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Obtaining Estimators from Correlation Coefficients: The
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Abstract: Correlation coefficients are generally viewed as summaries, caus-
ing them to be underutilized. Creating functions from them leads to their
use in diverse areas of statistics. Because there are many correlation co-
efficients (see, for example, Gideon (2007)) this extension makes possible
a very broad range of statistical estimators that rivals least squares. The
whole area could be called a “Correlation Estimation System.” This paper
outlines some of the numerous possibilities for using the system and gives
some illustrative examples. Detailed explanations are developed in earlier
papers. The formulae to make possible both the estimation and some of the
computer coding to implement it are given. This approach has been taken in
hopes that this condensed version of the work will make the ideas accessible,
show their practicality, and promote further developments.
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1. Introduction

Amazingly, virtually everything that one does with least squares (LS) or nor-
mal theory can be done with any of a multitude of correlation coefficients (CCs)
and it can be done in a coherent fashion, with essentially one basic equation. Both
continuous and rank based CCs use the same formulae without change of nota-
tion. This means that the same computer code could be written to encompass
all estimations involving all the CCs. A user could designate which CC was de-
sired and then all computer calculations thereafter would be based on that choice
with minimal change to the rest of the computer code, including least squares
through Pearson’s CC. However, since the degree of robustness of all estimations
emanating from a particular CC depends on the degree of robustness of the CC
itself, CCs other than Pearson’s are usually more desirable. Appendix A.1 gives
R-code for five correlation coefficients which are defined in Gideon (2007); three
of these are also defined in Section 2.
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One focus of this paper is to show how to use any correlation coefficient
to estimate location, scale and slope coefficients in simple and multiple linear
regression. Once these procedures are developed, the Correlation Estimation
System (CES) is extended into nonlinear regression and estimation of parameters
for a particular density type. Some of the results are illustrated with a continuous
and with a rank based CC using absolute values. Although not done in this paper
the CES can be easily extended into time series and general linear models; see
Sheng (2002). Many of these areas have been tested using various CCs over 25
years and all results lead one to believe in the value of the approach.

2. Simple Linear Regression

For a random sample (x, y) in a simple linear regression model and for CC r,
let b be the estimate of β, i.e. b is the estimated slope of the regression line, which
is the line that makes the residuals y−bx uncorrelated with x. In other words, by
analogy with the population correlation of the independent random variable with
the residual random variable being zero, the estimate of β is found by setting the
sample equivalent to zero, that is, by solving the regression equation

r(x, y − bx) = 0. (1)

The function r(x, y−bx) is non-increasing as b increases, which makes equation
(1) easy to solve numerically. The code for this is in Appendix A.2. Of course,
for least squares, solving this equation with Pearson’s rp is equivalent to the more
familiar minimization process. The median of the uncentered residuals provides
a robust estimate of the intercept when used with a robust r. However, it is not
necessarily the case that the solution to equation (1) corresponds to the solution
to a particular minimization for every correlation coefficient. As an example, two
CCs are now introduced – one continuous, rav, and one rank based, rmf . Both
of these are examples of CCs in which solving equation (1) does not correspond
to a minimization. The general framework for them is found in Gideon (2007).
First a continuous absolute value CC is given.

Let SAx =
∑
|xi − x̄| and similarly for y, and define

rav =
1

2

(∑∣∣∣∣xi − x̄SAx
+
yi − ȳ
SAy

∣∣∣∣−∑∣∣∣∣xi − x̄SAx
− yi − ȳ

SAy

∣∣∣∣ ).
This is the FOURTH CC in Appendix A.1, abscor. For a bivariate normal dis-
tribution with CC ρ, the population value of rav is ρav = (

√
1 + ρ−

√
1− ρ)/

√
2.

The inverse is ρ = ρav
√

2− ρ2av, which is needed in multiple linear regression; the
R-code is given as MADI in Appendix A.1. (MAD is a Median Absolute Devia-
tion correlation coefficient, Gideon (2007), which extends and is compatible with
the existing MAD scale estimator; it has the same inverse as the Absolute Value
CC, rav.)
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In the same way Spearman’s CC is found by substituting ranks in place of the
original data in Pearson’s CC, substituting ranks in rav gives Gini’s CC. However,
the formula is simplified by ordering the original data by the x-values so that the
data replacement is

x1, y1
x2, y2
...
xi, yi
...
xn, yn


−→

1, q1
2, q2
...
i, qi
...
n, qn

where qi is the y point that corresponds to the ith smallest x value. Gini’s CC
is rmf = (

∑
|n+ 1− qi − i| −

∑
|qi − i|)/

[
n2/2

]
; the subscript mf stands for

modified footrule of Spearman and the notation in the denominator is that of
greatest integer. The code is given as the THIRD CC, Gini, in Appendix A.1.
For the bivariate normal, the population value is ρmf = (2/π)[arcsin((1+ρ)/2)−
arcsin((1− ρ)/2)]. The inverse, denoted GinI, is found in Appendix A.1. In 1906
Spearman attempted to formulate a CC based on just

∑
|qi − i|, but Gini’s valid

version was not formulated until 1914.

Tied value concerns must always be addressed when using rank based CCs.
It has been found that producing a unique value for any nonparametric CC
using the max-min tied value procedure outlined in Gideon and Hollister (1987)
handles this issue. This procedure is found in Appendix A.1 as R- function
fxyrk. It can be used on all nonparametric CCs, but in the case of the Greatest
Deviation Correlation Coefficient (GDCC) it must be used, as it is the only
known viable procedure. The definition of GDCC is rgd(x, y) = (max1≤i≤n(d−i )−
max1≤i≤n(d+i ))/ [n/2], where d+i =

∑i
j=1 I(qj > i), d−i =

∑i
j=1 I(n+ 1− qj > i),

and I is the indicator function. The same data transformation as above has been
used. The code is given as the FIRST CC, GDave, in Appendix A.1. While the
CES technique is completely general, the population value is not always known.
But, for the elliptically contoured densities, the population value of rgd can be
given explicitly as ρgd = (2/π) arcsin(ρ); the expression for Kendall’s Tau is the
same. The results for both ρav and ρmf are derived in an unpublished paper,
Population Values, on the website, www.math.umt.edu/gideon. ρgd can be found
in Gideon and Hollister (1987). The population inverse, sin((π/2)ρgd), is denoted
GDI and is found in Appendix A.1.

Note that if the model assumption is the bivariate normal or the bivariate t
class of distributions then X and Y − βX are uncorrelated so ρ(X,Y − βX) is
zero; both ρav and ρmf are also zero for these random variables as can be checked
by substituting ρ = 0 into the expressions above.
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3. Scale Equations

When working with least squares, finding the variation in the regression resid-
uals via least squares is natural; the two pieces (slope and scale) are naturally
connected. When working with these general CCs, we seek the same kind of
natural connectivity and so it is inappropriate to use least squares for the scale
estimate. For example, in the case of rav, the measure of variation of x or the
variation of the residuals from the regression should be based on absolute values,
because the original slope calculations were. In general, the same ideas must
be employed for both slope and scale to attain the connectivity we desire. It is
the author’s experience that this natural connectivity requirement is necessary
to retain desirable qualities such as the degree of robustness.

With this in mind, the variation in the estimate of residuals is found by solving
for s in

r(y0, (y − bx)0 − sy0) = 0. (2)

Here the superscript means the data are ordered; s estimates the ratio of standard
deviations, σres/σy, as one quantity not as the quotient of two quantities. The
scale equation (2) is examined in detail in Gideon and Rothan (2009). The
quantity σres/σx is estimated using equation (2) with x0 in place of y0, leaving
the residual term alone. This is needed in estimating the variation of the slopes
in the linear regressions. Code for these is in Appendix A.3.

s can also be viewed as the slope, not of the standard regression line, but of
a specialized regression, discussed in Section 5. Note that this is essentially the
same correlation regression equation (1) applied to ordered data: a numerical
routine that solves (1) will also solve (2). Moreover, equation (2) can be used in
an entirely different way. Instead of solving (1) for b and utilizing equation (2)
to get s (called the Regression Equation Technique or RET), (2) could be used
in a minimization: find the b that minimizes s. In this way, equation (2) could
subsume equation (1). This minimization is called the Optimization Technique
(OT); the idea is exploited in Section 7. Note too that the ordering on the
residuals is independent of the ordering on the y variable. This is key because
the set of residuals en masse is being measured relative to the set of y values; CES
views these globally. The residual for any particular x may be reordered into a
different position by the iterative technique used in seeking a minimum. For the
normal distribution, the quantity s is estimating σres/σy =

√
1− ρ2, where ρ is

the population correlation coefficient.

4. Multiple Linear Regression

For matrix Xn×p (n rows of independent data in which the ith column is the
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regressor variable, xi) and y (the dependent variable), the associated regression
equations are

r(xi, y −Xn×pβ̂) = 0, i = 1, · · · , p. (3)

The solution is a vector β̂ whose ith component is the coefficient of variable xi.
Rummel (1991) shows how to solve these using Gauss-Seidel for the case when r
is GDCC, and again, ties are not a problem using the max-min procedure. Every
CC has its own set of regression equations and linearity properties. The regression
equations correspond to the normal equations in the case of Pearson’s rp. Note
that these regression equations give a way to incorporate Kendall’s Tau into
the realm of multiple regression, which is desirable as Tau is moderately robust
and has several remarkable features. (See Sen (1968) or Gideon and Rummel
(1992) for the simple linear regression case and for an illustrated look at this
work specialized to Kendall’s Tau see Correlation and Regression without Sums
of Squares on the website.)

The variation in the estimate of residuals, s, which is the slope of a regression
line on ordered data (superscript 0) is found as the solution to

r(y0, (y −Xn×pβ̂)0 − sy0) = 0. (4)

This is, of course, the multiple regression version of equation (2); it is another
instance of the Regression Equation Technique (RET). Again note that a min-
imization could be used instead: find the β̂ that minimizes s; in other words
the Optimization Technique (OT) could be employed. The R-program optimize
is used for simple linear regression described in Appendix A.4 whereas nlm, de-
scribed in Appendix A.5, must be used for multiple linear regression.

For completeness the CES also needs a measure of the multiple correlation
coefficient. This is provided by the analogue of the coefficient of determination,
1− s2. Thus, a multiple CC can be defined by√

1− s2. (5)

5. A Correlation Coefficient Approach to Minimization of the SD ra-
tio, σres/σy

If one wants a minimal variation estimate s, again equation (4) is used but in
the reverse way. Now the coefficients β̂i, i = 1, · · · , p are chosen to minimize s in
(4). Again, for the normal distribution, s is estimating σres/σy =

√
1− ρ2 where

now ρ is the multiple correlation coefficient and so minimizing s is equivalent to
maximizing ρ. The results from RET and OT are not always the same, but as
expected, it has been found that they are usually quite similar. The dearth of
linearity properties of some CCs is a major cause of this difference. In addition,
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the convergence criteria, as well as the overall computing environment, affects
the results. A few examples are given in Section 7 using two of the CCs defined
above. All results for each method and all the examples were high quality, leading
to an even greater conviction of the value of the methods.

For later applications, equation (4) is expressed in a more general form. Let
the response variable y be modeled by some function, f , with argument x, which
relies on vector parameter β so the equation becomes

r(y0, (y − f(x, β̂))0 − sy0) = 0. (6)

The reason this is more general is that now f can be nonlinear. It is helpful to
view this equation geometrically. The ordered residuals are plotted against the
ordered ys and a simple linear regression is performed whose slope s is used to
ascertain the closeness of the fit. This is done not by focusing on the sum of
individual vertical deviations but by forcing the residuals overall to be relatively
small, as measured by the slope s of equation (2) or (6); that is, by regressing the
sorted residuals on the sorted ys. Thus equation (6) plays the role in CES that
the residual sum of squares does in classical least squares analysis. Theoretically
s will vary between 0 and 1; a value of 0, or a correlation of 1, denotes an exact
fit whereas a value of 1, or a correlation of 0, means there is no information in
the model under discussion.

6. Computation of the Standard Errors of the Regression Coefficients

In this section the asymptotic standard errors of the regression coefficients for
several CCs are given. These are derived using the asymptotic distributions of
the CCs and their population forms, which have only been derived for elliptically
contoured distributions such as t distributions. Gideon (2010) illustrates the
method. An example is given in the next section. The asymptotic distributions
are given for Kendall’s Tau, Greatest Deviation, and the absolute value CC. In
what follows σii is the (i, i) element of matrix Σ−1. It can be shown, in a multiple
linear regression setting, using matrix algebra and the relationship between Σ,
the covariance matrix, and R, the correlation matrix, that σiiσ2res = rii(σ2res/σ

2
xi

)
where rii is the (i, i) element of matrix R. The matrix R contains the estimates
of the population parameters, ρ. Thus, the relationship between the chosen CC
and ρ must be used. For example, ρ = ρav

√
2− ρ2av, which is of course used with

the population estimates, rav. Expressions using the other CCs are given in R-
code in Appendix A.1. The quantity σ2res/σ

2
x is estimated as a unit as explained

in Section 3 using a version of equation (2). The term rii can be interpreted as
the inverse of the residual variance of the the ith variable regressed on the other
standardized independent variables. Thus, these terms are always one or more
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(for one variable, equal to one) and a large size indicates a close relationship to
the other variables. See Healy (1986).

The results are that β̂i is asymptotically distributed:

N
(
β,

π2riiσ2res
9(n− 1)σ2xi

)
, for Kendall; N

(
β,
π2riiσ2res

4nσ2xi

)
, for GDCC; and

N
(
β,

(π − 2)riiσ2res
nσ2xi

)
, for the absolute value CC.

7. Examples Using CES and Comparisons of the RET and OT Methods

In this section, some examples are given to illustrate the use of the CES
method. The examples include simple and multiple linear regression as well as a
nonlinear model, done with various CCs and compared to least squares and the
Pearson correlation coefficient method using equations (1) through (6). Every
example includes rav. Some of the examples use data from Chatterjee and Price
(1991, C/P), some from Draper and Smith (1998, D/S), and some use simulation
data. Several additional correlation coefficients were used in simple and multiple
linear regression examples. Section 8 introduces a specialized version of equation
(6) that allows estimation of parameters for univariate distributions.

7.1 Simple Linear Regression

This first example illustrates the broadness of the method and the robustness
of several of the CCs by performing a simple linear regression on some data in
C/P with several correlation coefficients. The R-programs to do this depend on
utilizing the correlation coefficient in a way that the R-routine uniroot can accept.
The set of commands that calls uniroot can easily be given a new correlation
coefficient as the argument so a new slope is obtained. It is interesting that both
continuous and rank based correlation coefficients work equally well. Table 1 is
given to allow comparison of the slope estimates for each correlation coefficient.
Gideon (2007) should be consulted for illustrative information on the various
CCs.

The data from C/P, Television Rating Data, from Chapter 2, Simple Linear
Regression, is used to illustrate the results from the RET formulas (1) and (2)
for some correlation coefficients, specifically rav, Gini, MAD, GDCC, and Pces.
(Pces means using equations (1) and (2) with Pearson’s correlation coefficient;
Pces stands for Pearson’s with CES.) This data had four outliers, two on each
side of the bulk of the data that made the regression line steeper than it would
otherwise have been. Also the OT using equation (4) is illustrated for this simple
linear regression with correlation coefficients rav and MAD.
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Table 1: C/P data fitted using various correlation coefficients

Method
Slope from

Intercept
Relative s from

(1) or (4) (2) or (4)

rav with RET 0.558 2.329 0.813
rmf (Gini’s) with RET 0.583 2.208 0.915
MAD with RET 0.268 3.532 0.908
GDCC with RET 0.383 3.060 0.886
Pces with RET 0.665 1.642 0.737
rav with OT from (4) 0.571 2.264 0.812
MAD with OT from (4) 0.283 3.456 0.871

To compare, the LS values are slope = 0.665, intercept = 1.706, and s = 0.791 and

LS with 4 outliers deleted gives slope = 0.260, intercept = 3.713, and s = 0.935

For the slope calculation, Pces gives the same result as LS, but the median
rather than the mean of uncentered residuals was used for all the intercept es-
timations, including the Pces calculation. Further, equation (2) with Pces was
used to calculate s, which estimates the ratio σres/σy directly, whereas LS uses
two separate estimates for σres and σy, and then divides to compute this ratio.

Assuming that the least squares results with the outliers deleted actually give
the best estimate, the results in Table 1 make it apparent that MAD and GDCC
are by far the most robust methods for this data; they are close to outlier-deleted
results. When the outliers were deleted, all the other slopes moved considerably
closer to the GDCC and MAD values which hardly changed; exhibiting the exact
numbers did not seem necessary. Note that the last column shows that almost
all the correlational methods give a better estimate of the s ratio than LS, again
assuming that the LS results with the outliers deleted actually give the best
estimate. See C/P for their discussion. The two OT rows of Table 1 are produced
by minimizing s in equation (2) or (4). Note that the OT estimates of slope for
both MAD and rav are close to the corresponding estimates using the RET.

7.2 Multiple Linear Regression

In this section the Attitude Survey Data from the Multiple Regression Model,
Chapter 3 of C/P, is used as well as some multivariate normal data that is gener-
ated randomly with a random correlation structure. For the C/P data there are
six regressor variables used to predict the response variable. In Table 2, all six are
used in the fit and in Table 4, the two most important variables, one and three,
as determined in C/P, are used. For the RET, the correlation coefficients MAD,
rav, rmf , GDCC, and Kendall’s Tau are computed for all six variables, as well
as for variables one and three. The LS results are also given. The R-instructions
using the R-routine nlm for the solutions are sketched in Appendix A.5 under the
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heading RET. The standard error material in Section 6 is illustrated with this
data in Table 3 and Table 4 for rav, GDCC, and Kendall’s Tau and compared
to least squares. It is seen that the standard errors for rav and Kendall’s Tau
are very comparable to the least squares ones. Examination of Tables 2 and 3
indicates that least squares may have misinterpreted the effect of variable five. In
analogy with LS the t distribution can probably be used with these standard er-
rors to obtain confidence intervals. GDCC, being the most robust, has somewhat
larger SEs.

Table 2: RET for 5 CCs, C/P data, all six variables

Method No. iter int x1 x2 x3 x4 x5 x6 rel s

MAD 250* 31.41 0.667 -0.084 0.300 0.080 -0.329 -0.085 0.650
rav 7 18.82 0.555 -0.029 0.255 0.208 -0.104 -0.210 0.523
rmf 13 24.42 0.500 0.010 0.254 0.218 -0.180 -0.177 0.563
GDCC 26 33.01 0.320 0.113 0.393 0.250 -0.374 -0.131 0.556
Tau 12 21.67 0.475 -0.028 0.350 0.196 -0.133 -0.223 0.561
LS 10.79 0.613 -0.073 0.320 0.082 0.038 -0.217 0.581**

*250 iterations was set as the upper limit and so MAD did not converge. The reason may

be that median methods have intervals for the solutions rather than specific points. Even

if convergence were near, the solution interval may be just big enough to contain the var-

ious iterates, not allowing convergence.

**This was computed by using sres = 7.068 and sy = 12.173 so the ratio is 0.581.

Table 3: Standard errors on all six variables

Method SE x1 SE x2 SE x3 SE x4 SE x5 SE x6

rav 0.167 0.142 0.185 0.235 0.142 0.175
GDCC 0.226 0.188 0.256 0.279 0.250 0.227
Tau 0.157 0.135 0.171 0.215 0.154 0.196
LS 0.161 0.136 0.169 0.221 0.147 0.178

Table 4: RET for 5 CCs, C/P data, variables 1 and 3

Method No. iter int x1 x3 rel s

MAD 9 10.362 0.602 0.265 0.531
rav 7 10.320 0.640 (0.134) 0.218 (0.150) 0.531
rmf 5 7.917 0.659 0.243 0.545
GDCC 5 11.141 0.489 (0.222) 0.372 (0.226) 0.618
Tau 4 7.782 0.649 (0.129) 0.255 (0.142) 0.548
LS 9.871 0.642 (0.119) 0.211 (0.134) 0.560*

*This was computed by using sres = 6.817 and sy = 12.173 so the ratio is 0.560.

For comparison, using the OT (Appendix A.5) on rav took 18 iterations and gave

intercept 10.82, coefficients 0.618 and 0.258, and minimum s of 0.527. Values in

parentheses are SEs.
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The OT results are given in Table 5. The criterion to judge convergence
was the smallness of either the sum of the absolute value of the changes in the
coefficients or the sum of the absolute values of the correlations in equation (3).
As mentioned earlier, the results from the OT method and RET method are not
the same. For example, the largest difference is 0.82 of a SE in the coefficient of
variable five for rav.

Table 5: OT for 2 CCs, C/P data, all six variables

Method No. iter int x1 x2 x3 x4 x5 x6 rel s

rav 39 8.19 0.594 -0.099 0.350 0.118 0.012 -0.133 0.502
Pces* 35 10.43 0.639 -0.053 0.282 0.065 0.024 -0.157 0.506

*Again Pces is Pearson’s correlation coefficient but used with the OT in equation (4).

Note that from equation (5), the estimate of the multiple correlation coefficient for the

Pces method is 0.862 and for rav is 0.865.

For the second example, the RET for multiple regression was explored using a
random generation of seven normal variates with a random correlation structure;
one variable was regressed on the other six. Least squares was compared to the
Pces and the rav methods. Table 6 contains some rank comparisons on individual
β̂is. The LS method does not seem to be better and many times is worse even for
strictly normal data. It is worth noting that this observation does not contradict
the Gauss-Markov theorem since the criterion for success in the CES is not that
the standard residual variance is a minimum, but rather that the relative ratio
(σres/σy) is a minimum. Also note that in the C/P example above, the relative
ratio is sometimes smaller for correlation coefficients other than Pearson’s.

Table 6: Total ranks of coefficients from 16 simulations of a 7-variate normal
distribution

Method x1 x2 x3 x4 x5 x6

Pces 32.5 33 34.5 33 34.5 32.5
rav 25 27 26 31 28 31
LS 38.5 36 35.5 32 33.5 32.5

Recall that the OT relies on a geometric approach in which the slope of a sim-
ple linear regression estimates directly the relative ratio. In the RET, this relative
ratio is calculated after estimating the βs. In LS theory, the two approaches (min-
imizing the standard variance or using RET with Pearson’s correlation coefficient
or Pces) are identical, whereas in general in CES, the two approaches (RET and
OT) give reasonably close results, but are not usually identical. Since any method
would win a comparison within its own measurement technique, to give a valid
comparison, a rank counting procedure was used. To compare Pces, rav, and LS,
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16 runs were made of the 7-variate normal and the closest to the true regression
coefficient was recorded by ranks. This time, for each of the 16 random corre-
lation structures, a data set was generated with known population values. The
comparison is shown in Table 6; rank 1 was closest to the true parameter, and so
forth. So 32 = (16)(2) is the expected total sum of the ranks for each column if
all three methods are equally good. Note that the rav method was best because
estimates for all six coefficients were under the expected 32.

7.3 Nonlinear Regression

This section gives two examples of estimating the parameters in a nonlinear
situation. The illustrations are kept simple by using the exponential distribution
but generally any nonlinear model could be considered. Equation (6) is used
first with f(x, a, b) = a exp (−bx) where parameters a, b > 0; data was randomly
generated by adding normally distributed error to the model. An example from
the nonlinear regression chapter in D/S uses an actual data set with the model
f(x, a, b) = a+ (0.49− a) exp (−b(x− 8)). R-coding is found in Appendix A.6.

In both examples, a and b are varied in order to minimize s; in other words
the OT is being employed. Theoretically r can be any correlation coefficient,
but for computational purposes the nlm routine in R works only on continuous
functions in its minimization technique so only continuous correlation coefficients
could be tried. Thus only rav was employed for the randomization example; rav
and Pces were used on the D/S example.

The Randomization Example

Many simulations were run, but only one result is given; the sample size is
45, a = 1 and b = 0.5. The graphs show the two most basic concepts: first, the
ordered residuals plotted against the ordered response variable with a regression
line, Figure 1, i.e. results from equation (6) and second, the actual fit, Figure 2,
with estimated values of 1.012 for a and 0.495 for b. Any curve fitting method
is good only when there are sufficient data points throughout the essential range
of the model; this was certainly observed in these simulations. With this under-
standing of having adequate data, very good fits were obtained as illustrated in
Figures 1 and 2, showing again the viability of the CES and the usefulness of rav.

The Draper/Smith Example

In this section the chemical industry example of available chlorine at the
time of manufacture from D/S illustrates nonlinear fitting. D/S as well as other
practitioners show various sophisticated methods for dealing with the problem of
non-linear curve fitting. The procedure indicated here gives a simple alternative
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way to get a feasible fit. When the Pces correlation coefficient was used (usually
meaning results close to least squares), the methods of this paper gave essentially
the same result that D/S obtained, as desired. The fit from D/S was very good,
so CES passed its “stress test”. After 12 iterations, the convergence criteria were
satisfied giving final estimates of a = 0.392 and b = 0.103 for Pces and 0.391,
0.107 for rav. For comparison, the D/S results were a = 0.39, and b = 0.102.
Because the fit was so close no additional figures are shown.

8. Correlation Coefficient Estimation of the Parameters of Univariate
Distributions
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This section shows the generality of the correlation coefficient method by ad-
justing equation (6) for use in the estimation of the parameters of univariate
distributions. The response variable is replaced by some form of the empirical
distribution function Fn and the estimating function F is the theoretical cumu-
lative distribution function. The parameter β of the distribution function F is
varied to find the minimum s. In addition, here the residuals en masse are min-
imized relative to the edf Fn(x), so Fn(x) appears in place of the earlier y. The
Fn(x) needs no superscript, of course, as it is intrinsically ordered. R-coding is
found in Appendix A.7. The adjusted equation is

r(Fn(x), (Fn(x)− F (x, β̂))0 − sFn(x)) = 0. (7)

It has been shown that the solutions to equation (7) behave reasonably with
respect to location and scale changes when a distribution that can be standard-
ized, such as the normal, is used. For such distributions, however, the parameter
estimation technique related to equation (2) is an alternative. A paper on this
idea is available in Gideon and Rothan (2009) and is also on the website. How-
ever, for distributions like the gamma, the proposed method of equation (7) is
appropriate. One example is given for the gamma distribution with 25 randomly
generated observations with parameters scale = 2 and shape = 3. The estimates
were 1.19 for scale and 4.16 for shape. The results are summarized in Figures 3
and 4. Figure 3 is a geometrical picture of the fitting process using equation (7)
while Figure 4 plots x versus Fn(x), F (x), and the estimated F (x). It is probably
worth noting that nlm has some trouble staying in the appropriate solution space
when working on certain non-linear problems. It seems that choosing a suitable
starting value is critical. The example presented gave a good fit immediately.
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9. Conclusion

The CES provides a very general method to estimate parameters in a number
of different settings and with different estimation criteria. The CES has a mul-
titude of possibilities; many have presented themselves just in putting together
this paper. Certainly further study needs to be undertaken, but the area is so
broad that definitive study by a single person is virtually impossible. A profitable
study also needs better computational ability in R for the implicit equations of
CES. This idea is discussed in Appendix A.8.

It is apparent that CES with just Pces rivals least squares, but the method
can be used with all correlation coefficients (both continuous and nonparametric)
yielding a unified general estimation system applicable in many diverse areas.
One of the most appealing features of CES is its coherence, in that all CCs - even
robust ones - are treated the same, which makes it particularly easy to understand
and apply. Additionally, when a robust CC is used, the system obviates the need
for identifying outliers, which is notoriously difficult in the multivariate case.
Over the years GDCC, which displays robustness, was successfully incorporated
into many areas of estimation, such as time series, general linear models, and of
course nonlinear regression and estimation of parameters for a particular density
type. See Sheng (2002) for a general discussion of these areas. This leads one
to believe that any correlation coefficient could be similarly profitably employed
as shown in this paper by rav and the results in Table 1. All the necessary
machinery involving R and the estimations of this paper are included so that
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anyone could reproduce this work. Further asymptotic inference on the RET for
multiple regression is given in the papers Gideon (2010) and Gideon, Prentice,
and Pyke (1989).

Appendix: R-program Outline

A.1 Definitions of max-min procedure and five CCs

# min-max procedure, fxyrk, produces two unique sets of ranks that allow the
computation of the most positive and most negative correlations. w is used in all
NPCCs below.
fxyrk = function(x, y) {n = length(x)
# most positive computation
xt = x[order(y, x)] # x order by y with y ties ordered by x
rky = 1:n
rky1 = rky[order(xt, rky)] # ranks of y ordered by x
# most negative computation
xrr = n+1−rank(x) # reverse ranks on the x
xt = x[order(y, xrr)] # x ordered by y with y ties ordered by rev(x)
rky2 = order(xt, n:1) # ranks of y ordered by x with y ties ordered by rev(y)
w = matrix(c(rky1, rky2), n, 2, byrow = FALSE)}
# FIRST GDCC
GDave = function(x, y) {w = fxyrk(x, y)
n = length(w[, 1]); n1 = n−1; k = 1; cc = NULL
if(sum(abs(w[, 1]−w[, 2])) == 0) nave = 1 else nave = 2
while(k <= nave) {rky = w[, k]
ryr = n+1−rky
dy = NULL; dyn = NULL
for (i in 1:n1) {
dy = c(dy, sum(rky[1:i]−i>0))
dyn = c(dyn, sum(ryr[1:i]−i>0))}
mdyr = max(dyn)
mdy = max(dy)
cc[k] = (mdyr−mdy)/(n%/%2)
cc[2] = cc[k]
k = k+1}
GDcor = (cc[1]+cc[2])/2
GDcor}
# SECOND Kendall’s Tau
KENtau = function(x, y) {w = fxyrk(x, y)
n = length(x); n1 = n−1
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rky = w[, 1]; rky2 = w[, 2]
dy = 0; dy2 = 0
for(i in 1:n1) {i1 = i+1
dy = dy+sum(rky[i]<rky[i1:n])
dy2 = dy2+sum(rky2[i]<rky2[i1:n])}
KT = ((dy+dy2)/choose(n, 2))−1
KT}
# THIRD Gini or Modified Footrule
Gini = function(x, y) {w = fxyrk(x, y)
n = length(x); ident = 1:n
rky = w[, 1]; rky2 = w[, 2]
dpnc = sum(abs(n+1−rky−ident))
dppc = sum(abs(rky−ident))
dpnc2 = sum(abs(n+1−rky2−ident))
dppc2 = sum(abs(rky2−ident))
den = n∧2%/%2
Gcor = ((dpnc+dpnc2)−(dppc+dppc2))/(den*2)
Gcor}
# FOURTH Absolute Value CC, the continuous version of Gini
abscor = function(x, y) {
ym = mean(y); xm = mean(x)
SAx = sum(abs(x−xm)); SAy = sum(abs(y−ym))
dpnc = sum(abs((x−xm)/SAx+(y−ym)/SAy))
dppc = sum(abs((x−xm)/SAx−(y−ym)/SAy))
rav = (dpnc−dppc)/2
rav}
# FIFTH MAD CC
MADcor = function(x, y) {xm = median(x)
ym = median(y)
madx = median(abs(x−xm))
mady = median(abs(y−ym))
dpnc = median(abs((x−xm)/madx+(y−ym)/mady))
dppc = median(abs((x−xm)/madx−(y−ym)/mady))
rmad = (dpnc−dppc)/2
rmad}
# the population inverses for elliptical contoured populations
GinI = function(y) {tan(pi*y/4)*sqrt(1+2*cos(pi*y/2))} # Gini inv
GDI = function(y) sin(pi*y/2) # GD or Kendall inverse
MADI = function(y) y*sqrt(2−y∧2) # MAD or AV (abs) CC inverse
# setting up functions for CES regression
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GDslp = function(b, x, y) {GDave(x, y−b*x)}
GDslp2 = uniroot(GDslp, c(−10, 10), x = x, y = y)$root
Ginslp = function(b, x, y) {Gini(x, y−b*x)}
Ginslp2 = uniroot(Ginslp, c(−2, +2), x = x, y = y)$root
Kenslp = function(b, x, y) {KENtau(x, y−b*x)}
Kenslp2 = uniroot(Kenslp, c(−2, +2), x = x, y = y)$root
abcslp = function(b, x, y) {abscor(x, y−b*x)}
abcslp2 = uniroot(abcslp, c(−2, +2), x = x, y = y)$root
madslp = function(b, x, y) {MADcor(x, y−b*x)}
bslp = uniroot(madslp, c(−5, 7.0), x = x, y = y)$root

A.2 Simple linear regression using uniroot

Let f = function(x, y) { ... }
# in curly brackets choose one of the CCs from A.1 on data (x, y)
fslp = function(b, x, y) f(x, y−b*x) # solve for b in this function
slp = uniroot(fslp, c(l, u), x = x1, y = y1)$root # the slope of the regression
int = median(y1−slp*x1) # the intercept of the regression

A.3 Estimate of scale or error of the regression, also using uniroot

# The estimate of (1) σres/σy and (2) σres/σx as entities.
res = y1−(int+slp*x1); (1) y1s = sort(y1) or (2) yls = sort(x1)
# Only case (1) is shown in the next line.
s = uniroot(fslp, c(l, u), x = y1s, y = sort(res))$root
# s is the slope of the regression on ordered data. For case (1),

√
1− s2 estimates

the regression correlation coefficient, and for case (2), s is used in the estimate of
the variation of the slope parameter.

A.4 The minimum SD program using optimize (selects b to minimize
s for a simple linear regression)

ftest = function(b, x, y) {y3 = sort(y−b*x)
s = uniroot(fslp, c(−1, 2), x = sort(y), y = y3)$root
return(s)}

out1 = optimize(ftest, c(0, 1), x = x1, y = y1)

A.5 Multiple linear regression, using uniroot and nlm

# Let y1 be the response data, and XM the n×k matrix of regressor variable
data where there are k variables and the sample size is n. Again let f and fslp be
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as above in A.1 and let b be the notation for the vector of regression coefficients
not including intercept.

Optimization Technique (OT) using nlm

# define a function g of the regression coefficients to be used with R-routine nlm.
g = function(b) {

s = uniroot(fslp, c(l, u), x = sort(y1), y = sort(y1−XM%*%b))$root
return(s)}

# Note: b was 6 dimensional in the simulations and 2 and 6 in the C/P analysis
# The output for the multiple regression is obtained by
out = nlm(g, initialb)
int = median(y1−XM%*%b)

Regression Equation Technique (RET) using uniroot and Gauss-Seidel

# can use least squares method to compute an initial b value
while (de>0.005 & ct<250 & ctcor>0.01) {bp = b

for(i in 1:k) {XMS = XM[, −i]
bs = b[−i]
ys = y1−XMS%*%bs
b[i] = uniroot(fslp, c(bl[i], bu[i]), x = XM[, i], y = ys)$root
}
de = sum(abs(bp−b)) # the total change in the coefficients
ct = ct+1 # a counter that is initially zero
yres = y1−XM%*%b # the updated resdiduals
for(i in 1:k) bcor[i] = f(XM[, i], yres)
ctcor = sum(abs(bcor))}

int = median(y1−XM%*%b) # the intercept of the fit
yhat = int+XM%*%b # the predicted values of the model
# The fitted model estimates are in b and int. Generally the regression equations
(3) (as all numerical calculations) are only solvable to within some tolerance. The
convergence measures used here are (1) ct, upper bound on total number of iter-
ations, (2) de, the smallness of the sum total of the absolute value of the changes
in the slopes, and (3) ctcor, the smallness of the sums of the absolute values of the
correlations of the regressor variables with the residuals. The necessity of each
of these has been observed; there may be some overarching convergence measure
that is yet to be found.

A.6 Nonlinear estimation using uniroot and nlm

Let the data be in x and y and define a function, g2, for the estimation.
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ysort = sort(y)
g2 = function(b) {

s = uniroot(fslp, c(0, 1), x = ysort, y = sort(y−b[1]*exp(−b[2]*x)))$root
return(s)}

out = nlm(g2, c(µ, η), steptol = 0.001)
# µ and η are the initial values of b[1] and b[2]

A.7 Univariate distribution estimation of parameters using uniroot and
nlm

fn = ecdf(x) # the empirical distribution function of data x
g1 = function(b) {

s = uniroot(fslp, c(0, 1), x = fn(x), y = sort(fn(x)−F(x, b[1], b[2])))$root
return(s)} # F is the theoretical d.f. under consideration assum-
ing two parameters

out = nlm(g1, c(µ, η)) # µ and η are the initial values of b[1] and b[2]
plot(fn); lines(x, F(x, b[1], b[2]), type = “l”)
# Plot the outcome of the minimization, i.e. sorted residuals
(fn-F)0, versus fn. The slope of the fit is the minimum s.
yres = sort(fn(x)−F(x, b[1], b[2]))
ss = out$minimum
int = median(yres−ss*fn(x))
plot(fn(x), yres); abline(int, ss) # the final iteration plot

A.8 Suggestions for broadening the functionality of R

It is apparent that the R-routine nlm needs to be fine-tuned (or a new rou-
tine created) for solving implicit equations involving non-linear functions, such
as most distribution functions. The current form does not allow the CES method
of estimation to work flawlessly when a location parameter is part of the mini-
mization of equation (6). In running many simulations it was clear that a simple
shift in location would have given the minimization technique a better solution.
A work around is to include a constraint that allows the zero on the vertical axis
of the residual plot to be centered within the residuals. Observe that this is the
case for Figures 1 and 3. Also there were problems with nlm keeping the iterated
values of the parameters within a feasible solution space; it is very sensitive to
initial values. No problems seem to occur with the R-routines and the fitting of
linear models when no location parameters were involved in the minimization.

A second improvement would be for the nlm to generalize its technique so that
nonparametric correlation coefficients can be included as estimators. Estimation
with GDCC was run for many years with a numerical system using a C program
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that obtained the centered point of a solution interval with never a problem of
convergence. So the preferable nlm would also include centered solution points.
This most likely would allow convergence of the MAD method as used in Table
2.
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