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Abstract: The present paper addresses the propensity to vote with data
from the third and fourth rounds of the European Social Survey. The re-
gression of voting propensities on true predictor scores is made possible by
estimates of predictor reliabilities (Bechtel, 2010; 2011). This resolves two
major problems in binary regression, i.e. errors in variables and imputation
errors. These resolutions are attained by a pure randomization theory that
incorporates fixed measurement error in design-based regression. This type
of weighted regression has long been preferred by statistical agencies and
polling organizations for sampling large populations.
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1. Introduction

The present paper treats the propensity to vote (or not vote) in a national elec-
tion as taking non-binary continuous values on an interval scale. This propensity
is regressed on the true values of explanatory variables that have been cleansed of
error (Bechtel, 2010; 2011). First, an individual’s reported voting, not voting, or
imputation (in the case of item non-response) is interpreted as an interval-scale
propensity plus a measurement error. Second, each of her (his) predictor scores is
also interpreted as a true interval-scale value plus an error score. Then, classical
assumptions about measurement error (Gulliksen, 1950, pp. 4-7; Bound, Brown
and Mathiowetz, 2001), along with reliability coefficient alpha in psychological
test theory (Cronbach, 1951; Lord and Novick, 1968; Nunnally and Bernstein,
1994; StataCorp., 2001), allow the regression of voting propensities on true pre-
dictor values.

This treatment of “errors in variables” avoids likelihood maximization and its
assumption that a census of survey scores is itself a sample from a “superpopu-
lation” with a specified distribution. (Skinner, Holt and Smith, 1989; Valliant,
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Dorfman and Royall, 1999). The present approach also avoids the further model-
based assumptions that a) true predictor scores are normally distributed and b)
measurement-error variance is known (Fuller, 1987, pp. 103-106; Bound, Brown
and Mathiowetz, 2001). Here, no distribution assumptions are made about true
predictor scores, and measurement-error variance is obtained from estimated re-
liabilities of predictor scores. This allows measurement error to be circumvented
by the estimation of census totals.

The present more parsimonious approach to “errors in variables” adds mea-
surement error to design-based regression, thus extending Neyman (1934) ran-
domization theory (Bellhouse, 1988; Nathan, 1988; Thompson, 1997; StataCorp.,
2001, Volume 4, pp. 29-30; Chaudhuri and Stenger, 2005; Lohr, 2010, pp. 434-
443). This extension is accomplished by distinguishing a true-value population
from a realized census of binary responses and observed predictors. Sections 2
and 3 describe binary voting responses, their predictors, and measurement errors
in these variables. Section 4 defines our population of voting propensities, true
predictor values, and the target parameter of an OLS regression over this popula-
tion. Section 5 develops an estimator for this target using weighted sample totals
that estimate corresponding census totals. Section 6 demonstrates this estimation
with cross-national datasets from the third and fourth rounds of the European
Social Survey (ESS). Section 7 points up true-value theory as a “pure” extension
of randomization theory that realistically addresses micro data in public opinion
polling.

2. Responses, Imputations, and Propensities

To measure voting propensity we use the ESS question on voting, which is
phrased as follows:

Some people don’t vote nowadays for one reason or another. Did you vote in the last

[country] national election in [month/year]? No 0 Yes 10 (http://ess.nsd.uib.no)

This question refers to the last election of a country’s primary legislative assembly.
Individual i’s response is coded zero or ten, whereas a missing response is filled
in as an imputation that usually lies between these two values. Letting Yi be a
response or imputation, we model it as

Yi = ηi + Ei. (2.1)

In (2.1) ηi is i’s propensity to vote and Ei is i’s response or imputation error.
The propensity and error on the right side of (2.1) lie on a continuous interval
scale whose origin and unit are set by the coding of the response labels no and yes.
Thus we regard the departure of zero or ten from ηi as measurement error. We
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also interpret the departure of an imputation from this interval-scale propensity
as measurement error.

3. Predictor Scores and Their True Values

The present study regresses voting propensity on the two multi-item pre-
dictors in Table 1, along with party proximity and age, which are single-item
predictors. The ESS question on party proximity is phrased and coded as fol-
lows:

Is there a particular political party you feel closer to than all the other parties? No 0

Yes 10 (http://ess.nsd.uib.no)

Table 1: Multi-item scales for predicting voting propensity

Political efficacy scale

How interested would you say you are in politics - are you· · ·

not at all 0 hardly 3.33 quite 6.67 very interested 10

How often does politics seem so complicated that you can’t really understand what is going on?

frequently 0 regularly 2.5 occasionally 5.0 seldom 7.5 never 10

How difficult or easy do you find it to make your mind up about political issues?

very difficult 0 difficult 2.5 neither difficult nor easy 5.0 easy 7.5 very easy 10

Political trust scale

How much do you personally trust each of the following institutions. [country]’s politicians; political

parties?

no trust at all 0 1 2 3 4 5 6 7 8 9 10 complete trust.

Source: These items are found on the website ess.nsd.uib.no

The five item responses used to measure political trust and efficacy are coded
in Table 1. Missing responses are filled in as imputations that lie among these
coded values. An individual’s score on each of these multi-item predictors is the
average of her (his) item ratings/imputations and ranges from 0 to 10. In order
to compare regression coefficients, we have calibrated party proximity and age to
range between 0 and 10 as well.

The composite scores for political trust and efficacy in Table 1 contain mea-
surement error. The single-item scores for party proximity and age are assumed
to be error free.

3.1 Errors in Political Efficacy Scores

Referring to the first scale in Table 1, we write respondent i’s three item
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ratings/imputations as

Xi11 = τi1 + Ui11, (interest),
Xi12 = τi1 + Ui12, (understanding),
Xi13 = τi1 + Ui13, (issue resolution),

where her (his) political efficacy τi1 lies on a continuous interval scale. The origin
and unit of this scale are set by coding the extreme response labels as zero and ten
for each of these items. The departure Ui1m for m = 1, 2, 3 is a coded-response
or imputation error in measuring τi1 with item m. Thus, if Ui11 is a response
error, it is a departure of the coded value 0, 3.33, 6.67 or 10 from τi1 on our
interval political-efficacy scale. If Ui12 is a response error, it is a deviation of 0,
2.5, 5.0, 7.5 or 10 from τi1 on this same scale. This interval scale tolerates items
with differing numbers of response options. It also tolerates the equal spacing
of response options that is ubiquitously used in survey work. If this spacing is
subjectively incorrect for respondent i, then Ui1m is an increased coding error.

Finally, averaging over our three item scores gives individual i’s political effi-
cacy score as

Xi1 = (Xi11 +Xi12 +Xi13)/3

= τi1 + (Ui11 + Ui12 + Ui13)/3

= τi1 + Ui1. (3.1)

The Ui1 in (3.1) is individual i’s error score, which can be a mixture of item
response and imputation errors.

3.2 Errors in Political Trust Scores

Still referring to Table 1, we write respondent i’s ratings/imputations of the
political trust items as

Xi21 = τi2 + Ui21, (politicians),
Xi22 = τi2 + Ui22, (political parties),

where τi2 is the interval-scale value of individual i’s political trust. The departure
Ui2m for m = 1, 2 is an item error in measuring τi2. Again we regard the departure
of the coded value Xi2m from τi2 as measurement error. We also interpret the
departure of an imputation from τi2 as measurement error. Individual i’s political
trust score is

Xi2 = (Xi21 +Xi22)/2

= τi2 + (Ui21 + Ui22)/2

= τi2 + Ui2, (3.2)
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where the error score Ui2 is the average error in measuring i’s true political trust
τi2.

4. Population Inference via an Imputed Census

4.1 A Generalization of Randomization Theory

We now posit a hypothetical (but possible) census which establishes a link to
our population of true values (cf. Bechtel, 2010; 2011). We assume that missing
item responses in this census have been imputed in the same manner as the sample
imputations described in Section 6.3. In this imputed census the voting value Yi
in (2.1), along with the efficacy and trust scores Xi1 and Xi2 in (3.1) and (3.2),
are constants. The errorless political-proximity and age responses, Xi3 = τi3 and
Xi4 = τi4 , are also census constants for the i-th individual. These fixed (rather
than random) census values are in keeping with the fact that a census is only
conducted once. It follows that each measurement error in Sections 2 and 3 is
fixed because it is the difference between a fixed census value and a fixed true
value for individual i. Thus, our population, error set, and census are three finite
sets of constants that are in one-to-one correspondence. These sets are

{ηi, τi1, τi2, τi3, τi4 | i = 1, · · · , N},

{Ei, Ui1, Ui2, 0, 0 | i = 1, · · · , N}, and

{Yi, Xi1, Xi2, Xi3, Xi4 | i = 1, · · · , N},

where N is the aggregate population size of the countries listed in Section 6.1.
Individual i’s (one-time) census score for each variable is the sum of her (his)
fixed error and true value. This incorporation of constant measurement error in
design-based regression preserves a pure randomization theory in which sample
inclusion (or not) for each individual i = 1, · · · , N is her (his) only random
variable.

4.2 Parameter Identification

Using {ηi, τi1, τi2, τi3, τi4 | i = 1, · · · , N}, our population model is

ηi = β0 + β1τi1 + β2τi2 + β3τi3 + β4τi4 + εi, for i = 1, · · · , N, (4.1)

where εi is a fixed specification error. These errors, along with the coefficients
β0, β1, β2, β3, β4, are uniquely identified by the ordinary-least-squares condition
that

∑
ε2
i is minimal when the propensities ηi are regressed on the true predictors
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τi1, τi2, τi3, τi4 over i = 1, · · · , N . This OLS identification of the true slope vector
β = (β1, β2, β3, β4)T is

β =
[∑

(τi − τ·)(τi − τ·)T
]−1∑

(τi − τ·)(ηi − η·), (4.2)

where τi = (τi1, τi2, τi3, τi4)T , τ· = (τ·1, τ·2, τ·3, τ·4)T , and the two population
summations run over i = 1, · · · , N.

4.3 An Estimable Form of the Population Target

The classical error assumptions. We now assume that over our census error
set {Ei, Ui1, Ui2, 0, 0 | i = 1, · · · , N} the error scores in (2.1), (3.1) and (3.2) sum
to zero, are uncorrelated with true scores, and are uncorrelated with each other
(Gulliksen, 1950, pp. 4-7; Bound, Brown and Mathiowetz, 2001). These classical
assumptions may be written as the vanishing totals∑

Ei =
∑

Eiτij =
∑

EiUij = 0, and∑
Uij =

∑
Uijτij =

∑
Uijτik =

∑
UijUik =

∑
Uijηi = 0, (4.3)

where the summations run over i = 1, · · · , N , and the predictors j, k = 1, 2, 3, 4.

Rewriting β. Under the error assumptions in (4.3), along with (2.1), (3.1) and
(3.2), it is easily shown that∑

τijηi =
∑

XijYi,∑
τijτik =

∑
XijXik, for j 6= k, and∑

τ2
ij =

∑
X2

ij −
∑

U2
ij , for j = k.

Our population target (4.2) may then be written in the estimable form

β =
[∑

(Xi −X·)(Xi −X·)
T −∆

]−1∑
(Xi −X·)(Yi − Y·), (4.4)

where Xi = (Xi1, Xi2, Xi3, Xi4)T and X· = (X·1, X·2, X·3, X·4)T . Again the two
population summations run over i = 1, · · · , N . In (4.4) the matrix ∆ = diag
(δ1, δ2, 0, 0), and

δj =
∑

U2
ij = (1− αj)

{∑
X2

ij − (
∑

Xij)
2/N

}
, (4.5)

for j = 1(efficacy), 2(trust). The diagonals δ3 = δ4 = 0 because party proximity
Xi3 = τi3 and age Xi4 = τi4 are error-free variables. The α1 and α2 in (4.5) are
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census reliability coefficients for our efficacy and trust scores (Cronbach, 1951;
Lord and Novick, 1968; Nunnally and Bernstein, 1994; StataCorp., 2001). These
alpha coefficients provide the census error sums of squares δ1 and δ2 in (4.5)
(Bechtel, 2010).

The sufficiency of one census. Assume a distinct error set {Ëi, Üi1, Üi2, 0, 0 |
i = 1, · · · , N} that satisfies (4.3) for any other (simultaneous) census {Ÿi, Ẍi1, Ẍi2,
Ẍi3, Ẍi4 | i = 1, · · · , N}. Then the difference set is again our target population
{ηi, τi1, τi2, τi3, τi4 | i = 1, · · · , N}, and the new census values, entered in (4.4),
again generate β in (4.2). Hence, there is no need to entertain a second census or a
super-population of censuses. Nor is it necessary to regard measurement error as
a random variable that takes values (within each individual) over census realiza-
tions from this super-population. Thus, our fixed error scores in (2.1), (3.1), and
(3.2), with properties (4.3), keep true-value regression as a pure randomization
theory.

5. Slope Estimates Corrected for Measurement Error

Let {Yi, Xi1, Xi2, Xi3, Xi4 | i = 1, · · · , n} be a sample drawn from the census
{Yi, Xi1, Xi2, Xi3, Xi4 | i = 1, · · · , N}, where n is the net ESS sample size over all
the countries listed in Section 6.1. This sample provides the following Horvitz-
Thompson type estimator of β = (β1, β2, β3, β4)T in (4.2) and (4.4):

B =
[∑

wi(Xi −X·)(Xi −X·)
T −D

]−1∑
wi(Xi −X·)(Yi − Y·). (5.1)

The euroweight wi in (5.1) is described in Section 6.2. This weight adjusts mi-
cro pan European data for each respondent’s sample inclusion probability, each
country’s population size, and each country’s unit non-response (Bechtel, 2011).
The two sample summations in (5.1) run over i = 1, · · · , n, and the matrix
D = diag(d1, d2, 0, 0), where

dj = (1− aj)
{∑

wiX
2
ij −

(∑
wiXij

)2
/
∑

wi

}
, (5.2)

for j = 1(efficacy), 2(trust). Again d3 = d4 = 0 because party proximity Xi3 =
τi3 and age Xi4 = τi4 are without measurement error. The matrix D in (5.1)
corrects the well-known design-based regression formula, which holds when D = 0
(Nathan, 1988, pp. 255-256; Thompson, 1997, pp. 106-107; StataCorp., 2001,
Volume 4, pp. 29-30; Chaudhuri and Stenger, 2005, pp. 264-265; Lohr, 2010, pp.
435-442).

The computation of aj in (5.2), which is an estimate of αj in (4.5), is given
by Bechtel (2010). The estimated alpha coefficients, a1 and a2 , for our political
efficacy and trust scales are exhibited in Table 2 for 2006 and 2008.
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The standard errors of the slopes B1, B2, B3 and B4 in B in (5.1) are derived
in the Appendix of Bechtel (2010). These standard errors, which appear in Table
2, contain the effects of measurement error on the variances of the slopes in our
propensity regressions.

Table 2: Design-based regressions of voting propensity

True-value regression Näıve regression

2006 2008 2006 2008

Alpha coefficient

Political efficacy .68 .69 1.00 1.00

Political trust .92 .92 1.00 1.00

Regression slope

Political efficacy .405 (.032) .400 (.030) .265 (.017) .265 (.017)

Political trust .123 (.019) .133 (.018) .128 (.017) .138 (.016)

Party Proximity .156 (.008) .177 (.008) .174 (.008) .192 (.007)

Age .412 (.018)∗ .354 (.022) .406 (.018)∗ .350 (.022)

Sample size 36,088 37,174 36,088 37,174

Note: The alpha coefficients for the true-value regressions are observed. The alpha co-
efficients for the naive regressions are (inappropriately) assumed to be one, indicating
perfect reliability. The regression slopes are weighted by the euroweights described
in Section 6.2. Their standard errors are in parentheses. The star (∗) indicates a
difference in slopes between successive surveys that is significant beyond the .05 level.
All other slope changes are not significant.

6. European Propensity to Vote

6.1 The Sample Data

The data for our analysis was supplied by the European Social Survey (Jowell
and the Central Co-ordinating Team, 2008) which is

funded through the European Commission’s fifth and sixth Frame-
work Programme, the European Science Foundation and national
funding bodies in each country · · · .

Data collection takes place every two years, by means of face to
face interviews of around an hour in duration · · · . The questionnaire
consists of a ‘core’ module lasting about half an hour which remains
relatively constant from round to round · · · the core module aims · · ·
to monitor change and continuity in a wide range of socio-economic,
socio-political, socio-psychological and socio-demographic variables.
(www.europeansocialsurvey.org)
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All survey items in the ESS have been standardized and appropriately translated
from country to country. The items in the present study are from the ESS core
module that was administered in 2006 and 2008. The voting item is described in
Section 2, and its multiple-item predictors are exhibited in Table 1. These predic-
tors are supported by political proximity and age in explaining voting propensity.

Our analysis includes all 21 countries that were surveyed in both the third
and fourth rounds of the ESS; namely, Belgium, Bulgaria, Switzerland, Cypress,
Germany, Denmark, Estonia, Spain, Finland, France, Great Britain, Hungary,
Netherlands, Norway, Poland, Portugal, Russia, Sweden, Slovenia, Slovakia and
Ukraine. In each country a representative probability sample was drawn from the
residential population aged 15 and older according to the following specifications:

• The minimum effective sample size is 1,500 (or 800 for countries with less
than 2 million inhabitants).

• The net sample size (number of realised interviews) is calculated as the
product of the effective sample size and the design effect, i.e. n net =
n eff∗DEFF = 1,500∗DEFF. An estimate of the design effect DEFF for
each country was provided by its sampling expert.

• The gross sample size is calculated as follows: n gross = n net/(RR∗ER),
where RR (target is 70%) is the predicted response rate and ER is the
eligibility rate. (www.europeansocialsurvey.org)

6.2 Weighting for Unit Non-Response

The ESS provides design weights and population size weights that should be
used to construct weights representative of cross-national European populations.
Design weights, which are normed inverses of sample inclusion probabilities, sum
to each country’s net sample size. A country’s population size weight is

(population size aged 15 and over)/(net sample size in the data file ∗ 10000).

Then
euroweight = (design weight) ∗ (population size weight)

insures that our weighted cross-national regressions represent each country in
proportion to its population size. Bechtel (2011) shows that this euroweight is
the normed ESS sampling weight that has undergone a weighting class adjustment
for unit non-response. The weighting classes for this non-response adjustment are
the 21 countries in each of our two pan-European surveys.

6.3 Imputation for Item Non-Response

Two separate regression imputations were carried out for our voting and
party-proximity items. Each of these single-item variables was regressed on party
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membership, gender and education to impute its missing responses. Three re-
gression imputations were conducted for the three-item political efficacy scale in
Table 1. Each item was regressed on the other two items making up this scale,
as well as on party membership, gender and education. Finally, two regression
imputations were carried out for political trust, with each item regressed on the
other, party membership, gender and education (cf. StataCorp., 2001, Volume 2,
pp. 69-71). These regression imputations avoided sample loss by preserving all
of our 21-nation datasets from the third and fourth rounds of the ESS.

Each of these item imputations closely estimates its corresponding census im-
putation. For example, in (3.1) if individual i’s interest value Xi11 is a sample
imputation, it is a weighted sum of her (his) observed understanding, issue res-
olution, party membership, gender and education values. Due to our very large
sample, the weights in this sum are extremely close to those from a census impu-
tation. Because the census weights are applied to i’s same understanding, issue
resolution, party membership, gender and education values, the census imputa-
tion of i’s political interest is also extremely close to our sample imputation Xi11.
Hence, individual i’s political efficacy score Xi1 in (3.1), which is the average of
two item scores and one imputation, differs negligibly from her (his) census score
on this construct. These score differences will (approximately) sum to zero over
a large sample. Thus, our weighted totals using sample imputations in formulas
(5.1) and (5.2) are almost identical to the weighted sample totals that would be
obtained with census imputations for missing item responses.

6.4 True-Value Regression of Voting Propensity1

Predictors. Our purpose here is to correct for unreliability in the two multi-
item scales in Table 1 in order to compare the strengths of political trust and
efficacy on the European propensity to vote. An American counterpart of the
political trust scale has been used since 1958 by the National Election Studies at
The University of Michigan. However, even recent work on the implications of
political trust for voting behavior has not included its effect on voter turnout per
se (Rudolph, 2005). In contrast, the National Election Studies have demonstrated
that political efficacy, as measured by American items, bears a strong relationship
to voter turnout (Mattei and Niemi, 2005).

Our single-item predictors are party proximity and age. Party proximity is
defined in Section 3 as closeness (or not) to one particular party without reference
to which party or partisan direction (e.g. liberal versus conservative). This
appears to be a construct that is new to the political-science literature. Finally,
it is well known that age is the strongest demographic predictor of voter turnout.

1The Stata .do file and documentation for running true-value regression may be obtained by
email from the author.
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It’s regression slope serves as a bench mark against which to compare the slopes
of our three political predictors of voting propensity.

Procedure. The variance inflation factor for each predictor j = 1, 2, 3, 4 is
V IFj = 1/(1 − R2

j ). R2
j is the squared multiple correlation coefficient when

predictor j is regressed on the other three predictors (StataCorp., 2001, pp. 111-
114). The four VIFF values for our predictors in 2006 and 2008 are all close to
one. Thus there is no co-linearity problem among these predictors in the following
survey regressions.

The first section of Table 2 reveals that each of our multiple-item predictors
is measured with equal reliability in 2006 and 2008. The political trust score
consistently shows higher reliability than the political efficacy score.

Using the alpha coefficients in Table 2, voting propensity was regressed on
political efficacy, political trust, party proximity and age. This true-value re-
gression was repeated over 2006 and 2008 for cross-national samples from the
21 countries listed in Section 6.1. The resulting regression slopes in the second
section of Table 2 were computed from formulas (5.1) and (5.2). The number of
cases for each of these regressions appears at the bottom of the table.

Findings. Due to the coding of all items on the same interval scale (cf. Sections
2 and 3), the four predictors in Table 2 may be compared (vertically) as to their
effects on voting propensity. Our major finding is the differential strength of
the efficacy and trust predictors. Political efficacy rivals age, which is a well-
known and powerful predictor of voting propensity. This confirms the American
National Election Studies results for political efficacy (Mattei and Niemi, 2005).
Surprisingly, political trust, which is also a venerable and closely watched variable
in the National Election Studies (Rudolph, 2005), is our weakest predictor of
European voting propensity. It is slightly excelled by the new construct, party
proximity.

Reading Table 2 horizontally, the effect of age dropped slightly, but signifi-
cantly, between 2006 and 2008. However, the determinants of European voting
propensity remain stable over “normal” (2006) and “stressful” (2008) times. If
this consistent regression structure in Table 2 is confirmed in future European
and American studies, it will inform attempts to improve western voter turnout.
For example, increasing citizen efficacy through education would appear to be
more important than campaigns attempting to elevate public trust.

6.5 Näıve Design-Based Regressions

Standard practice in regressing a binary variable is to compute design-based
logistic coefficients, which are pseudo-maximum-likelihood estimates (StataCorp.,
2001, Volume 4, pp. 30-31). However, logistic regression cannot handle missing
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voting data, and it treats voting imputations as voting responses (StataCorp.,
2001, Volume 2, p. 252). Moreover, there is a theoretical disadvantage of using
logistic regression as a “control analysis” for our binary true-value regression in
Table 2, i.e. the pseudo-likelihood itself is based on the census model

θi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + υi, for i = 1, · · · , N,

where υi is an intra-individual random error. Individual i’s observed response
is “positive” when her (his) unobserved random variable θi > 0 and “negative”
when θi < 0. However, this likelihood (unrealistically) assumes υi to be identically
logistically distributed for all N individuals in the census.

A comparable control analysis for our propensity regression is provided by a
näıve design-based regression which treats the predictors {Xi1, Xi2, Xi3, Xi4 | i =
1, · · · , N} in the census as a finite set of errorless constants. Thus, by setting
D = 0 in (5.1) we have a classic design-based regression on the same imputed
dataset.

The right side of Table 2 displays the naive regression slopes for 2006 and
2008. In contrast to the true slopes for political efficacy, the näıve coefficients
and standard errors for this predictor are spuriously low in 2006 and 2008. This
sharp attenuation is due to the lower reliabilities, also in Table 2, of our political
efficacy scores. In contrast, the highly reliable political-trust scale, along with
the errorless party proximity and age variables, exhibit similar coefficients and
standard errors in our true-value and näıve regressions.

Table 2 shows that failure to correct for measurement error in an important
predictor can drastically underestimate its influence on a response variable. In
the present case this could mislead educational policy vis-à-vis the importance of
improving political efficacy in the voting population.

7. Generalized Randomization Theory in Public Opinion Polling

The present paper compares regression slopes under a generalized random-
ization theory (Bechtel, 2010; 2011) with those under the classical randomiza-
tion theory used by statistical agencies and polling organizations (Neyman, 1934;
Horvitz and Thompson, 1952; Chaudhuri and Stenger, 2005; Lohr, 2010). This
comparison, which uses the third and fourth rounds of the ESS, addresses mea-
surement errors in political efficacy and trust scores that predict voting propen-
sity.

Generalized randomization theory relaxes the strong assumption in design-
based theory that a finite population is a set of errorless constants (Nathan, 1988;
Lehmann, 1999; Chaudhuri and Stenger, 2005; Lohr, 2010). Here this classical
population is replaced by two finite sets of vectors. The first set is a population
of N true vectors, and the second is a census of N erroneous vectors. Each of
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these two sets consists of real, rather than random, numbers. The interpretation
of census values Yi, Xi1 and Xi2 in (2.1), (3.1) and (3.2) as deviations from true
interval-scale values ηi, τi1 and τi2 is a step forward in the Neyman paradigm (cf.
Bellhouse, 1988). This extension of randomization theory, without invoking a
specifically distributed super-population postulated by model-based theory (cf.
Fuller, 1975; 1987), establishes measurement error within a pure design-based re-
gression. This resolves two major issues in survey regression by a) allowing errors
in variables and b) viewing imputation errors as special cases of measurement er-
rors in these variables. The classical assumptions in (4.3) about the behavior of
these errors over the census enable the regression of true response propensities
on true predictor values.

The additive errors in (2.1), (3.1) and (3.2), as fixed deviations from true
values, correct extreme interpretations of survey measures as errorless constants
on the one hand or specifically distributed random variables on the other. This
more realistic interpretation of micro-data is implemented in Table 2, which shows
that bias is reduced by a weighted correction for measurement error in political
efficacy scores. This type of correction should reduce estimation bias in other
government surveys and opinion polls that use multiple-item scores to predict
important survey variables.
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