6	equal or not	CHT	overlap	\mathbf{CRT}	overlap	MT	overlap	THT
2	2	$T_1 = T_6$	1	0	5	0	11	0	2
2	2	$T_1 \neq T_6$	2	0	3	0	7	0	2
2	$1 \ {\rm or} \ 0$	NA	38	3	74	10	99	4	49
1 or 0	2	NA	37	4	73	10	98	8	53
1	1	$T_1 = T_6$	609	322	405	217	390	60	102
1	1	$T_1 \neq T_6$	30	0	12	0	0	0	1
1	0	NA	49	11	129	21	108	11	125
0	0	NA	73	31	100	33	90	55	397

Table 1: Summarized results of the ANCOVA analysis for the neuron firing activities

B. Summary for the results from the orientation only model:

Table 2 shows the summary of the results from the ANCOVA analysis for the neuron activities in all intervals. The first column is for the target 45° orientation effect, the second column is for the target 90° orientation, the third column is for the target 135° orientation. In the first three columns, the symbol "2" indicates there is significant quadratic effect, and "0" indicates there is no effect. From Table 2, the first row shows that among 979 neurons, none in CHT interval, none in CRT, two neurons in MT and none in THT have significant quadratic effects for orientation 45° , 90° and 135° . There is no overlapped neuron between two adjacent time intervals.

45^{0}	90^{0}	135^{0}	CHT	overlap	CRT	overlap	MT	overlap	THT
2	2	2	0	0	0	0	2	0	0
2	2	1 or 0	3	0	7	0	10	0	0
2	1 or 0	2	0	0	5	0	10	0	1
1 or 0	2	2	6	0	5	0	11	0	1
2	1 or 0	1 or 0	40	3	55	3	81	4	49
1 or 0	2	1 or 0	49	8	63	5	72	2	43
1 or 0	1 or 0	2	43	5	69	5	89	4	39
1	1	1	458	167	236	104	221	8	22
1	1	0	51	0	39	4	67	3	34
1	0	1	56	7	79	9	64	3	25
0	1	1	37	2	81	13	81	4	46
1	0	0	27	3	57	6	47	2	74
0	1	0	27	5	51	5	43	6	92
0	0	1	37	4	64	6	40	2	93
0	0	0	72	26	95	18	68	31	387

Table 2: Summarized results of the ANCOVA analysis for the neuron firing activities

C. Summary for the results from the interaction model:

In this section, we briefly summarize our findings into two parts, direction specific and orientation specific. Here we will only show the results for MT interval. For the other intervals, details are shown in the Appendix.

i. Direction Specific:

Tables 3, 4 and 5 show the results of direction given 45° , 90° , and 135° orientation, respectively. Among 979 neurons, there are 12 neurons showing significant quadratic T_1 and T_6 effects at 45° orientation; 6 at 90° orientation and 14 at 135° orientation.

Table 3: The results of interaction model - direction effect with orientation-45° specific

T_1	T_6	Number of neurons
2	2	12
2	0	88
0	2	60

Table 4: The results of interaction model - direction effect with orientation-90° specific

T_1	T_6	Number of neurons
2	2	6
2	0	77
0	2	39

Table 5: The results of interaction model - direction effect with orientation-135° specific

T_1	T_6	Number of neurons
2	2	14
2	0	60
0	2	88

Table 6 shows the results of the numbers of overlapped neurons under different conditions. For instance, the first row shows that for those neurons with quadratic T_1 and T_6 effects, there is 1 neuron that performs significantly both in the direction only and the condition of orientation 45° specific; 1 neuron that performs significantly both in the direction only and the condition of orientation 90° specific; and 2 neurons that performs significantly both in the direction only and the condition of orientation 135° specific.

Influence of Choices of Statistical Models on Neural Spike Trend

	0110	intation speeme part		
T_1	T_6	overlap with 45° specific	overlap with 90° specific	overlap with 135° specific
2	2	1	1	2
2	0	23	26	17
0	2	14	12	23

Table 6: The results of interaction model - direction effect with non-orientation-specific part

Table 7 shows the results of the numbers of overlapped neurons between direction effect given orientation 45° and other given orientation. For instance, the first row shows that for those neurons with quadratic T_1 and T_6 effects, there is 1 neuron that performs significantly both in the direction effect given orientation 45° and the direction effect given orientation 90° specific; and 0 neuron that performs significantly both in the direction given orientation 45° and the direction effect given orientation 135° .

Table 7: The results of interaction model – direction effect given the orientation-45° specific

T_1	T_6	overlap with 90° specific	overlap with 135° specific
2	2	1	0
2	0	5	4
0	2	3	9

Table 8 shows the numbers of overlapped neurons between the direction effects given orientation 45° and given orientation 135° . For instance, the first row shows that for those neurons with quadratic T_1 and T_6 effects, there is 1 neuron that performs significantly both in the direction effect given orientation 90° and the direction effect given orientation 135° specific.

Table 8: The results of interaction model - direction effect given the orientation-90° specific

T_1	T_6	overlap with 135° specific
2	2	0
2	0	8
0	2	6

ii. Orientation Specific:

Tables 9 and 10 show the results of orientation effects, given T_1 and T_6 direction, respectively. For example, the first row of Table 9 shows that among 979 neurons, there is 1 neuron showing significant quadratic 45°, 90°, and 135° effects on T_1 direction specifically.

Table 9: The results of interaction model - orientation effect given direction- T_1 specific

45°	90°	135°	Number of neurons
2	2	2	1
2	2	0	8
2	0	2	7
0	2	2	10
2	0	0	84
0	2	0	64
0	0	2	56

Table 10: The results of interaction model – orientation effect given direction- $T_{\rm 6}$ specific

45°	90°	135°	Number of neurons
2	2	2	1
2	2	0	3
2	0	2	15
0	2	2	7
2	0	0	53
0	2	0	34
0	0	2	79

Tables 11 and 12 are the results of the number of overlapped significant functioning neurons. The first row in Table 11 shows that among those neurons with quadratic 45°, 90°, and 135° effects, 0 neuron performs significantly both in the cases of the orientation effect only and in the orientation effect given direction T_1 ; and 0 neuron performs significantly both in the cases of the orientation effect only and in the orientation effect given direction T_6 .

Table 11: The number of overlapped significant functioning neurons between non_dir_specific and direction T_1 and T_6

45°	90°	135°	non_dir_specific overlap T_1 specific	non_dir_specific overlap T_6 specific
2	2	2	0	0
2	2	0	1	0
2	0	2	0	4
0	2	2	2	1
2	0	0	36	15
0	2	0	24	9
0	0	2	23	32

45°	90°	135°	T_1 specific overlap T_6 specific
2	2	2	0
2	2	0	0
2	0	2	0
0	2	2	0
2	0	0	4
0	2	0	4
0	0	2	7

Table 12: The number of overlapped significant functioning neurons between T_1 specific and T_6 specific

For the results of other intervals can be found in the Appendix.

5. Discussion

Previous studies have shown that single motor cortical neurons commonly engage several motoneuronal pools rather than just one and that, within a particular pool that is engaged, the connections of the corticomotoneuronal cell are widespread. This one-to-several relation between motor cortical neurons and motoneuronal pools, and the reasonable assumption that a particular motor cortical neuron could engage different pools at different strengths, may explain the observation of our present study that the preferred directions or orientations of single motor cortical neurons differ among different cells. That is similar to what people have found in the reaching experiments, that the preferred directions of single motor cortical cells differ among different cells. Their suggestion was that single cells may relate to groups of muscles, so that a particular cell may engage several motoneuronal pools in a weighted fashion. The movement of the arm is regarded as the outcome of the coactivation of many muscle groups, each of which is being controlled as a separate functional unit. Their suggestion matched with our observations in this study.

Acknowledgements

The work is partially supported by grant from National Science Foundation - Division of Mathematical Sciences 0714949 to Shu-Chuan Chen and also by grants from DARPA (MDA972-00-1-0027 and Revolutionizing Prosthetics) and by funding from the Biodesign Institute at the Arizona State University to Jiping He. We also acknowledge the support of National Center for Theoretical Sciences (South), Taiwan.

Appendix

			5		0.	- ut	~	<u> </u>	<u>,</u>		3112			_ _,	~11					-1P	8						
Aug10set2-sig004a Aug10set2-sig004b	Aug10set2-sig003a	Aug10set2-sig002a	Aug10set2-sig001b	Aug10set2-sig001a	Aug09set4-sig005b	Aug09set4-sig005a	Aug09set4-sig004a	Aug09set4-sig003a	Aug09set4-sig002a	Aug09set4-sig001a	Aug09set3-sig005c	Aug09set3-sig005b	Aug09set3-sig005a	Aug09set3-sig004a	Aug09set3-sig003a	Aug09set3-sig002a	Aug09set3-sig001a	Aug09set1-sig005c	Aug09set1-sig005b	Aug09set1-sig005a	Aug09set1-sig004b	Aug09set1-sig004a	Aug09set1-sig003a	Aug09set1-sig002a	Aug09set1-sig001a	Neurons	
26 27	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	-1	6	υ	4	ယ	2		ID	
$15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\$	14	14	13	13	12	12	12	12	11	10	12	12	12	12	12	11	10	12	12	12	12	12	12	11	10	M-L	
13	13	13	13	13	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	A-P	
$\begin{array}{c} 1.4\\ 1.9\end{array}$	1.4	1.7	1.6	1.6	2.5	2.5	2.9	4.9	4.2	4.9	2.4	2.4	2.4	2.9	4.8	4.9	4.6	2.4	2.4	2.4	2.8	2.8	3.9	4.2	4.0	Depth	
Aug12set4-sig004b Aug12set5-sig004a	Aug12set4-sig004a	Aug12set2-sig004a	Aug12set1-sig004a	Aug11set7-sig004a	Aug11set5-sig004b	Aug11set5-sig004a	Aug11set2-sig004a	Aug11set2-sig003a	Aug11set2-sig002a	Aug11set2-sig001a	Aug10set5-sig005c	Aug10set5-sig005b	Aug10set5-sig005a	Aug10set5-sig004b	Aug10set5-sig004a	Aug10set5-sig003a	Aug10set5-sig002a	Aug10set5-sig001b	Aug10set5-sig001a	Aug10set4-sig005b	Aug10set4-sig005a	Aug10set4-sig004b	Aug10set4-sig004a	Aug10set4-sig003a	Aug10set4-sig002a	Neurons	Table 13: The su
$62 \\ 63$	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	ID	mm
$\begin{array}{c} 14 \\ 14 \end{array}$	14	14	14	10	10	10	10	10	10	9	15	15	15	15	15	14	14	13	13	15	15	15	15	14	14	M-L	ary o
14 14	14	14	14	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	A-P	f neu
3.5	3.5	3.0	3.0	4.8	4.8	4.8	4.5	4.3	4.5		1.6		1.6	2.0	2.0	1.4		1.7	1.7	1.5	1.5	2.0	2.0	1.4	1.8	Depth	The summary of neuron position
Aug13set5-sig005a Aug13set5-sig005b	Aug13set5-sig004a	Aug13set5-sig003a	Aug13set5-sig002a	Aug13set5-sig001a	Aug13set4-sig005a	Aug13set4-sig004a	Aug13set4-sig003a	Aug13set4-sig002b	Aug13set4-sig002a	Aug13set4-sig001a	Aug13set3-sig005b	Aug13set3-sig005a	Aug13set3-sig004a	Aug13set3-sig003a	Aug13set3-sig002a	Aug13set3-sig001a	Aug13set2-sig005b	Aug13set2-sig005a	Aug13set2-sig004a	Aug13set2-sig003b	Aug13set2-sig003a	Aug13set2-sig002a	Aug13set2-sig001a	Aug13set1-sig005b	Aug13set1-sig005a	Neurons	tion
66 86	97	96	$\overline{6}$	94	93	92	91	00	68	$\overset{\infty}{\infty}$	87 7	98	$^{\circ}_{5}$	84	$\frac{83}{2}$	82 82	81	$\frac{08}{0}$	79	78	77	76	75	74	73	ID	
10	9	∞	∞	x	10	9	x	x	∞	∞	10	10	9	∞	x	∞	10	10	9	∞	∞	∞	x	10	10	M-L	
$\infty \infty$	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	A-P										
1.1	1.2	2.0	2.1	2.2	1.1	1.2	2.0	2.0	2.0	2.1	1.1	1.1	1.9	2.0	2.0	1.9	1.2	1.0	1.2	1.9	1.9	2.0	1.6	1.0	1.0	Depth	

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

			uci	100	01	0		CCB	01	50	au	501	car	111	out	.10	on	110	sui		Spi	ne	11		1			0
Depth	2.3	2.1	2.0	1.2	1.2	1.2	1.2	1.2	2.4	1.9	2.0	2.0	1.9	1.9	1.9	2.6	2.2	2.2	2.0	2.0	2.1	2.0	2.0	2.0	2.6	2.2	2.2	
A-P	∞	6	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14								
M-L	x	∞	∞	6	10	10	10	10	7	6	10	10	10	10	10	10	11	11	6	6	10	10	10	10	10	11	11	
Ð	100	101	102	103	104	105	106	107	108	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	
Neurons	Aug13set6-sig001a	Aug13set6-sig002a	Aug13set6-sig003a	Aug13set6-sig004a	Aug13set6-sig005a	Aug13set6-sig005b	Aug13set6-sig005c	Aug13set6-sig005d	Aug14set2-sig001a	Aug17set7-sig001a	Aug17set7-sig002a	Aug17set7-sig002b	Aug17set7-sig003a	Aug17set7-sig003b	Aug17set7-sig003c	Aug17set7-sig004a	Aug17set7-sig005a	Aug17set7-sig005b	Aug17set8-sig001a	Aug17set8-sig001b	Aug17set8-sig002a	Aug17set8-sig003a	Aug17set8-sig003b	Aug17set8-sig003c	Aug17set8-sig004a	Aug17set8-sig005a	Aug17set8-sig005b	
Depth	3.6	3.8	3.8	3.1	3.1	1.5	2.0	1.8	1.2	2.1	1.8	1.8	1.7	1.9	2.5	2.6	2.6	1.8	1.8	1.8	1.9	1.9	2.6	2.1	2.1	1.8	1.8	
A-P	14	14	14	14	14	∞	∞	∞	∞	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	
M-L	14	14	14	14	14	∞	∞	∞	6	11	6	6	10	10	10	11	11	6	6	10	10	10	10	11	11	6	10	
Ð	64	65	66	67	68	69	20	71	72	145	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	
Neurons	Aug12set5-sig004b	Aug12set6-sig004a	Aug12set6-sig004b	Aug12set7-sig004a	Aug12set7-sig004b	Aug13set1-sig001a	Aug13set1-sig002a	Aug13set1-sig003a	Aug13set1-sig004a	Aug17set1-sig005a	Aug17set2-sig001a	Aug17set2-sig001b	Aug17set2-sig002a	Aug17set2-sig003a	Aug17set2-sig004a	Aug17set2-sig005a	Aug17set2-sig005b	Aug17set3-sig001a	Aug17set3-sig001b	Aug17set3-sig002a	Aug17set3-sig003a	Aug17set3-sig003b	Aug17set3-sig004a	Aug17set3-sig005a	Aug17set3-sig005b	Aug17set4-sig001a	Aug17set4-sig002a	
Depth	1.5	1.5	1.6	1.8	1.4	2.0	1.5	1.5	1.6	2.7	2.5	1.8	2.0	2.5	2.9	2.5	1.9	2.3	2.7	2.9	2.5	1.9	2.3	2.9	3.1	2.6	2.0	
A-P	13	13	13	13	13	13	13	13	13	9	6	6	6	6	6	6	6	6	9	6	6	6	6	6	6	6	6	
M-L	15	15	13	14	14	15	15	15	13	∞	∞	6	6	2	∞	∞	6	6	1	∞	∞	6	6	2	∞	x	6	
Ð	28	29	30	31	32	33	34	35	36	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	
Neurons	Aug10set2-sig005a	Aug10set2-sig005b	Aug10set3-sig001a	Aug10set3-sig002a	Aug10set3-sig003a	Aug10set3-sig004a	Aug10set3-sig005a	Aug10set3-sig005b	Aug10set4-sig001a	Aug14set2-sig002a	Aug14set2-sig003a	Aug14set2-sig004a	Aug14set2-sig005a	Aug14set3-sig001a	Aug14set3-sig002a	Aug14set3-sig003a	Aug14set3-sig004a	Aug14set3-sig005a	Aug14set4-sig001a	Aug14set4-sig002a	Aug14set4-sig003a	Aug14set4-sig004a	Aug14set4-sig005a	Aug14set5-sig001a	Aug14set5-sig002a	Aug14set5-sig003a	Aug14set5-sig004a	

Table 13: (continued) The summary of neuron position

Influence of Choices of Statistical Models on Neural Spike Trend

	Snu-Cn	uan Chen,	Lung-An	Li, Snen	Li and Jiping	g He	
Aug18set5-sig003a Aug18set5-sig004a Aug18set5-sig005a Aug18set6-sig001a	Aug18set4-sig005a Aug18set5-sig001a Aug18set5-sig002a	Aug17set1-sig003b Aug17set1-sig004a Aug18set4-sig003a Aug18set4-sig004a	Aug1/set1-sig001b Aug17set1-sig002a Aug17set1-sig002b Aug17set1-sig003a	Aug14set7-sig004a Aug14set7-sig005a Aug17set1-sig001a	Aug14set6-sig004a Aug14set6-sig005a Aug14set7-sig001a Aug14set7-sig002a Aug14set7-sig003a	Aug14set5-sig005a Aug14set6-sig001a Aug14set6-sig002a Aug14set6-sig003a	Neurons
223 224 225 226	220 221 222 222	$143 \\ 144 \\ 218 \\ 219 $	139 140 141 142	136 137 138	$ \begin{array}{r} 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ \end{array} $	127 128 129 130	Ð
$9 \\ 10 \\ 8 \\ 8$		10 10 10 10 10	9 10	0000	001-00	0 1- 2 2 2	M-L
15 15 15 15	1555	$\begin{array}{c}1&1&1\\1&5&4&4\\5&5&4\end{array}$	1 1 1 1 4 4 4 4	$14^{1/2}$	00000	00000	A-P
2.9 1.9 2.3	2.0 1.8 2.5	$ \begin{array}{r} 1.9 \\ 2.5 \\ 2.5 \end{array} $	1.3 1.3 1.3 1.3	2.2 2.6 1.8	2.1 2.4 3.0 2.6	2.4 2.9 3.1 2.6	Tab Depth
Aug19set3-sig001b Aug19set3-sig001c Aug19set3-sig002a Aug19set3-sig002b	Aug19set2-sig004a Aug19set2-sig005a Aug19set3-sig001a	Aug17set6-sig005a Aug17set6-sig005b Aug19set2-sig003a Aug19set2-sig003b	Aug1/set6-sig002b Aug17set6-sig003a Aug17set6-sig003b Aug17set6-sig004a	Aug17set5-sig005a Aug17set6-sig001a Aug17set6-sig002a	Aug17set5-sig002a Aug17set5-sig002a Aug17set5-sig003a Aug17set5-sig003b Aug17set5-sig004a	Aug17set4-sig003a Aug17set4-sig004a Aug17set4-sig005a Aug17set4-sig005b	Table 13: (continued) The summary of neuron positionpthNeuronsIDM-LA-PDepthNeurons
$259 \\ 260 \\ 261 \\ 262 $	$256 \\ 257 \\ 258 $	180 181 254 255	$170 \\ 177 \\ 178 \\ 179 $	$173 \\ 174 \\ 175 \\ 176 $	168 169 170 171 171 172	$164 \\ 165 \\ 166 \\ 167 \\ 167 $	The su
0000	10 10 9	11 11 10 10	$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	$ \begin{array}{c} 11 \\ 9 \\ 10 \\ 10 \end{array} $	9 10 10	$ \begin{array}{c} 10 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 \end{array} $	umma M-L
$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$14 \\ 12 \\ 12$	$\begin{array}{c}1&1&1\\1&4&4\\4&4&4\end{array}$	$\begin{array}{c}1&1&1\\1&4&4\\1&4&4\end{array}$	$\begin{array}{c}1&1&1&1&1\\1&4&4&4&4\end{array}$	$\begin{array}{c} 1 \\ 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	ary of A-P
1.2 1.2 1.3 1.3	1.8 1.2	1.5 2.8	$\frac{1.9}{3.0}$	2.1	1.8 2.0 2.6	$1.9 \\ 2.6 \\ 2.1 \\ 2.1 \\ 2.1$	neuron Depth
Aug19set6-sig003a Aug19set6-sig003b Aug19set6-sig003c Aug19set6-sig004a	Aug19set6-sig002a Aug19set6-sig002b Aug19set6-sig002c	Aug18set4-sig001a Aug18set4-sig002a Aug19set6-sig001a Aug19set6-sig001b	Aug18set3-sig002a Aug18set3-sig003a Aug18set3-sig004a Aug18set3-sig005a	Aug18set2-sig004a Aug18set2-sig005a Aug18set3-sig001a	Aug18set1-sig004a Aug18set1-sig005a Aug18set2-sig001a Aug18set2-sig002a Aug18set2-sig003a	Aug17set8-sig005c Aug18set1-sig001a Aug18set1-sig002a Aug18set1-sig003a	position Neurons
295 296 297 298	292 293 294	$216 \\ 217 \\ 290 \\ 291$	212 213 214 215	209 210 211 211	204 205 206 207 208	200 201 202 203	Ð
10 10	999	× 0 0 0	9 10 10	$\begin{array}{c}10\\8\end{array}$			M-L
12 12 12 12 12 12 12 12	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	$15 \\ 12 \\ 12$	15 5 5	15 15 5	$\begin{array}{c} 15\\15\\15\\15\end{array}$	$\begin{array}{c}11\\15\\15\end{array}$	A-P
$ \begin{array}{c} 1.5 \\ 1.5 \\ 2.0 \\ \end{array} $	1.22 II	3.4 3.6 1.2 1.2	4.0 4.4 4.0	3.6 3.4	4.3 3.5 3.9 4.3 3	2.2 3.2 4.2	Depth

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

_	I																											_
Depth	2.3	1.3	1.3	1.3	1.3	1.3	1.5	1.5	2.0	2.3	1.4	1.4	1.4	1.3	1.3	1.3	1.6	1.9	1.9	1.9	2.0	2.0	2.4	2.0	2.0	3.4	2.6	0 0
A-P	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	11	11	10
M-L	11	6	6	6	6	6	10	10	10	11	6	6	6	6	6	6	10	10	10	10	10	10	11	∞	∞	6	6	
ID	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	308
Neurons	Aug19set6-sig005a	Aug19set7-sig001a	Aug19set7-sig001b	Aug19set7-sig002a	Aug19set7-sig002b	Aug19set7-sig002c	Aug19set7-sig003a	Aug19set7-sig003b	Aug19set7-sig004a	Aug19set7-sig005a	Aug19set8-sig001a	Aug19set8-sig001b	Aug19set8-sig001c	Aug19set8-sig002a	Aug19set8-sig002b	Aug19set8-sig002c	Aug19set8-sig003a	Aug19set8-sig003b	Aug19set8-sig003c	Aug19set8-sig003d	Aug19set8-sig004a	Aug19set8-sig004b	Aug19set8-sig005a	Aug20set1-sig001a	Aug20set1-sig001b	Aug20set1-sig002a	Aug20set1-sig003a	A11023set3-si0005a
Depth	1.3	1.3	1.7	1.7	1.8	2.8	1.4	1.4	1.4	1.4	1.4	1.4	1.8	1.8	1.8	1.8	1.8	2.9	2.9	1.2	1.3	1.3	1.5	1.5	1.5	1.9	2.3	2.5
A-P	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	-
M-L	6	6	10	10	10	11	6	6	6	6	6	6	10	10	10	10	10	11	11	6	6	6	10	10	10	10	11	x
IJ	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	362
Neurons	Aug19set3-sig002c	Aug19set3-sig002d	Aug19set3-sig003a	Aug19set3-sig003b	Aug19set3-sig004a	Aug19set3-sig005a	Aug19set4-sig001a	Aug19set4-sig001b	Aug19set4-sig001c	Aug19set4-sig002a	Aug19set4-sig002b	Aug19set4-sig002c	Aug19set4-sig003a	Aug19set4-sig003b	Aug19set4-sig003c	Aug19set4-sig004a	Aug19set4-sig004b	Aug19set4-sig005a	Aug19set4-sig005b	Aug19set5-sig001a	Aug19set5-sig002a	Aug19set5-sig002b	Aug19set5-sig003a	Aug19set5-sig003b	Aug19set5-sig003c	Aug19set5-sig004a	Aug19set5-sig005a	Aug20set6-sig001a
Depth	2.7	2.9	2.5	1.9	2.3	2.9	3.1	2.6	2.0	2.4	2.9	3.1	2.6	2.1	2.4	3.0	3.2	2.6	2.2	2.6	1.8	1.8	1.3	1.7	1.9	1.9	2.5	1.2
A-P	15	15	15	15	15	15	15	15	15	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11
M-L	6	6	10	10	∞	6	6	10	10	6	6	6	6	6	6	6	6	10	10	11	6	6	6	6	6	6	6	10
Π	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	326
Neurons	Aug18set6-sig002a	Aug18set6-sig003a	Aug18set6-sig004a	Aug18set6-sig005a	Aug18set7-sig001a	Aug18set7-sig002a	Aug18set7-sig003a	Aug18set7-sig004a	Aug18set7-sig005a	Aug19set1-sig001a	Aug19set1-sig001b	Aug19set1-sig001c	Aug19set1-sig001d	Aug19set1-sig002a	Aug19set1-sig002b	Aug19set1-sig002c	Aug19set1-sig002d	Aug19set1-sig003a	Aug19set1-sig004a	Aug19set1-sig005a	Aug19set2-sig001a	Aug19set2-sig001b	Aug19set2-sig001c	Aug19set2-sig002a	Aug19set2-sig002b	Aug19set2-sig002c	Aug19set2-sig002d	Aug20set1-sig004a

Influence of Choices of Statistical Models on Neural Spike Trend

Table 13: (continued) The summary of neuron position

:				2	nu	-0	nua	an	Cn	en,	, LI	ung	g-A	n.	Li,	Sn	en	L1	an	a .	Jipi	ing	H	e				
Aug20set4-sig005d	Aug20set4-sig005c	Aug20set4-sig005b	Aug20set4-sig005a	Aug20set4-sig004a	Aug20set4-sig003a	Aug20set4-sig002a	Aug20set4-sig001a	Aug20set3-sig005c	Aug20set3-sig005b	Aug20set3-sig005a	Aug20set3-sig004a	Aug20set3-sig003a	Aug20set3-sig002a	Aug20set3-sig001a	Aug20set2-sig005c	Aug20set2-sig005b	Aug20set2-sig005a	Aug20set2-sig004b	Aug20set2-sig004a	Aug20set2-sig003b	Aug20set2-sig003a	Aug20set2-sig002a	Aug20set2-sig001a	Aug20set1-sig005c	Aug20set1-sig005b	Aug20set1-sig005a	Neurons	
353	352	351	350	349	348	347	346	345	344	343	342	341	340	339	338	337	336	335	334	333	332	331	330	329	328	327	Ð	
10	10	10	10	10	9	9	∞	10	10	10	10	9	9	x	10	10	10	10	10	9	9	9	∞	10	10	10	M-L	
11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	A-P	
1.7	1.7	1.7	1.7	1.4	3.0	2.2	3.0	1.7	1.7	1.7	1.3	2.7	2.8	2.1	1.7	1.7	1.7	1.3	1.3	2.6	2.6	3.0	2.0	1.6	1.6	1.6	Depth	Tabl
Aug23set3-sig001a	Aug23set2-sig005a	Aug23set2-sig004a	Aug23set2-sig003b	Aug23set2-sig003a	Aug23set2-sig002c	Aug23set2-sig002b	Aug23set2-sig002a	Aug23set2-sig001d	Aug23set2-sig001c	Aug23set2-sig001b	Aug23set2-sig001a	Aug23set1-sig005a	Aug23set1-sig004a	Aug23set1-sig003a	Aug23set1-sig002a	Aug23set1-sig001b	Aug23set1-sig001a	Aug20set6-sig005d	Aug20set6-sig005c	Aug20set6-sig005b	Aug20set6-sig005a	Aug20set6-sig004c	Aug20set6-sig004b	Aug20set6-sig004a	Aug20set6-sig003a	Aug20set6-sig002a	Neurons	Table 13: (continued) The summary of neuron position
389	388	387	386	385	384	383	382	381	380	379	378	377	376	375	374	373	372	371	370	369	368	367	366	365	364	363	Ð	he sı
9	11	10	10	10	9	9	9	9	9	9	9	11	10	10	9	9	9	10	10	10	10	10	10	10	9	9	M-L	umma
12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	11	11	11	11	11	11	11	A-P	ary of
1.3	2.2	2.3	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.3	1.3	2.1	2.2	1.2	1.4	1.1	1.1	1.4	1.4	1.4	1.4	1.5	1.5	1.5	3.1	1.9	Depth	neuron
Aug23set6-sig002c	Aug23set6-sig002b	Aug23set6-sig002a	Aug23set6-sig001d	Aug23set6-sig001c	Aug23set6-sig001b	Aug23set6-sig001a	Aug23set5-sig005a	Aug23set5-sig004a	Aug23set5-sig003a	Aug23set5-sig002c	Aug23set5-sig002b	Aug23set5-sig002a	Aug23set5-sig001d	Aug23set5-sig001c	Aug23set5-sig001b	Aug23set5-sig001a	Aug23set4-sig005a	Aug23set4-sig004a	Aug23set4-sig003a	Aug23set4-sig002c	Aug23set4-sig002b	Aug23set4-sig002a	Aug23set4-sig001d	Aug23set4-sig001c	Aug23set4-sig001b	Aug23set4-sig001a	Neurons	position
425	424	423	422	421	420	419	418	417	416	415	414	413	412	411	410	409	408	407	406	405	404	403	402	401	400	399	Ð	
9	9	9	9	9	9	9	11	10	10	9	9	9	9	9	9	9	11	10	10	9	9	9	9	9	9	9	M-L	
12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	A-P	
1.4	1.4	1.4	1.3	1.3	1.3	1.3	2.6	2.5	1.9	1.4	1.4	1.4	1.3	1.3	1.3	1.3	2.3	2.4	1.8	1.4	1.4	1.4	1.3	1.3	1.3	1.3	Depth	

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

Depth	1.9	2.5	2.6	1.4	1.4	1.4	1.4	1.5	2.6	2.6	2.5	2.5	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.7	2.7	2.7	2.5	2.5	2.5	2.5	2.6
A-P	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
M-L	10	10	11	6	6	6	6	6	∞	∞	6	6	6	6	6	10	10	10	10	∞	∞	∞	∞	6	6	6	6	6
ID	426	427	428	429	430	431	432	433	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525
Neurons	Aug23set6-sig003a	Aug23set6-sig004a	Aug23set6-sig005a	Aug23set7-sig001a	Aug23set7-sig001b	Aug23set7-sig001c	Aug23set7-sig001d	Aug23set7-sig002a	Aug31set4-sig002b	Aug31set4-sig002c	Aug31set4-sig003a	Aug31set4-sig003b	Aug31set4-sig004a	Aug31set4-sig004b	Aug31set4-sig004c	Aug31set4-sig005a	Aug31set4-sig005b	Aug31set4-sig005c	Aug31set4-sig005d	Aug31set5-sig001a	Aug31set5-sig002a	Aug31set5-sig002b	Aug31set5-sig002c	Aug31set5-sig003a	Aug31set5-sig003b	Aug31set5-sig003c	Aug31set5-sig003d	Aug31set5-sig004a
Depth	1.3	1.3	1.3	1.4	1.4	1.4	1.6	2.4	2.5	1.9	3.1	1.5	1.5	1.5	1.4	1.4	1.4	1.4	1.1	1.1	1.4	1.2	2.2	2.1	1.3	1.3	1.3	1.3
A-P	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
M-L	6	6	6	6	6	6	10	10	6	6	6	6	10	10	∞	x	x	6	6	6	6	6	6	6	10	10	10	x
ID	390	391	392	393	394	395	396	397	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489
Neurons	Aug23set3-sig001b	Aug23set3-sig001c	Aug23set3-sig001d	Aug23set3-sig002a	Aug23set3-sig002b	Aug23set3-sig002c	Aug23set3-sig003a	Aug23set3-sig004a	Aug31set1-sig003a	Aug31set1-sig003b	Aug31set1-sig004a	Aug31set1-sig004b	Aug31set1-sig005a	Aug31set1-sig005b	Aug31set2-sig001a	Aug31set2-sig002a	Aug31set2-sig002b	Aug31set2-sig003a	Aug31set2-sig003b	Aug31set2-sig003c	Aug31set2-sig003d	Aug31set2-sig004a	Aug31set2-sig004b	Aug31set2-sig004c	Aug31set2-sig005a	Aug31set2-sig005b	Aug31set2-sig005c	Aug31set3-sig001a
Depth	2.1	2.1	3.1	1.4	1.7	1.7	1.7	1.7	1.5	1.5	1.9	2.6	2.7	1.1	0.9	0.9	0.8	0.8	1.0	0.8	0.8	0.5	0.5	0.6	1.4	1.4	1.7	1.3
A-P	11	11	11	11	11	11	11	11	12	12	12	12	12	10	10	10	10	10	10	10	10	12	12	12	12	12	12	12
M-L	x	6	6	10	10	10	10	10	9	6	10	10	11	9	9	9	2	7	2	∞	∞	12	12	13	13	13	14	14
D	354	355	356	357	358	359	360	361	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453
Neurons	Aug20set5-sig001a	Aug20set5-sig002a	Aug20set5-sig003a	Aug20set5-sig004a	Aug20set5-sig005a	Aug20set5-sig005b	Aug20set5-sig005c	Aug20set5-sig005d	Aug23set7-sig002b	Aug23set7-sig002c	Aug23set7-sig003a	Aug23set7-sig004a	Aug23set7-sig005a	Aug24set5-sig001a	Aug24set5-sig002a	Aug24set5-sig002b	Aug24set5-sig003a	Aug24set5-sig003b	Aug24set5-sig004a	Aug24set5-sig005a	Aug24set5-sig005b	Aug26set3-sig001a	Aug26set3-sig001b	Aug26set3-sig002a	Aug26set3-sig003a	Aug26set3-sig003b	Aug26set3-sig004a	Aug26set3-sig005a

Influence of Choices of Statistical Models on Neural Spike Trend

Table 13: (continued) The summary of neuron position

-				2	hu	-C.	nua	an	Ch	en,	, Li	ung	g-A	.n	Lı,	Sh	en	L1	an	d.	np	ing	Н	e				
Aug31set7-sig002c	Aug31set7-sig002b	Aug31set7-sig002a	Aug31set7-sig001a	Aug31set6-sig005d	Aug31set6-sig005c	Aug31set6-sig005b	Aug31set6-sig005a	Aug31set6-sig004d	Aug31set6-sig004c	Aug31set6-sig004b	Aug31set1-sig002b	Aug31set1-sig002a	Aug30set1-sig005a	Aug30set1-sig004a	Aug30set1-sig003a	Aug30set1-sig002a	Aug30set1-sig001a	Aug26set4-sig005a	Aug26set4-sig004a	Aug26set4-sig003c	Aug26set4-sig003b	Aug26set4-sig003a	Aug26set4-sig002b	Aug26set4-sig002a	Aug26set4-sig001b	Aug26set4-sig001a	Neurons	
552	551	550	549	548	547	546	545	544	543	542	469	468	467	466	465	464	463	462	461	460	459	458	457	456	455	454	ID	
×	∞	∞	∞	10	10	10	10	9	9	9	∞	∞	13	13	12	12	11	14	14	13	13	13	13	13	12	12	M-L	
13	13	13	13	13	13	13	13	13	13	13	13	13	12	12	12	12	12	12	12	12	12	12	12	12	12	12	A-P	
2.7	2.7	2.9	2.7	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	1.4	1.1	0.6	1.0	1.7	1.5	1.8	1.4	1.4	1.4	0.6	0.6	0.5	0.5	Depth	Tab.
Sep01set1-sig004a	Sep01set1-sig003a	Sep01set1-sig002c	Sep01set1-sig002b	Sep01set1-sig002a	Sep01set1-sig001b	Sep01set1-sig001a	Aug31set8-sig005d	Aug31set8-sig005c	Aug31set8-sig005b	Aug31set8-sig005a	Aug31set4-sig002a	Aug31set4-sig001a	Aug31set3-sig005d	Aug31set3-sig005c	Aug31set3-sig005b	Aug31set3-sig005a	Aug31set3-sig004c	Aug31set3-sig004b	Aug31set3-sig004a	Aug31set3-sig003d	Aug31set3-sig003c	Aug31set3-sig003b	Aug31set3-sig003a	Aug31set3-sig002c	Aug31set3-sig002b	Aug31set3-sig002a	Neurons	Table 13: (continued) The summary of neuron position
588	587	586	585	584	583	582	581	580	579	578	505	504	503	502	501	500	499	498	497	496	495	494	493	492	491	490	ID	he sı
9	∞	∞	∞	∞	7	-7	10	10	10	10	∞	∞	10	10	10	10	9	9	9	9	9	9	9	∞	∞	8	M-L	umma
12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	A-P	ary of
	2.0		2.4		2.3					2.6	2.4	1.6		1.4	1.4	1.3	1.3	1.3	1.3	2.2	2.3	1.4	1.4	1.4	1.4	1.4	Depth	neuron
Sep01set4-sig004c	Sep01set4-sig004b	Sep01set4-sig004a	Sep01set4-sig003c	Sep01set4-sig003b	Sep01set4-sig003a	Sep01set4-sig002b	Sep01set4-sig002a	Sep01set4-sig001a	Sep01set3-sig005b	Sep01set3-sig005a	Aug31set6-sig004a	Aug31set6-sig003d	Aug31set6-sig003c	Aug31set6-sig003b	Aug31set6-sig003a	Aug31set6-sig002c	Aug31set6-sig002b	Aug31set6-sig002a	Aug31set6-sig001a	Aug31set5-sig005d	\sim	\sim	Aug31set5-sig005a	\sim	Aug31set5-sig004c	Aug31set5-sig004b	Neurons	position
624	623	622	621	620	619	618	617	616	615	614	541	540	539	538	537	536	535	534	533	532	531	530	529	528	527	526	ID	
9	9	9	∞	∞	∞	∞	∞	-7	9	9	9	9	9	9	9	∞	∞	∞	∞	10	10	10	10	9	9	9	M-L	
12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	A-P	
2.7	2.7	2.7	2.5	2.5	2.5	2.6	2.6	2.9	2.8	2.8	2.6	2.6	2.6	2.6	2.6	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.6	2.6	2.6	2.6	Depth	

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

Neurons	E	M-L	A-P	Depth	Neurons	ID	M-L	A-P	Depth	Neurons	ID	M-L	A-P	Depth
Aug31set7-sig003a	553	6	13	2.6	Sep01set1-sig004b	589	6	12	2.5	Sep01set4-sig005a	625	6	12	2.8
Aug31set7-sig003b	554	6	13	2.6	Sep01set1-sig005a	590	6	12	2.5	Sep01set4-sig005b	626	6	12	2.8
Aug31set7-sig003c	555	6	13	2.6	Sep01set1-sig005b	591	6	12	2.5	Sep01set4-sig005c	627	6	12	2.8
Aug31set7-sig003d	556	6	13	2.6	Sep01set2-sig001a	592	7	12	2.8	Sep01set5-sig001a	628	7	12	3.0
Aug31set7-sig004a	557	6	13	2.7	Sep01set2-sig001b	593	2	12	2.8	Sep01set5-sig001b	629	7	12	3.0
Aug31set7-sig004b	558	6	13	2.7	Sep01set2-sig001c	594	2	12	2.8	Sep01set5-sig002a	630	∞	12	2.6
Aug31set7-sig004c	559	6	13	2.7	Sep01set2-sig002a	595	∞	12	2.6	Sep01set5-sig002b	631	∞	12	2.6
Aug31set7-sig004d	560	6	13	2.7	Sep01set2-sig002b	596	∞	12	2.6	Sep01set5-sig003a	632	∞	12	2.5
Aug31set7-sig005a	561	10	13	2.6	Sep01set2-sig002c	597	∞	12	2.6	Sep01set5-sig003b	633	∞	12	2.5
Aug31set7-sig005b	562	10	13	2.6	Sep01set2-sig003a	598	∞	12	2.5	Sep01set5-sig004a	634	9	12	2.7
Aug31set7-sig005c	563	10	13	2.6	Sep01set2-sig004a	599	6	12	2.7	Sep01set5-sig004b	635	6	12	2.7
Aug31set8-sig001a	564	∞	13	2.7	Sep01set2-sig004b	600	6	12	2.7	Sep01set5-sig005a	636	6	12	2.9
Aug31set8-sig001b	565	∞	13	2.7	Sep01set2-sig004c	601	6	12	2.7	Sep01set5-sig005b	637	6	12	2.9
Aug31set8-sig001c	566	∞	13	2.7	Sep01set2-sig005a	602	6	12	2.8	Sep01set6-sig001a	638	7	12	2.9
Aug31set8-sig002a	567	∞	13	2.7	Sep01set2-sig005b	603	6	12	2.8	Sep01set6-sig001b	639	2	12	2.9
Aug31set8-sig002b	568	∞	13	2.8	Sep01set3-sig001a	604	2	12	2.6	Sep01set6-sig001c	640	2	12	2.9
Aug31set8-sig002c	569	∞	13	2.8	Sep01set3-sig001b	605	2	12	2.9	Sep01set6-sig002a	641	∞	12	2.7
Aug31set8-sig003a	570	6	13	2.8	Sep01set3-sig002a	606	∞	12	2.6	Sep01set6-sig002b	642	∞	12	2.7
Aug31set8-sig003b	571	6	13	2.8	Sep01set3-sig002b	607	∞	12	2.6	Sep01set6-sig003a	643	∞	12	2.5
Aug31set8-sig003c	572	6	13	2.8	Sep01set3-sig002c	608	∞	12	2.6	Sep01set6-sig003b	644	∞	12	2.5
Aug31set8-sig003d	573	6	13	2.8	Sep01set3-sig003a	609	∞	12	2.5	Sep01set6-sig003c	645	∞	12	2.5
Aug31set8-sig004a	574	6	13	2.8	Sep01set3-sig003b	610	∞	12	2.5	Sep01set6-sig004a	646	6	12	2.7
Aug31set8-sig004b	575	6	13	2.7	Sep01set3-sig004a	611	6	12	2.7	Sep01set6-sig004b	647	6	12	2.7
Aug31set8-sig004c	576	6	13	2.7	Sep01set3-sig004b	612	6	12	2.7	Sep01set6-sig005a	648	6	12	2.9
Aug31set8-sig004d	577	6	13	2.7	Sep01set3-sig004c	613	6	12	2.7	Sep01set6-sig005b	649	6	12	2.9
Aug31set6-sig004b	542	6	13	2.6	Aug31set8-sig005a	578	10	13	2.6	Sep01set7-sig001a	650	2	12	2.9
Aug31set6-sig004c	543	9	13	2.6	Aug31set8-sig005b	579	10	13	2.6	Sep01set7-sig001b	651	1-	12	2.9
Aug31set6-sig004d	544	6	13	2.6	Aug31set8-sig005c	580	10	13	2.6	Sep01set7-sig001c	652	4	12	2.9

Influence of Choices of Statistical Models on Neural Spike Trend

Table 13: (continued) The summary of neuron position

6					G	hu	-0	nua	an	Cn	en,	, L1	ung	3-A	n.	ы,	Sn	en	ы	an	α.	лр	ing	H	e			
	Aug31set8-sig003b	Aug31set8-sig003a	Aug31set8-sig002c	Aug31set8-sig002b	Aug31set8-sig002a	Aug31set8-sig001c	Aug31set8-sig001b	Aug31set8-sig001a	Aug31set7-sig005c	Aug31set7-sig005b	Aug31set7-sig005a	Aug31set7-sig004d		Aug31set7-sig004b	Aug31set7-sig004a	Aug31set7-sig003d	Aug31set7-sig003c	Aug31set7-sig003b	Aug31set7-sig003a	Aug31set7-sig002c	Aug31set7-sig002b	Aug31set7-sig002a	Aug31set7-sig001a	Aug31set6-sig005d	Aug31set6-sig005c	Aug31set6-sig005b	Aug31set6-sig005a	Neurons
	571	570	569	568	567	566	565	564	563	562	561	560	559	558	557	556	555	554	553	552	551	550	549	548	547	546	545	⊟
	9	9	∞	∞	∞	∞	∞	∞	10	10	10	9	9	9	9	9	9	9	9	∞	∞	∞	∞	10	10	10	10	M-L
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	A-P
	2.8	2.8	2.8	2.8	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.6	2.7	2.7	2.9	2.7	2.6	2.6	2.6	2.6	Depth
	Sep01set3-sig002b	Sep01set3-sig002a	Sep01set3-sig001b	Sep01set3-sig001a	Sep01set2-sig005b	Sep01set2-sig005a	Sep01set2-sig004c	Sep01set2-sig004b	Sep01set2-sig004a	Sep01set2-sig003a	Sep01set2-sig002c	Sep01set2-sig002b	Sep01set2-sig002a	Sep01set2-sig001c	Sep01set2-sig001b	Sep01set2-sig001a	Sep01set1-sig005b	Sep01set1-sig005a	Sep01set1-sig004b	Sep01set1-sig004a	Sep01set1-sig003a	Sep01set1-sig002c	Sep01set1-sig002b	Sep01set1-sig002a	Sep01set1-sig001b	Sep01set1-sig001a	Aug31set8-sig005d	Neurons
	607	606	605	604	603	602	601	600	599	598	597	596	595	594	593	592	591	590	589	588	587	586	585	584	583	582	581	Ð
	∞	∞	7	7	9	9	9	9	9	∞	∞	∞	∞	7	7	7	9	9	9	9	∞	∞	∞	∞	7	7	10	M-L
	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	13	A-P
	2.6	2.6	2.9	2.6	2.8	2.8	2.7		2.7			2.6					2.5	2.5	2.5	2.5	2.0	2.4	2.4	2.4	2.3	2.3	2.6	Depth
	Sep01set9-sig001b	Sep01set9-sig001a	Sep01set8-sig005b	Sep01set8-sig005a	Sep01set8-sig004c		Sep01set8-sig004a	Sep01set8-sig003c	Sep01set8-sig003b	Sep01set8-sig003a	Sep01set8-sig002c	Sep01set8-sig002b	Sep01set8-sig002a	Sep01set8-sig001c	Sep01set8-sig001b	Sep01set8-sig001a	Sep01set7-sig005c	Sep01set7-sig005b			Sep01set7-sig004b	Sep01set7-sig004a	Sep01set7-sig003c	Sep01set7-sig003b	Sep01set7-sig003a	Sep01set7-sig002b	Sep01set7-sig002a	Neurons
	679	678	677	676	675	674	673	672	671	670	669	899	667	666	665	664	663			660	659	658	657	656	655	654	653	Ð
																-1												M-L
	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	A-P
	3.3	3.3 3	2.9	2.9	2.8	2.8	2.8	2.6	2.6	2.6	2.7	2.7	2.7	3.0	3.0	3.0	2.8	2.8	2.8	2.8	2.8	2.8	2.5	2.5	2.5	2.7	2.7	Depth

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

Neurons	Θ	M-L	A-P	Depth	Neurons	A	M-L	A-P	Depth	Neurons	Ð	M-L	A-P	Depth
Aug31set8-sig003c	572	6	13	2.8	Sep01set3-sig002c	608	∞	12	2.6	Sep01set9-sig001c	680	4	12	3.3
Aug31set8-sig003d	573	6	13	2.8	Sep01set3-sig003a	609	∞	12	2.5	Sep01set9-sig002a	681	∞	12	3.0
Aug31set8-sig004a	574	6	13	2.8	Sep01set3-sig003b	610	∞	12	2.5	Sep01set9-sig002b	682	∞	12	3.0
Aug31set8-sig004b	575	6	13	2.7	Sep01set3-sig004a	611	6	12	2.7	Sep01set9-sig002c	683	∞	12	3.0
Aug31set8-sig004c	576	6	13	2.7	Sep01set3-sig004b	612	6	12	2.7	Sep01set9-sig003a	684	∞	12	2.8
Aug31set8-sig004d	577	6	13	2.7	Sep01set3-sig004c	613	6	12	2.7	Sep01set9-sig003b	685	∞	12	2.8
Sep01set9-sig003c	686	∞	12	2.8	Sep02set8-sig002a	722	15	10	1.5	Sep07set6-sig005a	758	14	6	0.6
Sep01set9-sig004a	687	6	12	2.9	Sep02set8-sig003a	723	15	10	1.8	Sep07set7-sig001a	759	12	6	0.5
Sep01set9-sig004b	688	6	12	2.9	Sep02set8-sig004a	724	16	10	1.3	Sep07set7-sig002a	760	12	6	0.5
Sep01set9-sig004c	689	6	12	2.9	Sep02set8-sig004b	725	16	10	1.3	Sep07set7-sig003a	761	13	6	0.6
Sep01set9-sig005a	690	6	12	3.0	Sep02set8-sig005a	726	16	10	1.4	Sep07set7-sig003b	762	13	6	0.6
Sep01set9-sig005b	691	6	12	3.0	Sep02set8-sig005b	727	16	10	1.4	Sep07set7-sig004a	763	13	6	0.8
Sep02set1-sig001a	692	14	10	0.7	Sep07set1-sig001a	728	12	6	0.3	Sep07set7-sig005a	764	14	6	0.8
Sep02set1-sig002a	693	15	10	1.0	Sep07set1-sig002a	729	12	6	0.4	Sep07set8-sig001a	765	12	6	0.5
${ m Sep02set1-sig003a}$	694	15	10	1.0	Sep07set1-sig003a	730	12	6	0.5	Sep07set8-sig002a	766	12	6	0.5
Sep02set1-sig004a	695	16	10	1.0	Sep07set1-sig003b	731	13	6	0.5	Sep07set8-sig002b	767	12	6	0.5
Sep02set1-sig004b	696	16	10	1.0	Sep07set1-sig004a	732	13	6	0.5	Sep07set8-sig003a	768	12	6	0.7
Sep02set1-sig005a	697	16	10	1.2	Sep07set1-sig005a	733	14	6	0.4	Sep07set8-sig003b	769	13	6	0.7
${ m Sep02set1-sig005b}$	698	16	10	1.2	Sep07set1-sig005b	734	14	6	0.4	Sep07set8-sig004a	770	13	6	1.0
${ m Sep02set1-sig005c}$	669	16	10	1.2	Sep07set2-sig001a	735	12	6	0.3	Sep07set8-sig005a	771	14	6	0.9
Sep02set4-sig001a	700	14	10	1.1	Sep07set2-sig002a	736	12	6	0.4	Sep08set4-sig001a	772	11	10	1.3
Sep02set4-sig002a	701	15	10	1.2	Sep07set2-sig003a	737	13	6	0.5	Sep08set4-sig002a	773	11	10	1.6
Sep02set4-sig003a	702	15	10	1.1	Sep07set2-sig004a	738	13	6	0.6	Sep08set4-sig002b	774	11	10	1.6
Sep02set4-sig004a	703	16	10	1.1	Sep07set2-sig005a	739	14	6	0.4	Sep08set4-sig003a	775	12	10	1.8
Sep02set4-sig004b	704	16	10	1.1	Sep07set3-sig001a	740	12	6	0.3	Sep08set4-sig004a	776	12	10	1.8
Sep02set4-sig005a	705	16	10	1.3	Sep07set3-sig002a	741	12	6	0.4	Sep08set4-sig005a	777	13	10	1.3
Sep02set4-sig005b	706	16	10	1.3	Sep07set3-sig003a	742	13	6	0.6	Sep08set5-sig001a	778	11	10	1.3

Table 13: (continued) The summary of neuron position

Influence of Choices of Statistical Models on Neural Spike Trend

3				S	hu	-C	hua	an	Ch	en,	, L1	ung	g-A	.n	Li,	Sh	en	Lı	an	d.	Jipi	ing	H	e				
Sep09set3-sig001a	Sep09set2-sig005a	Sep09set2-sig004a	Sep09set2-sig003a	Sep09set2-sig002a	Sep09set2-sig001a	Sep09set1-sig005a	Sep09set1-sig004a	Sep09set1-sig003a	Sep09set1-sig002b	Sep09set1-sig002a	Sep09set1-sig001a	Sep02set8-sig001a	Sep02set7-sig005b	Sep02set7-sig005a	Sep02set7-sig004a	Sep02set7-sig003a	Sep02set7-sig002a	Sep02set7-sig001a	Sep02set5-sig005c	Sep02set5-sig005b	Sep02set5-sig005a	Sep02set5-sig004b	Sep02set5-sig004a	Sep02set5-sig003a	Sep02set5-sig002a	Sep02set5-sig001a	Neurons	
GOR	804	803	802	801	800	799	798	797	796	795	794	721	720	719	718	717	716	715	714	713	712	711	710	709	708	707	ID	
x	10	10	9	9	∞	10	10	9	9	9	x	14	16	16	16	15	15	14	16	16	16	16	16	15	15	14	M-L	
0I	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	A-P	
2.6	1.1	1.9	2.9	2.1	1.4	1.1	1.5	2.3	1.9	1.9	2.0	1.6	1.7	1.7	1.8	2.4	1.7	1.9	1.3	1.3	1.3	1.1	1.1	1.3	1.2	1.2	Depth	Tab
Sep12set3-sig004a	Sep12set3-sig003a	Sep12set3-sig002a	Sep12set3-sig001a	Sep12set2-sig005a	Sep12set2-sig004a	Sep12set2-sig003a	Sep12set2-sig002b	Sep12set2-sig002a	Sep12set2-sig001a	Sep12set1-sig005b	Sep12set1-sig005a	Sep07set6-sig004a	Sep07set6-sig003b	Sep07set6-sig003a	Sep07set6-sig002a	Sep07set6-sig001a	Sep07set4-sig005b	Sep07set4-sig005a	Sep07set4-sig004a	Sep07set4-sig003b	Sep07set4-sig003a	Sep07set4-sig002b	Sep07set4-sig002a	Sep07set4-sig001a	Sep07set3-sig005a	Sep07set3-sig004a	Neurons	Table 13: (continued) The summary of neuron position
841	840	839	838	837	836	835	834	833	832	831	830	757	756	755	754	753	752	751	750	749	748	747	746	745	744	743	ID	The s
-	1-1	6	6	∞	-7	-7	6	6	6	∞	∞	13	13	13	12	12	14	14	13	13	13	12	12	12	14	13	M-L	summ
11	: 11	11	11	11	11	11	11	11	11	11	11	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	A-P	ıary c
0.7	1.0	1.9	2.0		0.7		1.9		2.0	0.4		0.8	0.6	0.6	0.5	0.4	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.5	0.6	Depth	of neurc
Sep15set1-sig005a	Sep15set1-sig004d	Sep15set1-sig004c	Sep 15 set 1 - sig 004b	Sep15set1-sig004a	Sep15set1-sig003c	Sep 15 set 1 - sig 003b	Sep15set1-sig003a	Sep 15 set 1 - sig 002a	Sep 15 set 1-sig 001 a	Sep14set1-sig005a	Sep14set1-sig004a	Sep08set7-sig005a	Sep08set7-sig004a	Sep08set7-sig003a	Sep08set7-sig002a	Sep08set7-sig001b	Sep08set7-sig001a	Sep08set6-sig005a	Sep08set6-sig004a	Sep08set6-sig003a	Sep08set6-sig002a	Sep08set6-sig001a	Sep08set5-sig005a	Sep08set5-sig004a	Sep08set5-sig003a	Sep08set5-sig002a	Neurons	n position
1.1.8	876	875	874	873	872	871	870	869	868	867	866	793	792	791	790	789	788	787	786	785	784	783	782	781	780	779	Ð	
11	10	10	10	10	10	10	10	9	9	11	10	13	12	12	11	11	11	13	12	12	11	11	13	12	12	11	M-L	
12	12	12	12	12	12	12	12	12	12	14	14	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	A-P	
0.7	0.9	0.9	0.9	0.9	1.4	1.4	1.4	1.3	2.6	2.1	1.7	1.8	2.2	2.0	1.7	1.7	1.7	1.4	2.0	1.9	1.6	1.4	1.3	1.9	1.9	1.6	Depth	

Shu-Chuan Chen, Lung-An Li, Shen Li and Jiping He

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ID M-L		I I	A-P	Depth	Neurons	Ð	M-L	A-P	Depth	Neurons	Ð	M-L	A-P	Depth
843 8 11 0.4 Sep15set1-sig005c 879 11 12 844 6 11 2.1 Sep15set2-sig001a 881 9 12 845 6 11 2.0 Sep15set2-sig001a 881 9 12 846 7 11 1.0 Sep15set2-sig002a 883 9 12 849 7 11 0.8 Sep15set2-sig002a 883 9 12 849 7 11 0.8 Sep15set2-sig003a 885 10 12 850 7 11 0.8 Sep15set2-sig003c 887 10 12 851 8 11 0.8 Sep15set2-sig003c 887 10 12 853 9 13 1.0 Sep15set2-sig003c 887 10 12 855 10 13 1.2 Sep15set2-sig004d 891 10 12 855 10 13 1.3 Sep15set2-sig005a 892 11 12 856 10	Sep09set3-sig002a 806 9 10 2.3 S	2.3	2.3		01	Sep 12set 3-sig 005a	842	8	11	0.4	Sep15set1-sig005b	878	11	12	0.7
844 6 11 2.1 Sep15set1-sig005d 880 11 12 845 6 11 2.0 Sep15set2-sig001a 881 9 12 846 7 11 1.0 Sep15set2-sig001a 881 9 12 846 7 11 1.0 Sep15set2-sig002a 883 9 12 849 7 11 0.8 Sep15set2-sig002a 885 10 12 849 7 11 0.8 Sep15set2-sig003a 885 10 12 851 8 11 0.8 Sep15set2-sig003a 887 10 12 853 9 13 1.0 Sep15set2-sig004a 889 10 12 855 10 13 1.2 Sep15set2-sig004a 891 10 12 855 10 13 1.2 Sep15set2-sig004a 891 10 12 855 10 13 1.3 Sep15set2-sig004a 892 11 12 855 10 <t< td=""><td>807 9 10 2.9 Se</td><td>10 2.9</td><td></td><td></td><td>Ň</td><td>Sep12set3-sig005b</td><td>843</td><td>x</td><td>11</td><td>0.4</td><td>Sep15set1-sig005c</td><td>879</td><td>11</td><td>12</td><td>0.7</td></t<>	807 9 10 2.9 Se	10 2.9			Ň	Sep12set3-sig005b	843	x	11	0.4	Sep15set1-sig005c	879	11	12	0.7
845 6 11 2.0 Sep15set2-sig001a 881 9 12 846 7 11 1.0 Sep15set2-sig002a 882 9 12 847 7 11 1.0 Sep15set2-sig002b 883 9 12 848 7 11 0.8 Sep15set2-sig002c 884 9 12 849 7 11 0.8 Sep15set2-sig002c 884 9 12 850 7 11 0.8 Sep15set2-sig003a 885 10 12 851 8 11 0.5 Sep15set2-sig003a 887 10 12 853 9 13 1.0 Sep15set2-sig004a 889 10 12 854 10 13 1.2 Sep15set2-sig004a 891 10 12 855 10 13 1.0 Sep15set2-sig005c 894 11 12 855 10 13 1.0 Sep15set2-sig005c 894 11 12 856 10	Sep09set3-sig004a 808 10 10 2.3 Se				s_{e}	Sep12set4-sig001a	844	9	11	2.1	Sep15set1-sig005d	880	11	12	0.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	809 10 10 1.4 Se				s_{e}	Sep12set4-sig002a	845	9	11	2.0	Sep15set2-sig001a	881	6	12	2.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	810 8 10 2.9 Se	10 2.9			$\mathbf{S}_{\mathbf{e}}$	Sep12set4-sig003a	846	-1	11	1.0	Sep15set2-sig002a	882	6	12	1.4
848 7 11 0.8 Sep15set2-sig002c 884 9 12 849 7 11 0.8 Sep15set2-sig003a 885 10 12 850 7 11 0.8 Sep15set2-sig003b 886 10 12 851 8 11 0.5 Sep15set2-sig003b 887 10 12 851 8 11 0.5 Sep15set2-sig003c 887 10 12 853 9 13 1.0 Sep15set2-sig004a 888 10 12 854 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.2 Sep15set2-sig005b 893 11 12 855 10 13 1.3 Sep15set2-sig005c 894 11 12 855 10 13 1.3 Sep15set2-sig005a 895 11 12 856 10 13 1.0 Sep15set2-sig005a 895 11 12 855 10	811 9 10 2.5 Sel	10 2.5			Sel	Sep12set4-sig003b	847	7	11	1.0	Sep15set2-sig002b	883	6	12	1.4
849 7 11 0.8 Sep15set2-sig003a 885 10 12 850 7 11 0.8 Sep15set2-sig003b 886 10 12 851 8 11 0.5 Sep15set2-sig003c 887 10 12 853 9 13 2.1 Sep15set2-sig003c 887 10 12 853 9 13 1.0 Sep15set2-sig004d 889 10 12 854 10 13 1.2 Sep15set2-sig004d 891 10 12 855 10 13 1.2 Sep15set2-sig004d 891 10 12 855 10 13 1.3 Sep15set2-sig005a 892 11 12 856 10 13 1.0 Sep15set2-sig005a 895 11 12 855 10 13 1.0 Sep15set2-sig005a 897 11 12 856 10 13 1.1 Sep15set2-sig005a 897 12 861 12 861	812 9 10 3.2 Sep	10 3.2			Sep	Sep12set4-sig004a	848	2	11	0.8	Sep15set2-sig002c	884	6	12	1.4
850 7 11 0.8 Sep15set2-sig003b 886 10 12 851 8 11 0.5 Sep15set2-sig003c 887 10 12 852 9 13 2.1 Sep15set2-sig004a 888 10 12 853 9 13 1.0 Sep15set2-sig004b 889 10 12 853 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.2 Sep15set2-sig004c 891 10 12 855 10 13 1.3 Sep15set2-sig005a 892 11 12 856 10 13 1.0 Sep15set2-sig005b 893 11 12 856 10 13 1.0 Sep15set2-sig005c 894 11 12 856 10 13 1.0 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set2-sig005d 894 11 12 861 11	813 10 10 2.9 Sep				Sep	Sep12set4-sig004b	849	2	11	0.8	Sep15set2-sig003a	885	10	12	1.4
851 8 11 0.5 Sep15set2-sig003c 887 10 12 852 9 13 2.1 Sep15set2-sig004b 888 10 12 853 9 13 1.0 Sep15set2-sig004b 889 10 12 855 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.3 Sep15set2-sig004c 891 10 12 855 10 13 1.3 Sep15set2-sig005c 893 11 12 856 10 13 1.0 Sep15set2-sig005c 894 11 12 856 10 13 1.0 Sep15set2-sig005c 894 11 12 856 10 13 1.1 Sep15set2-sig005c 895 11 12 860 10 13 1.1 Sep15set2-sig005c 897 9 12 861 11 13 0.7 Sep15set2-sig005c 897 9 12 861 11	814 10 10 2.1 Sep1	10 10 2.1 Sep1	10 2.1 Sep1	2.1 Sepl	Sep1	Sep12set4-sig004c	850	1-	11	0.8	Sep15set2-sig003b	886	10	12	1.4
852 9 13 2.1 Sep15set2-sig004a 888 10 12 853 9 13 1.0 Sep15set2-sig004b 889 10 12 854 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.2 Sep15set2-sig004c 891 10 12 855 10 13 1.3 Sep15set2-sig004d 891 10 12 856 10 13 1.3 Sep15set2-sig005a 892 11 12 857 10 13 1.0 Sep15set2-sig005d 893 11 12 856 10 13 1.1 Sep15set2-sig005d 895 11 12 860 10 13 1.1 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set2-sig005d 897 9 12 861 11 13 0.7 Sep15set3-sig003a 899 10 12 863 9	815 8 10 3.0 Sep1	10 3.0			Sep1	Sep12set4-sig005a	851	∞	11	0.5	Sep15set2-sig003c	887	10	12	1.4
853 9 13 1.0 Sep15set2-sig004b 889 10 12 854 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.2 Sep15set2-sig004d 891 10 12 856 10 13 1.3 Sep15set2-sig005d 892 11 12 857 10 13 1.0 Sep15set2-sig005d 893 11 12 858 10 13 1.0 Sep15set2-sig005d 894 11 12 859 10 13 1.1 Sep15set2-sig005d 895 11 12 860 10 13 1.1 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set2-sig005d 897 9 12 861 11 13 0.7 Sep15set3-sig003a 899 10 12 863 9 14 1.4 Sep15set3-sig003b 899 10 12 864 9	816 9 10 2.5 Sep1.	10 2.5			Sep1	Sep13set1-sig001a	852	6	13	2.1	Sep15set2-sig004a	888	10	12	1.0
854 10 13 1.2 Sep15set2-sig004c 890 10 12 855 10 13 1.3 Sep15set2-sig005d 891 10 12 856 10 13 1.3 Sep15set2-sig005a 892 11 12 856 10 13 1.0 Sep15set2-sig005b 893 11 12 855 10 13 1.0 Sep15set2-sig005c 894 11 12 855 10 13 1.1 Sep15set2-sig005c 894 11 12 850 10 13 1.1 Sep15set2-sig005c 894 11 12 860 10 13 1.1 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set3-sig001a 896 9 12 863 9 14 1.4 Sep15set3-sig003a 897 9 12 863 9 14 1.8 Sep15set3-sig003a 899 10 12 864 9	817 9 10 3.2 Sep15	10 3.2			Sep15	Sep13set1-sig002a	853	6	13	1.0	Sep15set2-sig004b	889	10	12	1.0
855 10 13 1.3 Sep15set2-sig004d 891 10 12 856 10 13 1.3 Sep15set2-sig005a 893 11 12 857 10 13 1.0 Sep15set2-sig005b 893 11 12 858 10 13 1.0 Sep15set2-sig005c 894 11 12 859 10 13 1.1 Sep15set2-sig005c 894 11 12 850 10 13 1.1 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set2-sig005d 897 9 12 861 11 13 0.7 Sep15set3-sig003a 897 9 12 863 9 14 1.4 Sep15set3-sig003a 899 10 12 864 9 14 1.8 Sep15set3-sig003b 90 10 12 865 10 14 1.8 Sep15set3-sig003b 90 10 12 865 14	818 10 10 2.9 Sep1:				Sep1:	Sep13set1-sig003a	854	10	13	1.2	Sep15set2-sig004c	890	10	12	1.0
856 10 13 1.3 Sep15set2-sig005a 892 11 12 857 10 13 1.0 Sep15set2-sig005b 893 11 12 858 10 13 1.0 Sep15set2-sig005c 894 11 12 859 10 13 1.1 Sep15set2-sig005c 895 11 12 860 10 13 1.1 Sep15set2-sig005d 895 11 12 861 11 13 0.7 Sep15set3-sig001a 896 9 12 861 11 13 0.7 Sep15set3-sig003a 897 9 12 863 9 14 1.4 Sep15set3-sig003a 899 10 12 864 9 14 1.8 Sep15set3-sig004a 900 10 12 865 10 14 1.9 Sep15set3-sig004b 900 10 12 865 10 14 1.9 Sep15set3-sig004b 900 10 12	819 10 10 2.1 Sep1	0 10 2.1 Sep1	10 2.1 Sep1	2.1 Sep1	Sep1	Sep13set1-sig003b	855	10	13	1.3	Sep15set2-sig004d	891	10	12	1.0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	820 8 10 3.0 Sep1	10 3.0			Sep1	Sep13set1-sig003c	856	10	13	1.3	Sep15set2-sig005a	892	11	12	0.7
858 10 13 1.0 Sep15set2-sig005c 894 11 12 0 859 10 13 1.1 Sep15set2-sig005d 895 11 12 0 860 10 13 1.1 Sep15set2-sig005d 895 11 12 0 861 11 13 0.7 Sep15set3-sig001a 896 9 12 1 862 11 13 0.7 Sep15set3-sig003a 898 10 12 1 863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.4 Sep15set3-sig003b 899 10 12 1 865 10 14 1.8 Sep15set3-sig004b 900 10 12 1 865 10 14 1.9 Sep15set3-sig004b 901 10 12 1	821 9 10 2.5 Sep ¹	10 2.5			Sep1	Sep13set1-sig004a	857	10	13	1.0	Sep15set2-sig005b	893	11	12	0.7
859 10 13 1.1 Sep15set2-sig005d 895 11 12 0 860 10 13 1.1 Sep15set3-sig001a 896 9 12 2 861 11 13 0.7 Sep15set3-sig001a 896 9 12 1 862 11 13 0.7 Sep15set3-sig003a 898 10 12 1 863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.4 Sep15set3-sig004b 900 10 12 1 865 10 14 1.8 Sep15set3-sig004b 900 10 12 1 865 10 14 1.9 Sep15set3-sig004b 901 10 12 1	822 9 10 3.4 Sep1	10 3.4			Sep1	Sep13set1-sig004b	858	10	13	1.0	Sep15set2-sig005c	894	11	12	0.7
860 10 13 1.1 Sep15set3-sig001a 896 9 12 2 861 11 13 0.7 Sep15set3-sig002a 897 9 12 1 862 11 13 0.7 Sep15set3-sig003a 898 10 12 1 863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.4 Sep15set3-sig004b 900 10 12 1 865 10 14 1.8 Sep15set3-sig004b 900 10 12 1 865 10 14 1.9 Sep15set3-sig004b 900 10 12 1	823 10 10 3.3 Sepl				Sep1	Sep13set1-sig004c	859	10	13	1.1	Sep15set2-sig005d	895	11	12	0.7
861 11 13 0.7 Sep15set3-sig002a 897 9 12 1 862 11 13 0.7 Sep15set3-sig003a 898 10 12 1 863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.8 Sep15set3-sig004a 900 10 12 1 865 10 14 1.8 Sep15set3-sig004a 900 10 12 1	824 10 10 2.4 Sep1				Sep1	Sep13set1-sig004d	860	10	13	1.1	Sep15set3-sig001a	896	6	12	2.9
862 11 13 0.7 Sep15set3-sig003a 898 10 12 1 863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.8 Sep15set3-sig004a 900 10 12 1 865 10 14 1.8 Sep15set3-sig004b 900 10 12 1					Sep	Sep13set1-sig005a	861	11	13	0.7	Sep 15set 3-sig 002a	897	6	12	1.5
863 9 14 1.4 Sep15set3-sig003b 899 10 12 1 864 9 14 1.8 Sep15set3-sig004a 900 10 12 1 865 10 14 1.9 Sep15set3-sig004b 901 10 12 1	Sep12set1-sig001b 826 6 11 2.0 Sep1	•••	•••	•••	Sep1	Sep13set1-sig005b	862	11	13	0.7	Sep15set3-sig003a	898	10	12	1.6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	827 6 11 1.9				Sep.	Sep14set1-sig001a	863	6	14	1.4	Sep15set3-sig003b	899	10	12	1.6
865 10 14 1.9 Sep15set3-sig004b 901 10 12 1	Sep12set1-sig003a 828 7 11 0.9 Sep				Sep	Sep14set1-sig002a	864	6	14	1.8	Sep15set3-sig004a	000	10	12	1.2
	829 7 11 0.6 Sep1	11 0.6			Sep1	Sep14set1-sig003a	865	10	14	1.9	Sep15set3-sig004b	901	10	12	1.2

Table 13: (continued) The summary of neuron position

Influence of Choices of Statistical Models on Neural Spike Trend

References

- Desmurget, M., Grea, H. and Prablanc, C. (1998). Final postural of the upper limb depends on the initial position of the hand during prehension movements. *Experimental Brain Research* **119**, 511-516.
- Desmurget, M. and Prablanc, C. (1997). Postural control of three dimensional prehension movements. *Journal of Neurophysiology* 77, 452-464.
- Desmurget, M., Prablanc, C., Arzi, M., Rossetti, Y., Paulignan, Y. and Urquizar, C. (1996). Integrated control of hand transport and orientation during prehension movements. *Experimental Brain Research* **110**, 265-278.
- Fan, J., He, J. and Tillery, S. H. (2006). Control of hand orientation and arm movement during reach and grasp. *Experimental Brain Research* 171, 283-296.
- Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. In Attention and Performance IX (Edited by J. Long and A. Baddeley), 153-168. Erlbaum, Hillsdale, New Jersey.
- Jeannerod, M. (1984). The timing of natural prehension movements. *Journal* of Motor Behavior 16, 235-254.
- Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. *Behavioural Brain Research* 19, 99-116.
- Klatzky, R. L., Fikes, T. G. and Pellegrino, J. W. (1995). Planning for hand shape and arm transport when reaching for objects. Acta Psychologica 88, 209-232.
- Mamassian, P. (1997). Prehension of objects oriented in three-dimensional space. Experimental Brain Research 114, 235-245.
- Marteniuk, R. G., Leavit, J. L., Mackenzie, C. L. and Athenes S. (1990). Functional relationships between grasp and transport components in a prehension task. *Human Movement Science* 9, 149-176.
- Marteniuk, R. G., Mackenzie, C. L., Jeannerod, M. and Athenes S. (1987). Constraints on human arm movement trajectories. *Canadian Journal of Psychology* 41, 365-378.
- Mon-Williams, M. and Tresilian, J. R. (2001). A simple rule of thumb for elegant prehension. *Current Biology* 11, 1058-1061.

Received September 9, 2010; accepted September 30, 2010.

Shu-Chuan Chen School of Mathematical and Statistical Sciences Arizona State University Tempe, AZ 85287, USA shu-chuan.chen@asu.edu

Lung-An Li Institute of Statistical Science Academia Sinica No. 128, Academia Rd., Sec. 2, Nankang, Taipei 115, Taiwan lali@stat.sinica.edu.tw

Shen Li Computational Bioscience Program Arizona State University Tempe, AZ 85287, USA li.shen@asu.edu

Jiping He School of Biological and Health Systems Engineering Arizona State University Tempe, AZ 85287, USA jiping.he@asu.edu