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Abstract: Observational studies of relatively large data can have poten-
tially hidden heterogeneity with respect to causal effects and propensity
scores–patterns of a putative cause being exposed to study subjects. This
underlying heterogeneity can be crucial in causal inference for any obser-
vational studies because it is systematically generated and structured by
covariates which influence the cause and/or its related outcomes. Address-
ing the causal inference problem in view of data structure, machine learning
techniques such as tree analysis can be naturally necessitated. Kang, Su,
Hitsman, Liu and Lloyd-Jones (2012) proposed Marginal Tree (MT) proce-
dure to explore both the confounding and interacting effects of the covariates
on causal inference. In this paper, we extend the MT method to the case of
binary responses along with a clear exposition of its relationship with estab-
lished causal odds ratio. We assess the causal effect of dieting on emotional
distress using both a real data set from the Lalonde’s National Supported
Work Demonstration Analysis (NSW) and a simulated data set from the
National Longitudinal Study of Adolescent Health (Add Health).

Key words: Binary potential outcomes, causal inference, maximum likeli-
hood tree, propensity scores.

1. Introduction

1.1 Background

Observational studies of relatively large data can possess potential hetero-
geneities with respect to causal effects and/or propensity scores. Here the term
“causal effects” is the same as the one under the framework of potential outcomes
(or counterfactual outcomes) (Rubin, 2005; Robins, Hernán and Brumbac, 2000),
and the propensity scores are probabilities of being exposed to a putative cause
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(typically a treatment) given study subjects’ baseline information (Rosenbaum
and Rubin, 1983).

The basic concept of causal inference starts with potential outcomes that
are observable based on the way the treatment is assigned to study subjects. For
example, as in Section 4.2 of this paper, suppose that one could choose to do either
dieting or non-dieting. This person’s certain outcome, which is related to dieting,
can be observed under dieting or non-dieting. Such observable outcomes are called
potential outcomes (Rubin, 2005). True causal effect of dieting vs. non-dieting
is to compare these two potential outcomes for the same person (not among
different people). However due to time and space limit, only one of these two
potential outcomes can be actually observed. Such difficulty is addressed as the
fundamental problem of causal inference (Paul, 1986). During the past decades,
there have been many methods developed to address this problem in modern
epidemiology, psychology, biostatistics, and sociology (Robins et al., 2000; Schafer
and Kang, 2008; Rubin, 2005; Morgan and Winship, 2007). Yet these causal
inference methodologies all assessed causal effects without extensively exploring
heterogenous subgroups in the entire study sample.

The underlying heterogeneous data structures of observational study data sets
can be crucial in drawing causal inference because the heterogeneous structures
are systematically generated by confounding covariates and are able to modify the
degree and direction of the causal effects. Addressing the causal inference prob-
lem in view of data structure, machine learning techniques such as tree analysis
can be necessitated. Health sciences have extensively benefitted from decision
tree methods over the past decades due to their intuitive clarity of hierarchical
presentation (Breiman, Friedman, Stone and Olshen, 1984; Zhang and Singer,
1999; Su, Wang and Fan, 2004). All tree methods adjust for the covariates by
nonparametrically partitioning a whole data set into subgroups (also known as
terminal nodes of a decision tree) of subjects who share a homogeneous response
probability. That is, once the terminal nodes are optimally identified with resul-
tant cost-complexity functions, the distribution of the outcome within each of the
terminal nodes is no longer influenced by covariates. Adopting this beneficial idea
of adjusting for influences of covariates, Kang et al. (2012) proposed a regression
tree method called “Marginal Tree (MT)” that uses a likelihood-based decision
rule to create terminal nodes where subjects share a homogeneous distribution
for causal effect and its related constant propensity score.

The tree by Kang et al. (2012) was called “Marginal” because as the tree
divides the data set, the joint distribution of the cause and its related outcome
is marginalized over the space spanned by measured covariates so as to produce
causal effects. The MT method used a continuous outcome and hence their tree
method required a Gaussian normal distribution to build their tree.
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As most tree methods (Breiman et al., 1984; Zhang and Singer, 1999) dis-
tinguish differential properties of the continuous outcome and the categorical
outcome, we extend the MT method to the case of binary outcome. There have
been some recent advances in developing tree methods to adjust for the confound-
ing covariates in estimating causal effects by (Su, Tsai, Wang, Nickerson and Li,
2009; Su, Zhou, Yan, Fan and Yang, 2008). To our knowledge, however, no cur-
rent tree methodologies assemble the propensity scores into a binary outcome
tree in a unified manner. Thus, in this paper, we jointly model the propensity
scores and the conditional distribution of observed dichotomous outcome given
treatment variable so that the causal effect can be correctly evaluated at resultant
terminal nodes, within each of which confounding influences of covariates on both
propensity score and the causal effect are to be removed. For this we entail the
relationship between the MT model parameters in the case of the binary outcome
and causal parameters under the potential outcome framework (Rubin, 2005).

The ultimate goal of the MT method is to identify subgroups that show differ-
ential effects which are assessed without any biases. With a posteriori determined
subgroup-level effects using the MT method, population-level effects are to be
more clearly explained and interventions can be tailored to subgroups of study
subjects. One example of the usage of the MT method for the case of the binary
outcome is to explore the existence of differential effects of dieting on adolescent
girls’ emotional distress using a simulated data set from the National Longitudi-
nal Study of Adolescent Health (Add Health) (Harris, 2009). For this particular
application, we search to answer the question: “Are there any subgroups of girls
whose dieting causes differently emotional distress?”

2. Introduction to the Marginal Tree (MT) for the Binary Outcome

2.1 Model Specification

Consider a study cohort which contains i-th subject for i = 1, · · · , n, each of
which is associated with a vector containing covariates xi, a treatment Ti, and
its related observed outcome Yi. We assume that Yi is a binary random variable
and Ti is a dichotomous random variable with their respectively observed values
yi and ti.

We specify a model that explains the relationship between Y , T and X as
P (Yi, Ti|xi) for i = 1, · · · , n because Xi may simultaneously influence both Yi
and Ti. By Bayes’ rule, P (Yi, Ti|xi) can be decomposed as P (Yi|Ti,xi)P (Ti|xi).
The MT model (Kang et al., 2012) seeks a way of splitting data so that the
resultant K subsets will implicitly explain all possible influence of covariates on
the relationship between Y and T . To explain this, let Sk denotes subset k (or
terminal node k of the MT). Within Sk, it holds P (Yi, Ti|xi) = P (Yi, Ti) and
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hence it follows that

n∏
i=1

P (Yi, Ti|xi) =

K∏
k=1

∏
i∈Sk

P (Yi, Ti) =

K∏
k=1

∏
i∈Sk

P (Yi|Ti)P (Ti) . (1)

According to (1), subjects in Sk have a homogenous joint distribution P (Yi, Ti),
(whence P (Yi|Ti) and P (Ti)) regardless of their covariate values. Namely, the
association between Yi and Ti in the subgroup Sk is no longer influenced by xi,
implying that the association is marginalized over covariates xi. This is the reason
why the MT method was named “Marginal”. Note that k is simply a function of
x, but we use k instead of k(x) for notational convenience. Nevertheless, finding
such subsets as above is a formidable task without resorting to tree modeling
(Zhang and Singer, 1999). A tree model offers a natural grouping method. By
applying appropriate splitting rules, we put forward a tree method like the MT
method that has the flexibility to integrate aspects concerning both differential
causal effects from P (Yi|Ti) and heterogeneous propensity P (Ti) simultaneously.

To clarify our inferential goal of estimating parameters of the MT for binary
outcomes, suppose for those in the kth subset (i ∈ Sk) that P (Yi|Ti) can be
modeled with parameters β0k and β1k such that

P (Yi|Ti) = P (Yi = 1|Ti;βk)yiP (Yi = 0|Ti;βk)1−yi (2)

= (expit(β0k + β1kti))
yi (1− expit(β0k + β1kti))

1−yi ,

where expit(a) indicates (1 + exp(−a))−1. Then β1k defines the measure of an
effect for the kth subset, which will be proved as the causal effect (causal odds
ratio) in the next section.

2.2 Relationship with Causal Parameters under Potential Outcome
Framework

It may be worthy to note that β1k of (2) is a causal parameter under the
potential outcome framework (Rubin, 2005). Let Yi(t) denote a binary potential
outcome that would be observed under the condition t (where t = 0, 1) and let
φi(t) denote P (Yi(t) = 1). Then the causal effect is expressed as causal odds ratio
θ = (φi(1)/(1−φi(1)))/(φi(0)/(1−φi(0))). In other words, φi(t) = expit(α+t·θ).

Now consider φi(t) = expit(αk + t · θk) within the kth subgroup (∀i ∈ Sk). In
(2), P (Yi = 1|Ti = ti) was denoted as expit(β0k + β1kti). Because P (Yi|Ti,xi) =
P (Yi|Ti), it holds that P (Yi=1|Ti = ti, xi) = expit(β0k + β1kti). Also because Yi
is expressed as TiYi(1) + (1− Ti)Yi(0), it is true that

P (TiYi (1) + (1− Ti)Yi (0) = 1|Ti = ti,xi) = expit(β0k + β1kti). (3)
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If ti = 1, then (3) becomes P (Yi(1) = 1|Ti = 1,xi) = expit(β0k + β1k). And
because of the unconfounded assumption that makes Yi(c) independent from Ti
given measured covariates xi for c = 0 or 1, it gets to hold that P (Yi(1) = 1|xi) =
expit(β0k + β1k). Finally since expit(β0k + β1k) does not involve any covariates
xi, P (Yi(1) = 1) = expit(β0k + β1k). In the same way, it can be shown that
P (Yi(0) = 1) = expit(β0k). Therefore, β1k is precisely the causal parameter θk.

Intuitively, within the kth subset (∀i ∈ Sk), because P (Yi|Ti,xi) = P (Yi|Ti),
the vector of confounding covariates would not modify the relationship between
Ti and Yi in that subset and would not affect Yi directly. In addition, because
P (Ti|xi) = P (Ti), the influences of confounding covariates on Ti are blocked and
hence selection bias (Rosenbaum and Rubin, 1983) is to be removed in the kth

subset. Figure 1 explains this in a figurative way with three types of confounders:
1) prognostic factor that directly influences the outcome; 2) treatment-confounder
which affects propensity scores; and 3) effect-modifier that changes the degree and
direction of causal effects. These three types of confounding effects disappear
within each of the subsets of the MT model due to the absence of covariates in
right side of (1).

T . Y

X

2|| 1||3||

Figure 1: Three different types of confounding factors are controlled at each
node of the MT model: “1||” indicates prognostic factor X not influencing Y ;
“2||” indicates treatment-confounder X not influencing T ; and “3||” indicates
effect-modifier X not modifying the relationship between T and Y

Therefore parameter β1k is the causal effect for Sk (∀i ∈ Sk) due to the fact
that P (Yi|Ti) = P (Yi|Ti,xi) and P (Ti) = P (Tik|xi).

Though the purpose of the MT is to explore the heterogeneities with respect
to causal effects and propensities, the MT also computes average causal effects
(ACE) for the entire study cohort. The ACE for the entire population can be
estimated by combining the cell counts from the kth subset as the estimates
proposed by Robins, Breslow and Greenland (1986). To explain this, let nrsk
denote cell count for Yi = r and Ti = s at the kth subset; Rk = (n11k +n00k)/Nk;
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Qk = (n10k+n01k)/Nk; Rk = (n11k ·n00k)/Nk; Sk = (n10k ·n01k)/Nk. The Mantel-
Haenszel estimator of the causal odds ratio θ̂ is R+/S+, where R+ =

∑K
k=1Rk

and S+ =
∑K

k=1 Sk. Then Robins’ variance estimator of θ̂ is

v̂ar
(

log θ̂
)

=
1

2

K∑
k=1

[
PkRk
R2

+

+
PkSk+QkRk

R+S+
+
QkSk
S2
+

]
, (4)

with v̂ar(θ̂) = θ̂2 · v̂ar(log θ̂) (Robins et al., 1986).

2.3 The Tree Growing Procedure

The main idea of growing the tree is to find a data point that maximizes the
sum of loglikelihood of the models for the left and the right child nodes (Su et
al., 2004). Without a loss of generality, we only consider binary splits induced
by rules such as {Xj ≤ A?} for a continuous variable Xj or {Xj ∈ A?} for a
categorical variable, where A is a characteristic subset of distinct levels of Xj .
We seek a tree model that accounts for the possible effect of x on the joint
distribution of (Yi, Ti) so that P (Yi, Ti|xi) = P (Yi, Ti) within each of K terminal
nodes.

Start with node Sk with binary exposures and binary responses. The corre-
sponding likelihood function for data in k node is

Lk =
∏
i∈Sk

P (Yi, Ti|xi) =
∏
i∈Sk

P (Yi|Ti,xi)P (Ti|xi) =
∏
i∈Sk

P (Yi|Ti)P (Ti) (5)

=
∏
i∈Sk

(expit(β0k + β1kti))
yi(1− expit(β0k + β1kti))

1−yi · πtiik (1− πik)1−ti ,

where πik = P (Ti = 1|xi) = P (Ti = 1) = πk is a constant within Sk. The
log-likelihood function becomes

lk =
∏
i∈Sk

(yi log (expit(β0k + β1kti)) + (1− yi) log(1− expit(β0k + β1kti)))

+n1k log πk + n0k log(1− πk), (6)

where n1k =
∏
i∈Sk

Tik and n0k =
∏
i∈Sk

(1 − Tik). The involved parameters
(β0k, β1k, πk) are all specific to node τ , as well as (n1k, n0k). Their Maximum
Likelihood Estimates (MLE) can be obtained by maximizing lk. Plugging the
MLE’s for (β0k, β1k, πk), the maximized log-likelihood can be shown to be,

l̂k =
∏
i∈Sk

(yi log(expit(β̂0k + β̂1kti)) + (1− yi) log(1− expit(β̂0k + β̂1kti)))

+ log
nn1k
1k · n

n0k
0k

n
nk/2
k

, (7)
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where β̂0k and β̂1k respectively denote the log of relative risk and the log of odds
ratio estimates in Sk.

When Sk is partitioned into the two child nodes by split s, the left child
node SkL (answering ‘Yes’ to the binary question) and the right child node SkR
(answering ‘No’), the likelihood function becomes LkL +LkR owning to the inde-
pendence of data, where LkL and LkR both have analogous forms to Lk in (5).
This likelihood can be viewed as a likelihood function for split s as well as those
involved parameters. The best split s? yields maximum likelihood. Practically,
the best split is obtained as the one that corresponds to the largest maximized
log-likelihood l̂kL + l̂kR , which can be given as, up to a constant,∏
i∈{SkR

}

(yi log(expit(β̂0kR + β̂1kRti)) + (1− yi) log(1− expit(β̂0kR + β̂1kRti)))

+
∏

i∈{SkL
}

(yi log(expit(β̂0kL + β̂1kLti)) + (1− yi) log(1− expit(β̂0kL + β̂1kLti)))

+ log{nnL1
L1 · n

nL0
L0 /n

nL/2
L }+ log{nnR1

R1 · n
nR0
R0 /n

nR/2
R }, (8)

where, nL1 denotes the total number of observations in the treatment group of
the left child node. Subsequently, either child node is optimally partitioned in
the same way. This splitting process is then continued until a terminal node is
claimed under some released stopping rules. This procedure results in a large
initial tree T0, which will be optimally pruned subsequently.

2.4 Pruning with Akaike Information Criteria (AIC)

The large initial tree structure T0 is an over-fitted model which contains both
true and spurious splits. The final tree structure is a subtree of T0. Though we
can investigate all its subtrees and select the best, there are too many subtrees
to examine. The pruning idea of CART (Breiman et al., 1984) is to selectively
narrow down the subtree choices.

To prune marginal trees, it is convenient to adopt the AIC pruning developed
by Su et al. (2004). To explain, we first introduce some notations. Let T̃ represent
the set of all terminal nodes {Sk: k = 1, · · · ,K, as in the previous section} for
tree T and T − T̃ represent the set of its internal nodes. Th denotes the branch
tree with h as its root node. Also the cardinality notation |·| indicates the number
of nodes in a set of a tree, i.e., |T̃ |, the number of terminal nodes in tree T . Note
that for a given tree structure T , the corresponding maximized log-likelihood
function can be given as

l̂T = −
∑
τ∈T̃

l̂τ . (9)
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To measure the performance of tree T , AIC (Akaiki, 1974) can be used:

AIC(T ) = −2 · l(T ) + 2 · 3 · |T̃ |, (10)

where 3 · |T̃ | is the total number of parameters in (6). A smaller AIC is associated
with a more preferable tree model among competing ones.

The AIC pruning starts with the large initial tree T0. For any internal node h
of T0, let T0−Th indicate the subtree with h truncated and compute AIC(T0−Th).
Then the internal node h∗ is the weakest link that minimizes AIC(T0−Th) over all
possible values of h. Here, h∗ is “weakest” because without the internal node
h∗ the resultant subtree best fits the data compared to the other internal nodes.
Let T1 = T0 −Th∗ . Subsequent pruning in this manner will produce a decreasing
sequence of subtrees TM ≺ · · · ≺ T1 ≺ T0, where TM is the root node that
represents the undivided entire data set and the notation ≺ means “is subtree
of”.

2.5 Selecting the Best-Sized Subtree

In order to determine the optimally pruned tree, we divide the entire sample
into two groups: the learning sample L1 and the test sample L2 with a ratio

of 2 : 1 as in (Su et al., 2004). Using the learning sampleL2. Let l
(Tm)
test be the

validated log-likelihood computed with parameter estimates obtained from the
learning sample L1and data values of y and t used from the test sample L2.
Then

AIC(Tm) = −2 · l(Tm)
test + 2 · 3 · |T̃m|, (11)

so that the best-sized subtree T ∗ may be defined with minimum AIC:

AIC(T ∗) = min
{Tm|0≤m≤M}

AIC(Tm). (12)

After the most optimal tree structure is identified using L1 and L2, more
accurate estimates for the node parameters can be computed by applying the
tree model to the entire data set. Also the tree T ∗ can be further pruned using
likelihood ratio tests because the space of parameters in (6) can be shown to be
nested in those of their parental nodes.

When the sample size is moderate, the log-likelihood l(Tm) in AIC can be
validated via V -fold cross validation. In this approach, we randomly divide the
data into V equally-sized folds and estimate the parameters (β0, β1, π) using
(V − 1) folds of data with the v-th fold excluded. Then we calculate the log-

likelihood by plugging the observations in the v-th fold (denote it as l
(Tm)
v ). The

cross-validated log-likelihood for the m-th subtree is given by l
(Tm)
cv =

∑V
v=1 l

(Tm)
v .
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3. Simulation Study Designs and Analysis Results

3.1 Designs of Simulation Studies

Before assessing the effect of dieting on adolescent girls’ emotional distress,
we evaluate the MT method through simulated samples. There are two different
sample sizes: one with 600 subjects and the other with 1200 subjects.

First, three covariates X1, X2 and X3 are generated independently and identi-
cally from integers 1, 2, 3, 4 and 5, with each element having an equal probability
of 0.2. The model configuration is shown in Table 1, which can be viewed as a
Venn diagram. There are three subsets–W1: X1 ≤ 0.5 & X2 ≤ 0.5; W2: X1 ≤ 0.5
& X2 > 0.5; and W3: X1 > 0.5. Our choice of the median value is for the sake of
simplicity.

Table 1: Simulation designs with Cases I-III

Case I Case II Case III

W1
Propensity: 0.5
Odds Ratio: 0.1

Propensity: 0.2
Odds Ratio: 0.9

Propensity: 0.2
Odds Ratio: 0.1

W2
Propensity: 0.4
Odds Ratio: 1.0

Propensity: 0.5
Odds Ratio: 1.0

Propensity: 0.5
Odds Ratio: 1.0

W3
Propensity: 0.6
Odds Ratio: 5.0

Propensity: 0.7
Odds Ratio: 1.1

Propensity: 0.7
Odds Ratio: 5.0

In Case I of Table 1, propensities for the three subgroups are also close to
or equal to 0.5. Propensity of 0.5 usually indicates a completely randomized
treatment assignment. While propensities in Case I are close to 0.5, the effect
sizes (odds ratios) are distinguishable from one another: W1 subset has a negative
effect, W2 subset null effect, and W3 subset positive effect. Unlike Case I, Case II
has discernible propensities for the three subsets-0.2, 0.5 and 0.7- while the effect
sizes are all close to 1. For example, it is hard to distinguish odds ratios of 0.9
and 1. Finally Case III has all differential propensities and effect sizes.

3.2 A Measure of Tree Performance

In this section we describe a way of measuring the ability to separate each pair
of observations of an empirical tree model when compared to the true tree model
underlying the data. Consider a n×n proximity matrix D(T ) for the data based
on tree T such that dii′ = 1 if the i-th observation falls into a different terminal
node from i′-th observation and 0 otherwise. D(T ) is a symmetric matrix with
diagonal elements being 0. First compute the corresponding proximity matrix D
for the true tree structure T (0) from which the data were generated. Likewise, the
proximity matrix D′ can be computed for the final tree structure T developed



766 Marginal Tree for Binary Outcomes

via the MT model from a simulated data set. Let gii′ = dii′ − d′ii′ . Notice that
gii′ = 0 if and only if T and T (0) agree; 1 if T separates a pair that should be
together according to T (0); and −1 if T fails to separate a pair that should be
separated according to T (0). We define the disagreement measure κ between an
empirical tree structure developed from the data and the true tree structure as
the total proportion of disagreements

κ =

∑n
i=1

∑
i′>i

∣∣dii′ − d′ii′∣∣
{n(n− 1)/2} =

∑n
i=1

∑
i′>i |gii′ |

{n(n− 1)/2} . (13)

In assessing the performance of T , both the number of positive ones and the
number of negative ones can be reported . In other words,

κ+ =

∑n
i=1

∑
i′>i gii′ · 1(gii′>0)

{n(n− 1)/2} , (14)

and

κ− =

∑n
i=1

∑
i′>i gii′ · 1(gii′<0)

{n(n− 1)/2} . (15)

We expect a large κ+ if tree T over-split the data while κ− is large if tree T under-
split the data. Apparently, κ resembles the agreement coefficient of (Cohen, 1960)
in some way and can be illustrated using a 2×2 contingency table. The results of
this misclassification measures are reported in the bottom part of Tables 2 and 3.
The misclassification rate has three components: for κ+, “Over-misclassification
rate” indicates the frequency of gii′ = 1 divided by ((n−1) ·n/2); for κ−, “Under-
misclassification rate” indicates the frequency of gii′ = −1 divided by ((n − 1) ·
n/2); and “Misclassification rate” is just the sum of both “Over-misclassification
rate” and “Under-misclassification rate”. n can take a sample size of 600 (or
1200). These misclassification results in Tables 2 and 3 are percentages rounded
at the first decimal point.

3.3 Performance of the Trees for 200 Simulated Samples

Figure 2 shows that the MT optimally identifies the underlying true subsets of
Table 1. Numbers inside the nodes indicate node numbers and character strings
below the nodes indicate true subsets. Taking an example of Case I in Table 1, the
tree diagram in Figure 2 indicates that variable X1 plays the most determining
role in splitting the population because the median split of X1 variable makes the
maximum values of P (YL|TL)P (TL) + P (YR|TR)P (TR), where the subscript ‘L’
indicates a subgroup whose description is X1 ≤ 0.5, and ‘R’ indicates a subgroup
with X1 > 0.5. Whether it comes to propensities or effect sizes, as long as either
of the two quantities are differentiable, the MT correctly identifies the three
subsets.
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Figure 2. Tree Graph for Table 1.

1
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X1 ≤ 0

22

Figure 2: Tree Graph for Table 1

To assess the performance of the MT method for the three different Cases
I-III in Table 1, we repeatedly drew 200 samples of size 600 (1200). In Tables 2
and 3, “BIAS” indicates the average difference between 200 estimates of causal
effects and true values of effects; RMSE (Root Mean Square Error) is the square
root of the average squared difference between 200 estimates and true values of
causal effects. The true effects and propensities are computed from each sample
with true subset memberships that were a priori set in Table 1. Misclassification
rates are explained in the previous Section 3.2. In order for the estimated trees
to identify the three true subsets of Cases I-III of Table 1, a terminal node,
in which a majority of subjects show a certain true subset, was designated to
estimate that particular true subset. In this way, the misclassification errors
are also incorporated in estimating causal effect. Also BIAS and RMSE were
computed for all subsets for only observed estimates because some samples did
not produce estimates of effect for subgroup W2 in general, which was revealed
in the ignorable misclassification rates.

Table 2: Simulation results with Cases I-III for sample size 600

(Sample size = 600) Case I Case II Case III

BIAS RMSE BIAS RMSE BIAS RMSE

Overall effect 0.009 0.021 0.001 0.022 0.009 0.031

Effect for subset W1 0.057 0.109 0.004 0.203 0.061 0.159

Effect for subset W2 0.003 0.037 0.003 0.079 0.037 0.566

Effect for subset W3 0.000 0.002 0.000 0.000 0.005 0.064

Propensity for subset W1 0.009 0.020 0.033 0.062 0.018 0.045

Propensity for subset W2 0.000 0.003 0.002 0.012 0.000 0.008

Propensity for subset W3 0.000 0.000 0.000 0.000 0.000 0.001

Over-misclassification (%) 0.0 0.1 0.1

Under-misclassification (%) 5.0 5.4 2.7

All-misclassification (%) 5.0 5.5 2.8
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Table 3: Simulation results with Cases I-III for sample size 1200

(Sample size = 1200) Case I Case II Case III

BIAS RMSE BIAS RMSE BIAS RMSE

Overall effect 0.001 0.008 0.000 0.007 0.003 0.018

Effect for subset W1 0.007 0.037 0.005 0.042 0.011 0.076

Effect for subset W2 0.000 0.000 0.000 0.000 0.000 0.000

Effect for subset W3 0.000 0.002 0.003 0.045 0.000 0.002

Propensity for subset W1 0.001 0.007 0.006 0.027 0.003 0.021

Propensity for subset W2 0.000 0.000 0.000 0.000 0.000 0.000

Propensity for subset W3 0.000 0.000 0.000 0.001 0.000 0.000

Over-misclassification (%) 0.0 0.1 0.0

Under-misclassification (%) 0.7 1.1 0.5

All-misclassification (%) 0.7 1.1 0.5

Tables 2 and 3 describe that the MT for Cases I-III of Table 1 worked fairly
well in all criteria. As the sample size increased from 600 to 1200, the overall
measures became more precise. This simulation indicates that the likelihood-
based decision rule that has both the element of outcome model P (Y |T ) and
propensity model P (T ) disclose the correct data structure when either the weak
effect sizes or the subtle differences in propensities are present. Misclassification
rates for the MT in Tables 2 and 3 all appeared to be insignificant, which indicates
that the MT correctly identifies the imbedded heterogeneity of the differential
subgroups.

4. Applications

4.1 Lalonde’s National Supported Work Demonstration Analysis

The Lalonde’s National Supported Work Demonstration analysis (NSW) treated
people with a certain job training program and compared control subjects to see
if there would be causal effects of job training on later real earnings (Dehejia and
Wahba, 1999). By its design, this study is a non-randomized observational study.

A publicly available subsample of this dataset is called Lalonde and it is
currently available in R software packages twang (Ridgeway, McCaffrey, Morral,
Griffin and Burgette, 2012) and MatchIt (Ho, Imai, King and Stuart, 2012). The
variables in the Lalonde dataset include participation in the job training program
(treat, which is equal to 1 if participated in the program, and 0 otherwise), age,
years of education, race (black, which is equal to 1 if black, and 0 otherwise; his-
pan, which is equal to 1 if hispanic, and 0 otherwise), marital status, high school
degree (nodegree, which is equal to 1 if no degree, and 0 otherwise), 1974 real
earnings, 1975 real earnings, and the main outcome variable, 1978 real earnings
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(re78). For the descriptive statistics of these covariates, refer to Ridgeway et al.
(2012).

For the purpose of the binary MT case, we create a new binary outcome
variable based on median real earnings of 1978 in the Lalonde dataset. That
is, the new outcome was 1 if the participant has re78 greater than its median
earning, and 0 otherwise. Our goal was to estimate causal effects of the job
training program on the median real earnings of 1978.

The MT generated two terminal nodes using 614 Lalonde subjects: 243 blacks
and 371 non-blacks. Both blacks and non-blacks had statistically insignificant
causal log odds ratios (P-values of 0.221 and 0.444 for both blacks and non-blacks
respectively). The Robins’ formula for the MT’s ACE (Section 2.2) computed
causal odds ratio 0.917 with confidence interval [0.633, 1.329] with P-value 0.648.
This implies that in general there is no effect of the job training program for all
614 Lalonde subjects. In Figure 3, the estimated propensity scores were reported
in curve parentheses next to the total sample sizes in the two terminal nodes.

Figure 3. Tree Graph for the MT analysis of the Lalonde data.
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Figure 3: Tree Graph for the MT analysis of the Lalonde data

We also estimated the ACE using the Marginal Structural Model (MSM;
Robins et al., 2000). The propensity score was estimated generalized boosted
regression, which can be readily estimated by the R software package “twang”
(Ridgeway et al., 2012). The MSM produced basically the same ACE estimates:
causal odds ratio 1.016 with confidence interval [0.607, 1.702] with P-value 0.950.
In conclusion, 1) both the MT and the MSM produced equivalent ACE estimates
of the job training effect on the median real earnings and 2) there was no signif-
icant causal effect of the putative job training on median real earnings for 614
Lalonde subjects.

4.2 The Study of the Association between Dieting Behavior and Emo-
tional Distress in Adolescent Girls

In this section, we apply the MT model to the study of the dieting effects
on emotional distress among adolescent girls. Though some studies showed that
dieting appeared to be associated with negative psychological outcomes including
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depression and anxiety (Kovacs, Obrosky and Sherrill, 2003; Warren and Cooper,
1988), Johnson and Wardle (2005) found that dietary restraint had no significant
effect on distress one year later after controlling for measures of body dissatisfac-
tion. But statistical summaries of dieting effects from these researches principally
depended on multiple regressions.

Thus using our MT method, we explored in identifying subgroups whose di-
eting effects are heterogeneous and in aggregating those effects as average causal
dieting effects. Schafer and Kang (2008) generated a simulated data that in-
fers psychological effects of dieting and that does not rely on typical parametric
distributions such as Gaussian normal or binomial distributions. This data set
was used to approximate the National Longitudinal Study of Adolescent Health
(Add Health), a representative sample of American middle and high school stu-
dents measuring a broad array of health characteristics, behaviors and attitudes
(Harris, 2009). Throughout this section, we used this simulated data set. De-
tailed simulation procedures are described in Schafer and Kang (2008). The
merits of the usage of this simulated data set are signified by no missing val-
ues (no dropout) and fully observed potential outcomes that define causal ef-
fects. Our simulated data is a simple random sample of N = 6,000 girls from
http://www.stat.psu.edu/˜jls/causal/. Using the MT model, we aimed to de-
termine whether a dichotomous status of dieting (the putative cause variable)
at wave I differentially caused emotional distress (the outcome variable) at wave
II which was one year from wave I. The emotional distress is a composite mea-
sure of a 19-item mood scale with response categories ranging from 0 (never
or rarely) to 3 (most or all of the time). The 19 items were averaged so that
the average values may be continuously distributed between 0 and 3 in a simi-
lar way by Resnick, Bearman, Blum, Bauman, Harris, Jones, Tabor, Beuhring,
Sieving, Shew, Ireland, Bearinger and Udry (1997). Once we obtained the con-
tinuous scale measure, we further dichotomized each of potential outcomes of the
emotional distress at their respective medians. Namely, a potential emotional
distress Y (0) under no dieting (T = 0) was defined to be high (Y (0) = 1) when
the distress value was bigger than its median 0.57, otherwise it was set to be low
(Y (0) = 0). Also a potential emotional distress Y (1) under dieting (T = 1) was
defined to be high (Y (1) = 1) when the distress value was bigger than its median
0.55. Data analysis with the MT model used only observed potential outcomes
(TY (1) + (1− T )Y (0)). For the baseline emotional distress variable, we used its
three quartiles (0.32, 0.58, 0.89) to define four resulting subgroups. The list of
variables are found in the Table 4.

With the simulated 6,000 girls, the true causal effect with the known poten-
tial outcomes of the emotional distress was 1.03. Thus using the known potential
outcomes, we see that there is no significant dieting effect at the entire sample
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Table 4: Descriptions of variables used in simulated ADD health population

Name Description Mean SD

DISTR.1 Emotional distress at Wave I 0.64 0.42
(min = 0, max = 2.84)

BLACK 1 = Black, 0 = otherwise 0.24 0.43

NBHISP 1 = non-Black Hispanic, 0 = otherwise 0.15 0.36

GRADE Grade in school at Wave I (7, · · · , 11) 9.21 1.38

SLFHLTH Self-rating of overall health 2.23 0.93
(1 = excellent, 2 = very good, · · · , 5 = poor)

SLFWGHT Self-rating of weight 3.32 0.79
(1 = very underweight, 2 = slightly under, · · · , 5 = very over)

WORKHARD
“When you get what you want, it’s usually because you
worked hard for it”

2.12 0.9

(1 = strongly agree, · · · , 5 = strongly disagree)

GOODQUAL “You have lots of good qualities” 1.81 0.68
(1 = strongly agree, · · · , 5 = strongly disagree)

PHYSFIT “You are physically fit” 2.3 0.93
(1 = strongly agree, · · · , 5 = strongly disagree)

PROUD “You have a lot to be proud of” 1.78 0.77
(1 = strongly agree, · · · , 5 = strongly disagree)

LIKESLF “You like yourself just the way you are” 2.18 1.02
(1 = strongly agree, · · · , 5 = strongly disagree)

ACCEPTED “You feel socially accepted” 2.18 1.02
(1 = strongly agree, · · · , 5 = strongly disagree)

FEELLOVD “You feel socially accepted” 1.81 0.85
(1 = strongly agree, · · · , 5 = strongly disagree)

level. Now we would like to explore a question regarding whether there are
subgroups of adolescent girls who show differential effects of dieting on their
emotional distress. To explore this question, we fitted the MT model for the
proposed data set. The 6, 000 girls were randomly divided into 3 groups. The
first two groups were used to build series of nested subtrees and the last group
was used to validate the proposed trees so as to obtain the most optimal tree.
With the most optimal tree we used the 6, 000 girls to estimate dieting effects
and propensities as shown in Figure 4. In Figure 4, the estimated propensity
scores were reported in parentheses next to the total sample sizes in the terminal
nodes.

In total, nine terminal nodes were identified by the MT. As in Figure 4, the
tree first divided the data set at the median value 0.58 of the baseline emotional
distress (DISTR). For those in the group with DISTR≤ 0.58, they were further
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Figure 4. Tree Graph for the MT analysis of dieting data.
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Figure 4: Tree Graph for the MT analysis of dieting data

divided into two groups at the first quartile (0.32) of the baseline emotional
distress. And subsequently, three more confounding variables were introduced as
the data set was further divided: SLFWGHT, FEELLOVD, ACCEPTED. The
descriptions of these variables are listed in Table 3.

Since the nine subgroups were from one study sample, there were nine si-
multaneous tests and interval estimations to see if their respective causal odd
ratios were significant (Ho: odds ratio is 1 vs. Ha: odds ration is not 1). The
Bonferroni-adjusted confidence intervals for all subgroups of the MT included
value 1 and their four p-values were bigger than the adjusted significance level of
0.005 (≈ 0.05/9). The MT’s average causal odds ratio for the entire sample was
1.03[0.88-1.21], where values inside the “[]” indicate confidence intervals. Note
that the MT’s point estimate is the same as the true causal odds ratio 1.03 which
was computed with fully known potential outcomes. We ran this analysis 5 more
times with 5 different types of random division of the 6,000 girls. The 5 different
runs of the MT consistently produced insignificant subgroups (terminal nodes).
This may be largely due to the fact that the likelihood-based MT estimates with
randomly divided samples are consistently same across the divided samples whose
differences are random rather than systematic.

Finally, with fully known potential outcomes, the results from all nine sub-
groups were consistently verified that none of the true causal effects were sig-
nificant for the subgroups. These findings lead to the conclusion that there is
no significant causal dieting effect for the entire subgroups as well as the whole
sample. This finding is consistent with Kang et al. (2012).
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5. Discussion

In this paper, we extended the MT model to the case of binary outcomes.
In particular, the relationship between the parameter estimates using the MT
and those under the potential outcome framework was explained for the case of
binary outcome. The MT method does require the unconfoundedness assump-
tion (Rubin, 2005) in order to estimate causal parameters while the parametric
assumptions both for the potential outcomes and for the propensity scores were
relaxed in a sense because the MT divides the entire data set with the nonpara-
metric recursive partitioning algorithm. Yet, the MT is not completely nonpara-
metric but semiparametric because it clearly specifies simple likelihoods for 1) the
association between the cause and its related outcome and 2) the propensities.

Because the purpose of the MT is rather exploratory, it would fit into a large
observational study which is expected to have differential effects along with dif-
ferential propensity scores. For the confirmatory verification of the identified
significance of different subgroups, one can, for example, apply the MT model
from one study cohort (one study site among multi-site research centers) to the
other study cohort (the other study site) to see if those two models still produce
the identical results. In this way external validity may be assessed across different
study sites within the same large study cohort. Also the newly found character-
istics of differential subgroups can serve to generate new scientific hypotheses,
which will guide health scientists to explore whether or not these findings are
clinically and epidemiologically meaningful.

The stability of the MT is a shortcoming which a single tree analysis has been
criticized for. Instability implies that a small perturbation in data would cause
dramatic changes in the final tree model. With such concern being ubiquitous in
any single tree-related methodologies, the stability of the MT can be explained
with the misclassification rates in Tables 2-3. It is because while the general us-
age of CART (Breiman et al., 1984) is principally for the prediction purpose, the
MT is most concerned about its ability to single out subgroups with differential
treatment effects. Thus the stability of the MT can be judged by whether it suc-
cessfully mines the correct subgroups that had been embedded in the simulated
data sets. Tables 2-3 show that as sample size increases, the classification per-
formance, which was measured by misclassification rates, improved. The reason
for this stable enhancement is largely due to the fact that likelihood estimation,
which the MT employs, is more precise with a larger sample. More extensive
analysis of the stability can be addressed by the bagging approach or the random
forests’ paradigm, which may be an outstretching of this paper.

The generalizability of the MT to other biostatistical and/or epidemiological
studies is immediate because the splitting criterion of the MT is likelihood-based.
A remaining limitation of the MT is that the decision rules do not distinguish
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variables by types that influence the outcome, the treatment assignment mecha-
nism, and/or the modification of the causal effects due to the fact that the MT
adjusts for both confounding effects in a simultaneous, yet implicit manner. One
way to bypass this problem is to make separate regressions–one for outcome and
the other for the propensity model–so that variables can be identified to influence
both/either the propensity model and/or the outcome model.

The R codes that are used to build the MT model will be distributed upon
request to the corresponding author.
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