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Abstract: The image de-noising is the process to remove the noise from the
image naturally corrupted by the noise. The wavelet method is one among
the various methods for recovering infinite dimensional objects like curves,
densities, images etc. The wavelet techniques are very effective to remove
the noise because of its ability to capture the energy of a signal in few energy
transform values. The wavelet methods are based on shrinking the wavelet
coefficients in the wavelet domain. This paper concentrates on selecting a
threshold for wavelet function estimation. A new threshold value is pro-
posed to shrink the wavelet coefficients obtained by wavelet decomposition
of a noisy image by considering that the sub band coefficients have a gener-
alized Gaussian distribution. The proposed threshold value is based on the
power of 2 in the size 2J × 2J of the data that can be computed efficiently.
The experiment has been conducted on various test images to compare with
the established threshold parameters. The result shows that the proposed
threshold value removes the noise significantly.

Key words: Minimax threshold, orthonormal bases, universal threshold,
wavelet shrinkage.

1. Introduction

Wavelets are used widely not only by mathematicians in areas such as func-
tional and numerical analysis but also by researchers in the natural sciences such
as physics, chemistry and biology and in applied discipline such as computer sci-
ence, engineering and econometrics. Statisticians are among the recent users of
wavelet applications in areas such as signal processing and image analysis. Signal
processing in general, including image analysis and data compression, the use
of wavelet has proved of significant value. A comprehensive survey of wavelet
application in statistics are given by Ogden (1997). An image is often corrupted
by noise during its acquisition or transition. The objective is to remove the noise
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without affecting the important feature of the image. The most commonly used
procedure to remove the noise is wavelet shrinkage by non-linear method proposed
by Donoho and Johnstone (1994, 1995) and Donoho (1995). This approach is now
widely used in statistics particularly in signal processing and image analysis. In
statistical context this can be referred as the estimation of the true curve from the
data contaminated with the noise usually assume to be Gaussian noise. The esti-
mation of the true curve involves three steps. Apply Discrete Wavelet Transform
(DWT) which transforms the discrete data from time domain into time-frequency
domain. The values of the transformed data in time-frequency domain are called
the coefficients. The coefficients with small absolute values dominated by noise,
while the coefficients with large absolute values carry more data information than
noise. In the second step the wavelet coefficient are set to zero (hard threshold
rule) or shrink (soft threshold rule), if they are not crossing certain threshold
level. The last step is to reconstruct the signal from the resultant coefficient us-
ing Inverse Discrete Wavelet Transform (IDWT). Since the work of Donoho and
Johnstone (1994, 1995), there has been much research on finding the threshold
value. Nason (1996) obtained a threshold value by cross validation approach, the
multiple hypothesis procedure is developed by Abramovich and Benjamin (1995).
A small threshold value may yield a result close to the input but the result may
still be noisy. A large threshold value on the other hand produce a signal with
a large number of zero coefficients, which leads to a smooth signal. Paying too
much attention to smoothness however destroys details of the image. In this
paper we proposed a threshold value that lies between universal and minimax
threshold values (Donoho and Johnstone, 1994) for certain range of data. It ap-
proaches to the minimax for data of large size and hence performs well compared
to the universal threshold value.

The paper is organized as follows, in Section 2 we provide some necessary
mathematical background in relations to wavelets and Discrete Wavelet Trans-
form (DWT). Section 3 introduces the wavelet thresholding procedure. In Section
4 we give a brief review about the choice of threshold and the proposed threshold
value. We obtain the experimental results and compare its performance with
sure, minimax and universal threshold values through simulations in Section 5.
We conclude the paper with some comments in the last section.

2. Some Background on Wavelets

To understand the wavelet applications some of the mathematical background
and terminology are presented below:

2.1 Wavelet Series Expansion
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The series expansion of a function in terms of the set of orthogonal basis
function is familiar in statistics. For example in Fourier expansion the basis
consists of sines and cosines of different frequencies. The term wavelets is used to
refer to a set of basis functions with a special structure. Many types of functions
that are encountered in practice can be sparsely and uniquely represented in
terms of the wavelet series. Wavelets are functions specially made as to form an
orthonormal basis for various function spaces. One such example is L2(R), set of
all square integrable function on real numbers R. It can be shown (Daubechies,
1992) that it is possible to construct a function ψ(x) so that any function f ∈
L2(R) can be represented by

f(x) =
∑
k∈Z

c0,kφ0,k(x) +
∑
j<J

∑
k∈Z

dj,kψj,k(x) (2.1)

where c0,k =
∫
R f(x)φ0,k(x)dx and dj,k =

∫
R f(x)ψj,k(x)dx, where j controls the

maximum resolution. The functions ψj,k = 2j/2ψ(2jx − k) are all derived from
the mother wavelet ψ(x) by dilation and the translation. The functions φ0,k(x)
are all derived from a function φ(x) known as father wavelet or scaling function
by using dilation and translation formula φ0,k = φ(x− k).

The simplest example of wavelet basis is Haar basis (Haar, 1910) which uses
scaling function and mother wavelet given by

φ(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise,

ψ(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x ≤ 1,

0, otherwise.

In case of two dimension, the scaling function and the wavelets are defined as
follows

Φj;k,l(x, y) = ϕj,k(x)ϕj,l(y) = 2jΦ(2jx− k, 2jy − l),
Ψs
j;k,l(x, y) = 2jΨs(2jx− k, 2jy − l),

where s = h, v, d are horizontal, vertical and diagonal details respectively defined
as,

Ψh
j;k,l(x, y) = ϕj,k(x)ψj,l(y),

Ψv
j;k,l(x, y) = ψj,k(x)ϕj,l(y),

Ψd
j;k,l(x, y) = ψj,k(x)ψj,l(y).
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The set {Φj;k,l(x, y)} ∪ {Ψh
j;k,l(x, y),Ψv

j;k,l(x, y),Ψd
j;k,l(x, y); j; k, l ∈ Z} is an

orthonormal basis for function space L2(R2).
Therefore any function f ∈ L2(R2) can be expressed as

f(x, y) =
∑
k,l∈Z

cj0;k,lΦj0;k,l(x, y) +
∑
i

∑
j≥j0

∑
k,l∈Z

dij;k,lΨ
i
j;k,l(x, y). (2.2)

where cj0;k,l is scaling coefficient and dij;k,l for i = h, v, d are wavelet coefficients,
called the sub-band coefficients.

2.2 Discrete Wavelet Transform (DWT)

Usually in statistical problem we have finite set of discrete data. If we have
n = 2J value of y(x) equally spaced between 0 and 1, we use wavelets ψj,k(x) at
levels j = 0, 1, 2, · · · , J − 1, where k = 1, · · · , 2j − 1. Level 0 contains the mother
and father wavelets while increasing value of j corresponding to wavelets which
describes finer details. If y = (y(x1), y(x2), · · · , y(xn))T , then

y(xi) = c0,0φ(xi) +

J−1∑
j=0

2j−1∑
k=0

dj,kψj,k(xi). (2.3)

The vector w = (c0,0, d0,0, · · · , dJ−1,2j−1)T of coefficients in (2.3) is referred to as
the DWT of y. In practice the DWT can be performed using the algorithm of
Mallat (1989) with O(n) operation rather than the slow O(n2) matrix multipli-
cation. In case of two dimensional Gray scale image, which can be thought of
as a matrix with entries xi,j corresponding to the intensity of Gray scale in the
pixel at position (i, j), the DWT is applied to the rows and column of the matrix.
Using Mallats algorithm the process of the DWT goes as follows. The operator
H associated with the scaling function called low pass filter and the operator G
associated with the wavelet function called high pass filter are applied in the rows
of matrix A of size 2J × 2J . Two resultant matrices HrA and GrA are obtained
both of size 2J ×2J−1. In the next step the operators are applied on the columns
of HrA and GrA which results in four matrices HcHrA, GcHrA, HcGrA and
GcGrA of dimension 2J−1 × 2J−1, the subscripts r and c suggest that the oper-
ations are performed on the rows and columns respectively. The matrix HcHrA
is an average, while the matrices GcHrA, HcGrA and GcGrA are respectively
horizontal, vertical and diagonal details of the matrix. The process continues to
obtain the next level decomposition with the matrix HcHrA as an input. The
Figure 1 shows the schematic representation of two level decomposition.

3. Wavelet Thresholding
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Figure 1: Schematic representation of the visualization of the two dimensional
wavelet transform of A

Donoho and Johnstone (1994, 1995) and Donoho et al. (1995) proposed a pro-
cedure to estimate the curve based on a reconstruction from a more judicious
selection of wavelet coefficients. This approach is now widely used in statistics
particularly in signal processing and image analysis.

Suppose {xi,j , 1 ≤ i, j ≤ n}, is an image of N = n × n pixels, which is
corrupted by white Gaussian noise, then the model for the noisy image is basically
of the form:

yi,j = xi,j + εi,j , 1 ≤ i, j ≤ n. (3.1)

where ε is iid as N(0, σ2), σ being the standard deviation of the noise. The
goal is to estimate xi,j by removing the noise so that the Mean Square Error is
minimum. The estimation process involves three steps as follows,

(1) Apply the two dimensional Discrete Wavelet Transform on the noisy data
yi,j to obtain the sub-band approximate coefficients, horizontal details, ver-
tical details and diagonal details. The orthogonal property of the transform
insures that the noise in the transform is also of Gaussian nature.

(2) Threshold the detail coefficients using either soft or hard threshold rule.
For a given threshold λ > 0 the hard threshold value is given by

δH(w, λ) = wI(|w| > λ), (3.2)

which is a “keep or kill” rule and the soft threshold value is given by

δs(w, λ) = Sign(w)(|w| − λ)I(|w| > λ), (3.3)

which is “shrink or kill” rule.
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The thresholded wavelet coefficient obtained by applying any of the thresh-
old rule δ(w, λ) given in (3.2) or (3.3) are used to obtain a selective recon-
struction.

(3) Reconstruct the image using Inverse Discrete Wavelet Transform of the
thresholded wavelet coefficients to obtain the de-noised image x̂i,j .

4. The Choice of Threshold

Clearly, an appropriate choice of the threshold value λ is fundamental to
the effectiveness of the procedure described in the previous section. Too large
threshold might cut off important parts of the true function underlying the data
whereas too small a threshold retain noise in a selective reconstruction. Donoho
and Johnstone (1995) proposed a sure shrink thresholding rule based on mini-
mizing unbiased risk estimate. The estimate of the risk can be obtained for a
particular threshold value λ. Minimising the risk in λ gives a selection of the
threshold. The sure shrink is especially designed for soft threshold rule and it is
level dependent threshold.
The minimax threshold proposed by Donoho and Johnstone (1994) that depends
on the data size N , defined as λM = σ̂λ∗N where λ∗N is defined as the value of λ
which achieves

Λ∗N = inf
λ

sup
d
{Rλ(d)/(N−1 +Roracle(d))}, (4.1)

where Rλ(d) = E[δλ(d̂) − d]2 and Roracle(d) is the ideal risk achieved with the
help of an oracle.

As an alternative to minimax threshold Donoho and Johnstone (1994) pro-
posed the universal threshold λuniv = σ̂

√
2 logN , where N is the number of pixels

and σ̂ is estimated standard deviation of the noise. This threshold value is also
asymptotically optimal and simpler to implement. It is proved that the max-
imum of any N values iid as N(0, σ2) will be smaller than universal threshold
value with the probability approaching one as N increases. Comparing to the
minimax and sure the universal threshold value is substantially large killing many
signal coefficients along with the noise.

In this article we have proposed a threshold value which is a fixed form as
universal and the minimax threshold. This threshold value depends on the power
of two in the size of the data N = 2J × 2J which is defined as σ̂

√
2J . In general

for n dimensional case this threshold value becomes σ̂
√
nJ . The case of n = 1

has been used to estimate the true curve from its noisy counterpart (Ismail and
Khan, 2010). Since σ̂

√
nJ 6 λuniv it performs well in terms of the means square

error. As the size of the data increase this threshold value gives a better per-
formance. In contrary to the minimax and the universal threshold this proposed
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threshold works well for the moderate samples, also compare to the sure shrink
the performance improves with respect to the increase in the noise level.

In all the above cases, the noise standard deviation can be estimated from
the sub-band GcGr by the robust median estimator Chang et al. (2000) as

σ̂ =
median(|Yi,j |)

0.6745
, Yi,j ∈ sub-band GcGr.

5. Experimental Results and Discussion

The Experiments are conducted on various Gray scale images like Lena, Bar-
bara and Boat of size 512 × 512 at different noise levels σ = 10, 15, 20, 25 and
30 using Doubechies (1992) least symmetric compactly supported wavelets with
eight vanishing moments at level three. The results are compared with sure, min-
imax and the universal threshold using both soft and hard threshold rules. The
objective quality of the reconstructed image is measured by peak signal to noise
ratio

PSNR = 10 log10
2552

MSE
. (5.1)

Where MSE is the mean square error between the original and the de-noised
image of size N = n×n = 2J×2J . The MSE can be calculated using the relation

MSE =
1

N

n∑
i=1

n∑
j=1

[xi,j − x̂i,j ]2. (5.2)

The Table 1 shows the comparative performance of the sure, universal, mini-
max and the proposed threshold using the soft threshold rule. The result shows
that the proposed threshold value provides better reconstruction for large value
of σ. Table 2 shows the comparative performance of the sure, universal, minimax
and the proposed threshold using the hard threshold rule. The result shows that
at the large values of σ all the values perform almost equally except sure which
gives still better performance as it is designed particularly for the soft threshold
rule. The proposed threshold value is suitable to both soft and hard threshold
rules, where as the sure shrink suitable only to soft threshold.

Figure 2 demonstrate the comparative performance of the sure, universal,
minimax and proposed threshold values for Lena image at σ = 30 with soft
threshold rule. Figure 3 demonstrates the comparative performance of sure, min-
imax,universal and proposed threshold value for Lena image at σ = 30 with hard
threshold rule. Here the performance of sure is worst because sure is designed for
soft threshold rule.
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Table 1: PSNR values for various noise level σ with soft threshold rule for Lena,
Barbara and Boat image respectively

σ sure minimax universal proposed

10 32.9245 30.0161 28.9805 29.5277

15 30.2887 28.7022 27.8085 28.2762

20 28.2871 27.8163 27.0453 27.4423

25 26.6714 27.1629 26.4963 26.8375

30 25.3169 26.6507 26.0720 26.3641

10 31.1371 26.0320 24.8114 25.4433

15 28.7124 24.6590 23.7043 24.1876

20 26.9065 23.8449 23.1091 23.4678

25 25.4640 23.3155 22.7657 23.0219

30 24.2582 22.9549 22.5467 22.7325

10 31.5441 27.4097 26.3635 26.9113

15 29.2059 26.2163 25.3072 25.7790

20 27.4024 25.4020 24.6121 25.0173

25 25.9308 24.8069 24.1152 24.4660

30 24.6858 24.3427 23.7519 24.0462

Table 2: PSNR values for various noise level σ with hard threshold rule for
Lena, Barbara and boat image respectively

σ sure minimax universal proposed

10 28.8472 31.8928 30.8646 31.4781

15 25.3935 30,2499 29.2870 29,8350

20 22.9281 29.0418 28.2266 28.7236

25 21.0083 28.1535 27.4792 27.8823

30 19.4400 27.4269 26.8143 27.2394

10 28.8160 28.6609 27.0419 27.9284

15 25.3607 26.5521 25.1432 25.9140

20 22.8929 25.2105 24.0332 24.6639

25 20.9737 24.2919 23.3681 23.8262

30 19.4002 23,6157 22,9430 23.2770

10 28.7299 29.4566 28.2434 28.9099

15 25.3104 27.8432 26.8211 27.4033

20 22.8644 26.7455 25.8451 26.3338

25 20.9578 25.9072 25.0933 25.5853

30 19.3958 25.2579 24.5409 24.9230
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Figure 2: (a) Original Lena image (b) noisy image with σ = 30 (c) de-noised
using sure shrink (d) de-noised using universal (e) de-noised using minimax (f)
de-noised using proposed threshold with soft thresholding rule
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Figure 3: (a) Original Lena image (b) noisy image with σ = 30 (c) de-noised
using sure shrink (d) de-noised using universal (e) de-noised using minimax (f)
de-noised using proposed threshold with hard thresholding rule
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6. Comments and Conclusion

In this paper a new threshold value is proposed to de-noise the image using
wavelets. This threshold value is used to remove the noise from various test
images. The result shows that this threshold value removes the noise significantly.
We have measured the peak signal to noise ratio for different values of noise level
σ to study the performance of the threshold. The comparative result shows that
the proposed threshold value found to be better than universal threshold and for
large data the proposed threshold value has MSE close to the minimax threshold
value. The comparative PSNR value of the proposed threshold improves with
increase in the noise level. In this sense our threshold value is an important
contribution to the choice of the threshold to remove the noise from the image
using wavelets.
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