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Abstract: In this paper we propose a new three-parameters lifetime distribu-
tion with decreasing hazard function, the long-term exponential geometric
distribution. The new distribution arises on latent competing risks scenarios,
where the lifetime associated with a particular risk is not observable, rather
we observe only the minimum lifetime value among all risks, and there is
presence of long-term survival. The properties of the proposed distribution
are discussed, including its probability density function and explicit algebraic
formulas for its survival and hazard functions, order statistics, Bonferroni
function and the Lorenz curve. The parameter estimation is based on the
usual maximum likelihood approach. We compare the new distribution with
its particular case, the long-term exponential distribution, as well as with
the long-term Weibull distribution on two real datasets, observing its poten-
tial and competitiveness in comparison with an usual lifetime distribution.

Key words: Censored data, exponential geometric distribution, latent com-
peting risks, long-term survivals.

1. Introduction

Survival data in presence of competing risks arise in several areas, such as
public health, actuarial science, biomedical studies, demography and industrial
reliability. In the classical competing risks scenarios the lifetime associated with
a particular risk is not observable, rather we observe only the minimum lifetime
value among all risks. Simplistically, in reliability, we observe only the minimum
component lifetime of a series system. That is, the observable quantities for each
component are the minimum lifetime value to failure among all risks, and the
cause of failure. Full statistical procedures and extensive literature are available
to deal with these problems and interested readers can refer to Cox and Oakes
(1984), Crowder et al. (1991) and Lawless (2003).
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A first difficulty arises if the risks are latent in the sense that there is no
information about which factor was responsible for the component failure (or in-
dividual death), which can be often observed in field data. We call these latent
competing risk data. On many occasions this information is not available or it is
impossible that the true cause of the failure is specified by an expert. In reliabil-
ity, the components can be totally destroyed in the experiment. Further, the true
cause of failure can be masked from our view. In modular systems, the need to
keep a system running means that a module that contains many components can
be replaced without the identification of the exact failing component. Goetghe-
beur and Ryan (1995) addressed the problem of assessing covariate effects based
on a semi-parametric proportional hazards structure for each failure type when
the failure type is unknown for some individuals. Reiser et al. (1995) considered
statistical procedures for analyzing masked data, but their procedure can not be
applied when all observations have an unknown cause of failure. Adamidis and
Loukas (1998) proposed a compounding distribution, the exponential geometric
(EG) distribution, which properly accommodates survival data in presence of la-
tent competing risks. Louzada-Neto (1999) proposed a polyhazard model to deal
with lifetime data associated with latent competing risks. Lu and Tsiatis (2001)
presented a multiple imputation method for estimating regression coefficients for
risk modeling with missing cause of failure. A comparison of two partial likeli-
hood approaches for risk modeling with missing cause of failure is presented in
Lu and Tsiatis (2005). Kus (2007) proposed another compounding distribution
which properly accommodates survival data in presence of latent competing risks.

A second difficulty arises if a part of the population is not susceptible to
the event of interest. For instance, in clinical studies a population can respond
favorably to a treatment, being considered cured. Models which consider that
part of the population is cured have been widely developed and are usually called
long term survival models. Perhaps the most popular type of cure rate model is
the mixture model introduced by Boag (1949) and Berkson and Gage (1952). In
this model, it is assumed that a certain proportion of the patients, say p, are cured,
in the sense that they do not present the event of interest during a long period of
time and can be seen as being immune to the cause of failure under study. Later
on, Farewell (1977), Farewell (1982), Greenhouse and Wolf (1984), Ghitany and
Maller (1992), Ghitany et al. (1994), Maller and Zhou (1995), Mackenzie (1996),
Chen and Ibrahim (2001), Pons and Lemdani (2003), Perperoglou et al. (2007),
Cancho et al. (2009) and Perdoná and Louzada-Neto (2011) have considered long
term mixture modeling.

In this paper, we propose a new distribution family conceived inside a la-
tent competing risk scenario with long-term survival, where there is no informa-
tion about which factor was responsible for the component failure (or individual
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death), only the minimum lifetime value among all risks is observed, and a part of
the population is not susceptible to the event of interest. Our distribution is fully
based on the exponential geometric distribution (Adamidis and Loukas, 1998) on
a long term mixture modeling structure. Then, hereafter we shall call it the long
term exponential geometric distribution or simplistically the LEG distribution.

The properties of the proposed distribution are discussed, including its prob-
ability density function and explicit algebraic formulas for its survival and hazard
functions, order statistics, Bonferroni function and the Lorenz curve.

The paper is organized as follows. In Section 2, we describe the genesis for
the LEG distribution and present explicit algebraic formulas for its probability
density, survival and hazard functions. We also present some proprieties of its
hazard function. In Section 3, we derive the kth order statistics, the Bonferroni
function and the Lorenz curve. In Section 4 we present the inferential procedure
based on maximum likelihood approach. In Section 5 we compare the LEG
distribution with its particular case, as well as with the Weibull distribution (an
usual lifetime distribution) on two real datasets. Some final comments in Section
6 conclude the paper.

2. Model Formulation

In survival studies, a part of the population may be not susceptible to the
event of interest. According to Maller and Zhou (1996), it seems adequate to
consider a two components mixture model, in the sense that one component
represents the failure or survival time of susceptible individuals to a certain event
(in risk individuals - IR), while the other component represents the survival times
of the not susceptible individuals to the event (out of risk individuals - OR),
allowing infinite survival times. An individual belongs to one group or another
with certain probability.

This class of models has been widely used in medicine, especially for data
analysis of cancer clinical trials. In general, we observe the time to occurrence
of death, or the time until the outbreak of a disease, but in the presence of
a significant proportion of cured or immune patients. For instance, consider
leukemia, which is a malignant disease of the blood-forming organs. Due to
improvements in treatment over the past decades, the leukemia cure rate may
reach high proportions (Kersey et al., 1987). For acute lymphoblastic leukemia,
which is a common fatal childhood cancer, the cure rate may reach 90% in the
near future1.

Then, the model formulation is described as following. Let Y be a random
variable that represents the time until the occurrence of a event of interest, and p

1http://www.medicalnewstoday.com/articles/36106.php
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be the probability of an individual to belong to the group OR. Considering a pop-
ulation in which exists the possibility of cure, the improper population survival
function is given by Maller and Zhou (1996), S(y) = pSOR(y) + (1 − p)SIR(y),
where SOR(y) and SIR(y) are the survival functions of the individuals OR and
IR, respectively. Following Maller and Zhou (1996), the event of interest shall
not occur in the group OR, that is, their failure times are infinite, so SOR(y) =
P (Y > y|OR) = 1, ∀y ≥ 0. Then, we can rewrite S(y) as,

S(y) = p+ (1− p)SIR(y). (1)

All individuals IR shall present the event of interesting at same time, that
is, limy→∞ SIR(y) = 0. Consequently, we have limy→∞ S(y) = p, and therefore
the survival function (not conditional) is improper and its limit corresponds to
the individual proportion OR. Also, the event of interest may be caused by an
unknown competing cause leading to the so called latent competing risk scenarios
(Louzada-Neto, 1999). So, let M denote the unobservable number of causes of
the event of interest with probability mass function

P (M = m), (2)

for m = 1, 2, · · · ,M , with M on a infinite range. Let Tm, m = 1, · · · ,M , denote
the time for the jth cause to produce the event of interest. We assume that,
independently but conditional on M , the Tj are independent and identically
distributed with survival function S0(t). And we only observe the random variable
given by Y = min (T1, T2, · · · , TM ). Under this setup, the surviving function for
an individual IR is given by

SIR(y) =

∞∑
m=1

S0(y)mP [M = m]. (3)

Following Adamidis and Loukas (1998), with M geometrically distributed and
T exponentially distributed, we consider SIR(y) define as

SIR(y) =
(1− θ)e−λy

1− θe−λy
, (4)

which is the survival function of an EG distributed random variable.
Considering the EG survival function (4) and the definition given in (1), the

improper survival function (5) of a LEG distributed nonnegative random variable,
Y , denoting the lifetime of a component in some population is given by,

S(y) =
p+ (1− θ − p)e−λy

1− θe−λy
, (5)
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where, y > 0, λ > 0, α > 0, 0 < θ < 1, and 0 < p < 1.
Its pdf is directly obtained by considering f(y) = −dS(y)/dy, that is, it is

given by

f(y) =
λe−λy(1− θ − p+ pθ)

(1− θe−λy)2
, (6)

where, λ is scale parameter, θ is shape parameter and p is the long-term pa-
rameter. Figure 1 shows the LEG pdf and survival function for some values of
the vector φ = (λ, θ), with p = 0, 0.25, 0.50 and θ = 0.001, 0.1, 0.5, 0.75, 0.99.
Without loss of generality, we fixed λ = 1.
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Figure 1: LEG pdf and survival function for selected values of parameters and
fixed λ = 1
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The quantile function, obtained by inverting the distribution function, F (y) =
1− S(y), defined in [0, 1], is given by

Q(u) =
1

λ
ln

(
1− p− uθ
1− p− u

)
, (7)

where u has the uniform distribution U(0, 1). Then, we may simulate a variable
LEG distributed random variable by considering the inverse transformation of
the cumulated function given in (7).

From (7), the median is given by

Ỹ = Q(0.5) =
1

λ
ln

(
1− p− 0.5θ

1− p− 0.5

)
. (8)

From (6) and (5) it is easy to verify that the hazard function is given

h(y) =
(1− θ − p+ pθ)λe−λy

(1− θe−λy)(p+ (1− θ − p)e−λy)
, (9)

for which the initial value is finite and given by limY→0 h(y), that is,

h(0) = λ(1− θ − p− pθ)/(1− θ)2.

The hazard function (9) is decreasing. According with a theorem proposed
by Glaser (1980), let g(y) = 1/h(y) = (1− F (y))/f(y) be the general reciprocal
hazard rate, for which the derivate is given by h′(y) = h(y)ϑ(y) − 1, where
ϑ(y) = −f ′(y)/f(y), and the shape of h(y) depends on the behavior of ϑ′. If
ϑ′(y) > 0 (ϑ′(y) < 0), for all y > 0, implies an increasing (decreasing) hazard
rate. If ϑ′(y) change the sign, with ϑ′(y) = 0 for some y0 > 0, and ϑ′(y) < 0
for y < y0 and ϑ′(y) > 0 for y > y0, we have an increasing hazard hate if
limy→0 f(y) = 0 and a ∪-shaped hazard rate if limy→0 f(y) = ∞. Similarly, we
obtain decreasing and ∩-shaped hazard rate if the inequalities in the preceding
conditions are reserved. Then, considering the LEG distribution given in (6),
ϑ′(y) = 2λ2θe−λy/

(
1− θe−λy

)
> 0 for all t > 0, implying in a decreasing hazard

function. Figure 2 corroborates the above results by showing some of the possible
shapes of the hazard function for fixed λ = 1, and some combinations of p and θ
values.

3. Some Properties of the LEG Distribution

Moments of order statistics play an important role in quality control testing
and reliability, where a practitioner needs to predict the failure of future items
based on the times of a few early failures. These predictors are often based on
moments of order statistics. Considering the LEG distribution, the kth order
statistic is given as follows.
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Figure 2: Hazard rate function of LEG distribution for selected values of the
parameters. Fixed λ = 1
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Proposition 3.1 Let Y1, Y2, · · · , Yn be iid random variables such that Yk follows
LEG (p, λ, θ) for k = 1, 2, · · · , n. The pdf of the kth order statistic, say Yk:n, is
given by (for y > 0)

fk:n(y) = gk:n(y)(1− p)k
(
p(1− e−λy)

e−λy
+ 1

)
,

where gk:n is order statistic of EG with parameters λ and θ.

Proof 3.1 We now derive an explicit expression for the density of the ith order
statistic Yk:n, say fk:n(y), in a random sample of size n from the LEG distribution.
It is well known that

fk:n(y) =
1

B(k, n− k + 1)
f(y)(F (y))k−1(S(y))n−k, (10)

where, B(k, n− k + 1) =
(n− k)!(k − 1)!

n!
.

Using the definition, we have,

fk:n(y) =
1

B(k, n− k + 1)
f(y)(F (y))k−1(S(y))n−k

=
λe−λy

B(k, n− k + 1)

(1− θ − p+ pθ)

(1− θe−λy)2

(
(p− 1)e−λy + 1− p

1− θe−λy

)k−1
×
(

1− (p− 1)e−λy + 1− p
1− θe−λy

)n−k
=

λe−λy(1− θ − p+ pθ)

B(k, n− k − 1) (1− θe−λy)n+1

(
(p− 1)e−λy + 1− p

)k−1
×
(
p(1− e−λy) + e−λy(1− θ)

)n−k
=

λ(1− θ)e−λy

B(k, n− k + 1) (1− θe−λy)n+1

(
1− e−λy

)k−1
(1− p)k

×
(
p(1− e−λy) + e−λy(1− θ)

)n−k
=
λ(1− θ)e−λy

(
(1− θ)e−λy

)n−k (
1− e−λy

)k−1
B(k, n− k + 1) (1− θe−λy)n+1 (1− p)k

(
p(1− e−λy)
e−λy(1− θ)

+ 1

)n−k
.

But, as given in the Appendix A, the order statistic of a EG distribution is
given by,

gk:n(y) =
1

B(k, n− k + 1)

λ(1− θ)e−λy

(1− θe−λy)n+1

(
1− e−λy

)k−1 (
(1− θ)e−λy

)n−k
.

(11)
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Then,

fk:n(y) = gk:n(y)(1− p)k
(
p(1− e−λy)
e−λy(1− θ)

+ 1

)n−k
, (12)

concluding the proof. 2

The Bonferroni and Lorenz curves and the Gini index have many applications
not only in economics to study income and poverty, but also in other fields such
as reliability, medicine and insurance.

Proposition 3.2 The Bonferroni curve of the distribution function F (y) of a
LEG distribution is given by

BF [F (y)] =
λ(1− θ − p+ pθ)(1− θe−λy)

ln

(
1− p− 0.5θ

1− p− 0.5

)
(1− p)(1− e−λy)

[
1

λθ
ln

(
θe−λy − 1

θ − 1

)
− y

eλy − θ

]
.

Proof 3.2 The Bonferroni curve BF [F (x)] is given by

BF [F (y)] =
1

µF (y)

∫ y

0
xf(x)dx,

where µ = Ỹ given in (8), F (y) = 1− S(y) and f(x) given in (6).
From the relationship between the Bonferroni curve, BF [F (y)] and the mean

residual lifetime given by Theorem 2.1 of Pundir et al. (2005), the Bonferroni
curve equation is obtained as

BF [F (y)] =
λ(1− θe−λy)

ln
1− p− 0.5θ

1− p− 0.5
(1− p− (1− p)e−λy)

∫ y

0

xλ(1− θ − p+ pθ)e−λx

(1− θe−λx)
2

=
λ(1− θe−λy)(1− θ − p+ pθ)

ln
1− p− 0.5θ

1− p− 0.5
(1− p− (1− p)e−λy)

∫ y

0

xλe−λx

(1− θe−λx)
2 .

The proof is completed by solving the above integral. 2

The Lorenz curve of F (y) that follows a LEG distribution can be obtained by
considering the expression LF [F (y)] = BF [F (y)]F (y).

Proposition 3.3 The scaled total time and cumulative total time for a model
LEG are given respectively by,

SF [F (y)] =
pλy

ln

(
1− p− 0.5θ

1− p− 0.5

) +
1− θ − p+ pθ

θ ln

(
1− p− 0.5θ

1− p− 0.5

) ln

(
θe−λy − 1

θ − 1

)
,
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and

CF =
pλ(1− θ − p+ pθ)

ln

(
1− p− 0.5θ

1− p− 0.5

) (θλ ln

(
θe−λ − 1

θ − 1

)
− 1

eλ − θ

)

+
(1− θ − p+ pθ)

θ ln

(
1− p− 0.5θ

1− p− 0.5

)


ln

(
θe−λ − 1

θ − 1

)
θ(θe−λ − 1)

 .

Proof 3.3 The scaled total time and cumulative total time transform of a dis-
tribution function F (y) (Pundir et al., 2005) are defined by

SF [F (y)] =
1

µ

∫ y

0
F̄ (x)dx (13)

and

CF =

∫ 1

0
SF [F (y)]f(y)dy, (14)

respectively. If F (y) is the LEG distribution function specified as 1−S(y), where
S(y) is given in (5) and µ = Ỹ given in (8) then using (13) and (14) the proof is
concluded. 2

From (14), the Gini index can be obtained from the relationship G = 1−CF ,
where CF is the cumulative total time given in the Proposition 3.1. Figure 3
presents the Bonferroni and Scaled total time plots according to different θ and
p parameters. The parameter λ is assumed to be equal to 1.
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4. Inference

In this section we described the inferential and hypothesis testing procedures,
which are based on the usual maximum likelihood approach as well as in the
asymptotic large sample theory.

Let us consider the situation when the failure time Y in Section 2 is not
completely observed and is subject to right censoring. Let Ci denote the censoring
time. In a sample of size n, we then observe Zi = min{Yi, Ci} and δi = I(Yi ≤ Ci),
where Y = min(t1, T2, · · · , TM ), δi = 1 if Zi is a failure time and δi = 0 if it is right
censored, for i = 1, · · · , n. The likelihood of ψ = (θ, λ, p) under non-informative
censoring is given by Klein and Moeschberger (2003)

L(ψ;D) ∝
n∏
i=1

f(zi;ψ)δi S(zi;ψ)1−δi , (15)

where D = (z, δ), z = (z1, · · · , zn)>, and δ = (δ1, · · · , δn)>, whereas f(·;ψ)
and S(·;ψ) are given in (6) and (5), respectively, the log-likelihood for LEG
distribution is given by

`(ψ;D) ∝
n∑
i=1

ln(λ(1− θ − p− pθ)− λ
n∑
i=1

δizi

+

n∑
i=1

(1− δi) ln
(
p+ (1− θ − p)e−λzi

)
+

n∑
i=1

(1− δi) ln
(
p+ (1− θ − p)e−λzi

)
+

n∑
i=1

(δi + 1) ln
(

1− θe−λzi
)
. (16)

Maximum likelihood estimation (MLE) may be performed by directly max-
imization of (16). The advantage of this procedure is that it runs immediately
using existing statistical packages. We have considered the optim routine of the
R (R Development Core Team, 2008), which is a general purpose optimization
routine. An important aspect of implementing the estimation procedure concerns
convergence or avoid end on multiple maxima. In our numerical examples and
simulation studies we have not faced numerical problems, such as evidence of
failure of convergence or end on multiple maxima.

Large-sample inference for the parameters are based on the MLEs and their
estimated standard errors in an asymptotic fashion. The asymptotic normality is
also useful for testing goodness of fit of the LEG distribution and for comparing
it with some of its special sub-models, namely, the EG, the long-term exponential
(LE) and the simple exponential (E) distributions, via the likelihood ratio statistic
(LRS). For comparison of nested models, we can compute the maximum values
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of the unrestricted and restricted log-likelihoods to obtain the LRS for the three
tests. For instance, to testH0 : p = 0 versusH1 : p > 0 we consider the LRS, ωn =
2(`LEG − `EG), where `LEG and `EG are the maximum value of log-likelihoods
for the model under the unrestricted hypothesis H1 and under the restricted
hypothesis H0 under a sample of size n, respectively. Taking into account that
the test is performed in the boundary of the parameter space, following Maller
and Zhou (1995), the LRS, ωn, is assumed to be asymptotically distributed as a
symmetric mixture of a chi-squared distribution with one degree of freedom and
a point-mass at zero. Then, limn→∞ P (ωn ≤ c) = 1/2 + 1/2P (χ2

1 ≤ c), where
P (χ2

1 ≤ c) denotes a random variable with a chi-square distribution with one
degree of freedom. Large positive values of ωn give favorable evidence to the full
model.

5. Cancer Data Application

In this section, we compare the proposed LEG distribution with its particu-
lar case (the LE distribution) fits, as well as with the long-term Weibull (LW)
distribution, on two data sets extracted from the literature. The idea is to show
the applicability of the new distribution and the direct possibility of choosing
between it or its particular cases, as well as its competitiveness in terms of fitting
related to an usual survival distribution, such as the LW.

The first data set, the Myelomatosis Data, is extracted from Allison (1995).
Myelomatosis is a malignant neoplasm of plasma cells in which the plasma cells
proliferate and invade the bone marrow, causing destruction of the bone and
resulting in pathologic fracture and bone pain2. The data set consists of lifetimes
of 25 patients diagnosed with myelomatosis recorded in days from the point of
randomization to either death or censoring (which could occur either by loss to
follow up or end of the follow up). Censuring is observed for 22% of the lifetimes.
The second data set, the Leukemia Data, is extracted from Kersey et al. (1987).
The data set consists of lifetimes up to recurrence of leukemia, in years, for a
group of 46 patients who received autologous marrow. The authors reported that
the fraction of cured patients was estimated to be 20%.

Firstly, in order to verify the shape of the hazard rate function, we follow
a standard graphical methodology for data analysis, we use the total time on
test (TTT) plot, which is described by Chambers et al. (1983). It allows to
identify the shape of a lifetime data hazard rate function graphically. According
to Aarset (1987), in its empirical version the TTT plot is given by G(r/n) =
[(
∑r

i=1 Yi:n)− (n− r)Yr:n]/(
∑r

i=1 Yi:n), where r = 1, · · · , n and Yi:n represent the
order statistics of the sample. It has been shown that the hazard function is

2http://medical-dictionary.thefreedictionary.com/myelomatosis
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increasing (decreasing) if the TTT plot is concave (convex). Both left panels of
Figure 4 show the TTT plot for the Myelomatosis Data (upper left) and Leukemia
Data (lower left), implying in decreasing hazard functions.
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Figure 4: Left panel: TTT plot; right panel: Kaplan Meier curve with esti-
mated survival function via LEG, LW and LE distributions, for the Heart Data
(upper panels) and for the Leukaemia Data (lower panels)

We then fit the three distributions for the datasets. Table 1 provides the MLEs
(and their corresponding standard errors in parentheses) for the parameters of
the fitted distributions. From (8), the estimated medians for the Myelomotosis
and Leukemia Data are equal to 150.3636 days and 0.7798 years, respectively.

Table 2 shows −`(ψ̂g), AIC and BIC criterion values for the three distribu-

tions, where ψ̂g denotes the MLE vector related to the distribution g, providing
evidence in favor of our LEG distribution for both datasets. Besides, we compare
the LEG distribution fitting with the LE distribution fittings by considering the
test procedure presented in Section 4. The ωn equals to 6.526, is much greater
than 1/2+1/2 P (χ2

1 ≤ c) = 2.421, leading to strong evidence in favor of the LEG
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distribution for the Myelomotosis Data. However, there is no evidence that the
LEG distribution is better than LE for the Leukemia Data at 5% of significance.
Comparing the LED distribution with the usual survival distribution LW, both
AIC and BIC criterion values provide evidence to the LEG distribution for both
datasets. This results are corroborated by the empirical Kaplan-Meier survival
functions superimposed by the fitted survival functions obtained via the LEG,
LW and LE distributions shown in Figure 4. Considering the LEG distribution,
the long-term parameter is equal to 0.2658 with standard error of 0.1229 for the
Myelomotosis Data, and equal to 0.2636 with standard error of 0.0712 for the
Leukemia Data.

Table 1: MLEs and their standard error for Myelomatosis and Leukemia Data

Distribution λ θ φ p

Myelomatosis

LEG 0.0002 (0.0084) 0.9857 (0.0659) - 0.2658 (0.1229)

LW 0.0049 (0.0022) - 0.6749 (0.1431) 0.2901 (0.1019)

LE 0.0042 (0.0011) - - 0.3035 (0.0966)

Leukemia

LEG 0.9980 (0.6723) 0.4432 (0.4710) - 0.2636 (0.0712)

LW 1.4517 (0.3078) - 0.9452 (0.1377) 0.2688 (0.0690)

LE 1.4331 (0.2795) - - 0.2710 (0.0684)

Table 2: The `(ψ̂g), AIC and BIC values

Model Myelomatosis Leukaemia

`(·) AIC BIC `(·) AIC BIC

LEG -121.0445 248.0890 251.7456 -45.90177 97.80355 103.2895

LW -121.9174 249.8348 253.4915 -46.14845 98.29691 103.7828

LE -124.3070 252.6141 255.0518 -46.22798 96.45596 100.1132

6. Concluding Remarks

In this paper we provided the LEG distribution as an extension of the EG
distribution proposed by Adamidis and Loukas (1998), which arises on a latent
competing risks scenarios, where the lifetime associated with a particular risk is
not observable, but only the minimum lifetime value among all risks, and there is
presence of long-term survivals. The properties of the proposed distribution are
discussed, including its probability density function and explicit algebraic formu-
las for its pdf, survival, hazard and quantile functions. The Bonferroni function
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and the Lorenz curve are provided. MLE is implemented straightforwardly. The
practical importance of the LEG distribution was demonstrated in two applica-
tions where the LEG distribution provided competitive fitting in comparison with
its particular case and with the usual LW lifetime distribution. The performance
of the MLE procedure as well as the LR testing considered here, which may be
evaluated by Monte Carlo simulation, will be considered elsewhere.

Appendix A

We obtain the order statistic for the EG distribution, given the density, sur-
vival and distribution functions in Adamidis and Loukas (1998). Then, we have

gk:n(y) =
1

B(k, n− k + 1)
f(y)(F (y))k−1(S(y))n−k,

gk:n(y) =
1

B(k, n− k + 1)

λ(1− θ)e−λy

(1− θe−λy)2

(
1− e−λy

1− θe−λy

)k−1(
(1− θ)e−λy

1− θe−λy

)n−k
=

1

B(k, n− k + 1)

λ(1− θ)e−λy

(1− θe−λy)n+1

(
1− e−λy

)k−1 (
(1− θ)e−λy

)n−k
.
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