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Abstract: To analyze skewed data, skew normal distribution is proposed by
Azzalini (1985). For practical problems of estimating the skewness parame-
ter of this distribution, Gupta and Gupta (2008) suggested power normal dis-
tribution as an alternative. We search for another alternative, named tilted
normal distribution following the approach of Marshall and Olkin (1997) to
add a positive parameter to a general survival function and taking survival
function is of normal form. We have found out different properties of this
distribution. Maximum likelihood estimate of parameters of this distribu-
tion have been found out. Comparison of tilted normal distribution with
skew normal and power normal distribution have been made.

Key words: Akaike information criterion, compound distribution, failure
rate, Kolmogorov discrepancy measure, maximum likelihood.

1. Introduction

The skew normal distribution, proposed by Azzalani (1985), can be a suitable
model for the analysis of data exhibiting a unimodal density having some skewness
present, a structure often occurring in data analysis. The proposed distribution is
a generalization of the standard normal distribution and the probability density
function (pdf) is given by

φ(z;λ) = 2φ(z)Φ(λz), −∞ < z <∞, (1.1)

where φ(x) and Φ(x) denote the N(0, 1) density and distribution function re-
spectively. The parameter λ regulates the skewness and λ = 0 corresponds to
the standard normal case. The density given by (1.1) enjoys a number of for-
mal properties which resemble those of the normal distribution, for example, if
X has the pdf, given by (1.1), then X2 has a chi-square distribution with one
degree of freedom. That is, all even moments of X are exactly the same as the
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corresponding even moments of the standard normal distribution. For more in-
formation, see Azzalini and Capitanio (1999) and Genton (2004). A motivation
of the skew normal distribution has been elegantly exhibited by Arnold et al.
(1993). This model can naturally arise in applications as hidden function and/or
selective reporting model, see Arnold and Beaver (2002).

Gupta and Gupta (2008) observed that the estimation of the skewness pa-
rameter of model (1.1) is problematic when the sample size is not large enough.
Monti (2003) noted that the estimate is λ̂ = ±∞, even when the data are gener-
ated by a model with finite λ. In the case of a skew normal model the moment
estimator of λ is the solution of√

2

π

λ√
1 + λ2

= X̄. (1.2)

Therefore, the solution exists if and only if |X̄| <
√

2/π. The exact distribution of
X̄ is not known and it is not easy to establish. Gupta and Gupta (2008) estimated
the value of P(|X̄| >

√
2/π) based on simulation data for different values of n

and λ. They have shown that as the sample size increases, the probability of the
feasibility of the moment estimator increases. On the other hand, as the skewness
parameter increases, the chances of obtaining the moment estimator decreases.

To find out the maximum likelihood estimator(MLE) of λ based on a random
sample X1, X2, · · · , Xn, the likelihood equation is

n∑
i=0

Xiφ(λXi)

Φ(λXi)
= 0. (1.3)

It is clear that if all Xi have the same sign then there is no solution of (1.3), see
also Liseo (1990) and Azzalini and Capitanio (1999). The probability that X > 0,
for λ > 0, is an increasing function of λ. When the absolute value of the skewness
parameter is large, the probability that all the observations have the same sign
is large. Therefore, for small to moderate sample sizes, the MLE may not be
accurate enough for a practical use. The Centered Parametrization (CP) can solve
these difficulties to some extent. Azzalini (1985) reparametrized the problem by

writing X = µ + σZ0, where Z0 = (Z − µz)/σz, σz = (1 − µ2
z)

1
2 , µz =

√
2/π ·

(λ/
√

1 + λ2) and considering the centred parameters CP= (µ, σ, γ1) instead of
the direct parameters DP= (µ, σ, λ). Here γ1 is the usual univariate index of
skewness, taken with same sign as that of λ [see for details, Azzalini and Capitanio
(1999)]. The set of S-PLUS routines developed for the computation are freely
available at the following World Wide Web address:

http://azzalini.stat.unipd.it/SN/.
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For the above reason, Gupta and Gupta (2008) considered another skewed model
for which normal distribution is a special case. They proposed the power normal
model whose distribution function and density function are given by

F2(x;α) = [Φ(x)]α, −∞ < x <∞, α > 0, (1.4)

and
f2(x;α) = α[Φ(x)]α−1φ(x), −∞ < x <∞, α > 0. (1.5)

This is basically an exponentiated family of distributions with baseline distribu-
tion as normal. This is nothing but a system of adding one or more parameters
to the existing normal distribution. Such an addition of parameters makes the
resulting distribution richer and more flexible for modeling data. The power nor-
mal distribution has several nice properties. For α = 1 it reduces to the standard
normal distribution. This distribution is a unimodal density which is skewed
to the right if α > 1 and to the left if 0 < α < 1. Gupta and Gupta (2008)
considered α as skewness parameter of the distribution.

But for 0 < α < 1, skewness to the left is not so clear as is to be seen from the
Figure 1 and modeling of left skewed data set will be misfit. This motivates us to
think for another skewed distribution for which normal distribution is a specified
case and at the same time it will be fit for modeling both kind of skewed data.
We take Marshall and Olkin (1997) extended model to add a positive parameter
to a general survival function.
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Figure 1: Plot of power normal distribution for different values of α
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Let X be arandom variable with survival function and the probability density
function as

F 3(x;β) =
βF 0(x)

1− (1− β)F 0(x)
, −∞ < x <∞, β > 0, (1.6)

and

f3(x;β) =
βf0(x)

[1− (1− β)F 0(x)]2
, −∞ < x <∞, β > 0, (1.7)

respectively. Here F0(x) is the baseline distribution function and f0(x) is the
corresponding probability density function. Taking F0(x) = Φ(x) and f0(x) =
φ(x), we get the tilted normal (standard) distribution as

f3(x;β) =
βφ(x)

[1− (1− β){1− Φ(x)}]2
, −∞ < x <∞, β > 0. (1.8)

Here β = 1 indicates a standard normal density function. The tilted normal
density is a unimodal density which is skewed to the left if β > 1 and to the right
if 0 < β < 1. Figure 2 displays a few pdf graphs for various values of β.
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Figure 2: Plot of tilted normal distribution for different values of β
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If the normal density has mean µ and variance σ2, then the form of the tilted
normal distribution will be

f3(x;β, µ, σ) =
β
σφ
(x−µ

σ

)
[1− (1− β){1− Φ

(x−µ
σ

)
}]2

, −∞ < x, µ <∞, β, σ > 0. (1.9)

We will denote this tilted normal distribution with parameters µ, σ and β as
TN(µ, σ, β).

The paper is organized as follows. In Section 2, we have shown that the TN
distribution can be obtained as a compound distribution with mixing exponential
distribution. The basic structural properties of the proposed model including
the reliability properties are presented in Section 3. In Section 4, we discuss the
estimation of parameters of the TN distribution. Section 5 is devoted for studying
closeness of skew normal, power normal and tilted normal distributions. A data
set has been analyzed using the TN model in Section 6. Section 7 concludes.

2. Compounding

Let Ḡ(x|θ),−∞ < x, θ <∞, be a survival function (SF) of a random variable
X given θ. Let θ be a random variable with pdf m(θ). Then a distribution with
survival function

Ḡ(x) =

∫ ∞
−∞

Ḡ(x|θ)m(θ)dθ, −∞ < x <∞,

is called a compound distribution with mixing density m(θ). Compound distri-
butions provide a tool to obtain new parametric families of distributions from
existing ones. They represent heterogeneous models where populations’ individ-
uals have different risks.

The following theorem show that the TN distribution can be obtained as a
compound distribution.

Theorem 2.1 Suppose that the conditional SF of a continuous random variable
X given Θ = θ is given by

Ḡ(x|θ) = exp

[
−θ

Φ
(x−µ

σ

)
1− Φ

(x−µ
σ

)] , −∞ < x, µ <∞, θ, σ > 0.

Let θ have an exponential distribution with pdf

m(θ) = βe−βθ, θ, β > 0.

Then the compound distribution of X is the TN(µ, σ, β) distribution.
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Proof: For −∞ < x <∞, −∞ < µ <∞, β > 0, the SF of X is given by

Ḡ(x) =

∫ ∞
0

Ḡ(x|θ)m(θ)dθ

= β

∫ ∞
0

e
−θ

Φ(x−µσ )
1−Φ(x−µσ ) e−βθdθ

=
β
[
1− Φ

(x−µ
σ

)]
1− (1− β)

[
1− Φ

(x−µ
σ

)] ,
which is the SF of the TN(µ, σ, β) distribution.
For fixed θ > 0, the distribution with survival function Ḡ(x|θ) gives a class of
non-standard distributions. As a result of Theorem 2.1 above, compounding any
of the distributions belonging this class with an exponential mixing distribution
for θ will lead to a certain form of TN distribution. This theorem also provides
another way to interpret the TN distribution in addition to the geometric-extreme
stability property given by Marshall and Olkin (1997).

3. Basic Structural and Survival Properties

The expressions for the mean, variance and skewness of the TN(µ, σ, β) model
seem to be not available in compact form. For the proposed model, we have,

E (Xr) =

∫ ∞
−∞

xr
β
σφ
(x−µ

σ

)
[1− (1− β){1− Φ

(x−µ
σ

)
}]2

dx.

Using this expression, with the help of computer, we can find measures of central
tendency, dispersion and skewness index of the TN(µ, σ, β). We have presented
measures of central tendency (mean, median, mode), and variance and skewness

index, β1 = µ3/µ
3
2
2 (where µ2 and µ3 are second and third order central moments)

for the TN(0, 1, β) in Figure 3 and Figure 4 respectively. The median M of the
TN(0, 1, β) distribution is given by

M = Φ−1

(
β

1 + β

)
,

which is the β/(1 + β)th quantile of standard normal distribution. The mode is
a solution of the equation

x = − 2(1− β)φ(x)

1− (1− β)[1− Φ(x)]
.

From Figure 3 and Figure 4, it is found that, as expected, median is less than
mean for β < 1. Variance is increasing for β < 1 and is decreasing for β > 1, and
skewness index is lying between -1 and 1 for the TN(0, 1, β) variate.



Tilted Normal Distribution and Its Survival Properties 231

0 2 4 6 8

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

β

va
lu

e

mean
median
mode

Figure 3: Plot of mean, median and mode of tilted normal distribution for
different values of β
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The closed form expressions for basic structural properties are not available.
Therefore, we now concentrate to get survival properties of the TN distribution.
The failure rate function of X is given by

hTN (x) =
1

1− (1− β)[1− Φ(x)]
· φ(x)

1− Φ(x)

=
1

1− (1− β)[1− Φ(x)]
· hN (x),

with the integrated failure rate function

HTN (x) = − ln
β [1− Φ(x)]

1− (1− β) [1− Φ(x)]
.

The reversed failure rate function of X is given by

rTN (x) =
β

1− (1− β)[1− Φ(x)]
· φ(x)

Φ(x)

=
β

1− (1− β)[1− Φ(x)]
· rN (x).

Here hN (x) and rN (x) are failure rate and reversed failure rate function of the
N(0, 1) distribution respectively. Figure 5 and Figure 6 show failure rates and
reversed failure rates of the tilted normal distribution for different values of β
respectively.
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Figure 5: Plot of failure rate of tilted normal distribution for different values
of β
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Figure 6: Plot of reversed failure rate of tilted normal distribution for different
values of β

Theorem 3.1 If X ∼ TN(0, 1, β1), Y ∼ TN(0, 1, β2), and β1 > β2, then Y <LR
X ⇒ Y <HAZ X ⇒ Y <ST X and Y <HAZ X ⇒ Y <MRL X. Here Y <W X
means Y is smaller than X in W ordering.

Proof: The logarithm of the likelihood ratio

v(x) = ln
f3(x, β1)

f3(x, β2)

= ln
β1

β2
+ 2 [ln{1− (1− β2)(1− Φ(x))} − ln{1− (1− β1)(1− Φ(x))}]

is an increasing function of x if β1 > β2, since

v′(x) =
2φ(x)(β1 − β2)

[1− (1− β1)(1− Φ(x))][1− (1− β2)(1− Φ(x))]
> 0,

for all x. Therefore, the tilted normal distribution has the likelihood ratio or-
dering, which implies it has the failure rate ordering as well as the stochastic
ordering and the mean residual life ordering, see Gupta and Kirmani (1987).

4. Maximum Likelihood Estimation

Let Xi, i = 1, 2, · · · , n, be the ith observation and let Yi be the correspond-
ing censoring point. The Xi’s and Yi’s are assumed independent. The Xi’s are
assumed to have the TN(µ, σ, β) distribution and the Yi’s are assumed to have a
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non-informative distribution i.e. a distribution that does not involve the param-
eters µ, σ and β. One observes only the pair (Ti, δi), where Ti = min(Xi, Yi) and
δi = I(Xi ≤ Yi) is the censoring indicator.

Given the data {(ti, δi), i = 1, 2, · · · , n}, the likelihood function is given by

Ln(µ, σ, β) =
n∏
i=1

{f3(ti;µ, σ, β)}δi{1− F3(ti;µ, σ, β)}1−δi

=
n∏
i=1

[
1
σφ
( ti−µ

σ

)
1− Φ

( ti−µ
σ

) · 1

1− (1− β)
{

1− Φ
( ti−µ

σ

)}]δi

×

[
β
{

1− Φ
( ti−µ

σ

)}
1− (1− β)

{
1− Φ

( ti−µ
σ

)}] .
Maximizing the likelihood function is equivalent to maximizing its logarithm.
Hence the log-likelihood l(µ, σ, β) = lnLn(µ, σ, β) is given by

l(µ, σ, β) = − lnσ

n∑
i=1

δi + n lnβ +

n∑
i=1

δi lnφ

(
ti − µ
σ

)

+
n∑
i=1

(1− δi) ln

{
1− Φ

(
ti − µ
σ

)}

−
n∑
i=1

(1 + δi) ln

[
1− (1− β)

{
1− Φ

(
ti − µ
σ

)}]
.

Maximum likelihood estimates (MLEs) of the parameters β, µ, σ are obtained
by solving the non-linear equations ∂l/∂β = 0, ∂l/∂µ = 0, ∂l/∂σ = 0. Hence, the
iterative solutions are

β =
n∑n

i=1

[
(1+δi)

{
1−Φ

(
ti−µ
σ

)}
1−(1−β)

{
1−Φ

(
ti−µ
σ

)}
] ,

µ =
σ∑n
i=1 δi

[
1

σ

n∑
i=1

δiti +

n∑
i=1

(1− δi)φ
( ti−µ

σ

)
1− Φ

( ti−µ
σ

) +

n∑
i=1

(1 + δi)(1− β)φ
( ti−µ

σ

)
1− (1− β)

{
1− Φ

( ti−µ
σ

)}] ,
and

σ2 =
1∑n
i=1 δi

[
n∑
i=1

δi(ti − µ)2 + σ

n∑
i=1

(1− δi)(ti − µ)φ
( ti−µ

σ

)
1− Φ

( ti−µ
σ

)
+ σ

n∑
i=1

(1 + δi)(ti − µ)(1− β)φ
( ti−µ

σ

)
1− (1− β)

{
1− Φ

( ti−µ
σ

)} ]
,
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respectively. For the complete sample, δi = 1, for all i, and for the type-I censored
sample, Yi = t0, for all i.

The large-sample variance-covariance matrix of the MLEs is obtained by in-
verting the matrix of minus second order derivatives of the log-likelihood evalu-
ated at the MLEs.
The likelihood ratio test will be used to test the null hypothesis H0 : β = 1 (Nor-
mal distribution). WhenH0 is true, the deviance test statistic dn = −2[l(µ̂, σ̂, 1)−
l(µ̂, σ̂, β̂)], where µ̂, σ̂ are the MLEs of µ, σ under H0 : β = 1, has approximately a
chi-square distribution with 1 degree of freedom. In addition, for model selection,
we use the Akaike Information Criterion (AIC) defined as:

AIC = -2 log-likelihood + 2k,

where k is the number of parameters in the model and n is the sample size. For
more details about the AIC, see Akaike (1969). The model with minimum AIC
is the one that better fits the data.

5. Closeness of Skew Normal, Power Normal and Tilted Normal Dis-
tribution

It should be noted that the cumulative distribution function of the skew nor-
mal, power normal and tilted normal distributions are

F1(x, λ) = 2

∫ x

−∞
Φ(λt)φ(t)dt, −∞ < λ <∞,

F2(x, α) = Φα(x), α > 0,

and

F3(x, β) =
Φ(x)

1− (1− β){1− Φ(x)}
, β > 0,

respectively. F1(x, λ), F2(x, α) and F3(x, β) are exactly equal to normal distribu-
tion when λ = 0, α = 1 and β = 1. F1(x, λ) and F2(x, α) are also exactly equal
when λ = 1 and α = 2. Since all the models can be used to model positively or
negatively skewed data, it might be possible to approximate F1(x, λ) by F2(x, α)
or F3(x, β). To investigate this, we apply the following procedure:

1. Set a value of λ.

2. Find a and b such that a = max
{
x : 2

∫ x
−∞Φ(λt)φ(t)dt ≤ 0.001

}
and

b = min
{
x : 2

∫ x
−∞Φ(λt)φ(t)dt ≥ 0.999

}
.
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3. Divide the range [a, b] by 100 parts, say, a = x0 ≤ x1 ≤ · · · ≤ x100 = b, and
set yi = F1(xi, λ); i = 0, 1, 2, · · · , 100.

4. Find α by minimizing S2
1 =

∑100
i=1 [yi − F2(xi, α)]2 , to fit the model y ∼

F2(x, α).

5. Find the Kolmogorov discrepancy measure D12 = maxxi |F2(xi, α̂)−F1(xi, λ)|.

6. Find β by minimizing S2
2 =

∑100
i=1 [yi − F3(xi, β)]2 , to fit the model y ∼

F3(x, β).

7. Find the Kolmogorov discrepancy measure D13 = maxxi |F3(xi, β̂)−F1(xi, λ)|.

In Table 1, we represent the values of α̂ and D12 corresponding to various
values of λ, and the values of β̃ and D13 corresponding to various values of α
(assuming α̂ as α in this case).

Table 1: Kolmogorov discrepancy measure for various values of λ and corre-
sponding values of α and β

λ α̂ D12 β̂ D13

-3.0 0.523379 0.2088197 0.286948 0.1310713
-2.5 0.526644 0.1931135 0.292527 0.1180007
-2.0 0.534567 0.1723528 0.303881 0.1013205
-1.5 0.552582 0.1438773 0.328224 0.07972262
-1.0 0.595259 0.1037106 0.386520 0.05227650
-0.5 0.707068 0.0501869 0.547937 0.02133689
0.0 1.000000 0.0000000 1.000000 0.00000000
0.5 1.51708 0.01424926 1.82503 0.02133466
1.0 2.000000 0.0000000 2.58718 0.05227601
1.5 2.30154 0.01932597 3.04666 0.07973357
2.0 2.47086 0.03698127 3.29064 0.1013342
2.5 2.56769 0.05140222 3.41826 0.1179983
3.0 2.62544 0.06307444 3.48459 0.1310684

From the table it is clear that the discrepancy among the skew normal, power
normal and tilted normal is minimal when λ = 0, α = 1 and β = 1 and the three
models coincide with the standard normal distribution and there is, obviously,
no discrepancy among the three. The skew normal and power normal distribu-
tions are also identical when λ = 1 and α = 2. The power normal distribution
provides a better approximation to the skew normal when λ is positive as com-
pared to the negative values of λ and the Kolmogorov discrepancy measure does
not exhibit symmetric behaviour for values of λ moving away from zero in both
directions. On the other hand, the tilted normal distribution approximates with
equal efficiency for values of λ moving away from zero in both directions as the
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Kolmogorov discrepancy measure exhibits symmetric behaviour. It provides a
better approximation than the power normal to the skew normal when λ is neg-
ative. The relative Kolmogorov discrepancy of tilted normal and power normal
is less for the positive values of λ as compared to that for the negative values of
λ.

6. Data Analysis

In this section, we consider a data set to fit with the tilted normal distribution.
The data related to failure time of bus motor is taken from Davis (1952).

We consider initial bus motor failures data of Davis (1952, p. 145). Data
contain distance intervals (in thousands of miles) and corresponding observed
number of failures and have been shown in Table 2. Histogram shows that the
data set is negatively (left-) skewed with coefficient of skewness, b1 = m3/

√
m3

2 =
−0.3141923 (where m2 and m3 are sample second and third order central mo-
ments). Davis fitted this data to the normal distribution with observed χ2 = 9.93
having p-value 0.08. We have fitted this data with the normal, the skew normal,
the power normal and the tilted normal distributions. The results are summa-
rized in Table 3. Histogram and fitted tilted normal, skew normal, power normal
and normal curves to data have been shown in Figure 7.

Table 2: Initial bus motor failures

Distance Interval, Thousands of Miles Observed Number of Failures

Less than 20 6
20− 40 11
40− 60 16
60− 80 25
80− 100 34

100− 120 46
120− 140 33
140− 160 16
160− 180 2
180− up 2

Total 191

Table 3: Summarized results of fitting different distributions to data set of
Davis (1952)

Distribution µ̂ σ̂ Estimate of tilt parameter log-likelihood AIC

Normal 96.5688 37.5829 - −388.244 772.488

Power normal 142.48011 19.4888 α̂ = 0.156967 −385.957 765.914

Skew normal 136.226843 55.04693 λ̂ = −2.17259 −385.068 764.136

Tilted normal 58.7097 40.1341 β̂ = 5.59596 −384.616 763.232
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Figure 7: Plot of histogram and fitted tilted normal, skew normal, power normal
and normal curves to data of Davis (1952)

Here for tilted normal fitting, the deviance test statistic dn = 7.256 with p-
value 0.0070665. These information justify better fitting of the tilted normal
distribution to the data. Since the data are related to failure times, we have
presented the estimated failure rate functions for the normal, the power normal,
the skew normal and the tilted normal model in Figure 8. The estimated failure
rate shows an increasing pattern.
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Figure 8: Plot of estimated failure rate functions of fitted tilted normal, skew
normal, power normal and normal curves to data of Davis (1952)
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7. Concluding Remarks

In this article, the tilted normal distribution has been studied which could
be an alternative model to skew normal distribution for left skewed data. The
practical problems in estimating the skewness parameter for small to moderate
sample sizes of skew normal distribution has been discussed and to alleviate these
problems, an alternative model called the ‘Power normal model’ has been pro-
posed by Gupta and Gupta (2008). It has been observed that the ‘Power normal
model’ is not a good fit for data skewed to the left. As an alternative this tilted
normal distribution has been proposed. The normal distribution is widely and
comfortably used by the practitioners as well as the theoreticians for analyzing
symmetric data. Since skewed data could be analyzed by the tilted normal distri-
bution that is obtained by adding a parameter, it is to be easy and comprehensive
to the users. The structural and survival properties of this distribution have been
studied and inference on parameters have also been mentioned. The appropriate-
ness of fitting the tilted normal distribution has been established by analyzing a
data set.
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