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The Kumaraswamy Generalized Half-Normal Distribution for
Skewed Positive Data
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Abstract: For the first time, we propose and study the Kumaraswamy gen-
eralized half-normal distribution for modeling skewed positive data. The
half-normal and generalized half-normal (Cooray and Ananda, 2008) distri-
butions are special cases of the new model. Various of its structural prop-
erties are derived, including explicit expressions for the density function,
moments, generating and quantile functions, mean deviations and moments
of the order statistics. We investigate maximum likelihood estimation of
the parameters and derive the expected information matrix. The proposed
model is modified to open the possibility that long-term survivors may be
presented in the data. Its applicability is illustrated by means of four real
data sets.

Key words: Expected information, generalized half-normal distribution,
half-normal distribution, hazard rate function, Kumaraswamy distribution,
maximum likelihood estimation, mean deviation.

1. Introduction

For an arbitrary baseline cumulative distribution function (cdf)G(x), Cordeiro
and de Castro (2011) defined the probability density function (pdf) f(x) and the
cdf F (x) of the Kumaraswamy-G (“Kw-G” for short) distribution by

f(x) = a b g(x)Ga−1(x) {1−Ga(x)}b−1 , (1)

and

F (x) = 1− {1−Ga(x)}b , (2)

respectively, where g(x) = dG(x)/dx and a > 0 and b > 0 are additional shape
parameters to the distribution of G. If X is a random variable with density (1),
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we write X ∼ Kw-G(a, b). Except for some special choices of the functions g(x)
and G(x), the density function f(x) will be difficult to deal with some generality.
One major benefit of the Kw-G distribution is its ability of fitting skewed data
that can not be properly fitted by existing distributions. This fact was demon-
strated recently by Cordeiro et al. (2010) who apply the Kumaraswamy Weibull
distribution to failure data.

A physical interpretation of (2) (for a and b positive integers) is as follows.
Consider a system formed by b independent series components and that each
component is made up of a parallel independent subcomponents. The system
fails if any of the b components fails and that each component fails if all of the
a subcomponents fail. The time to failure distribution of the entire system has
precisely the Kw-G distribution.

The most popular models used to describe the lifetime process under fatigue
are the half-normal (HN) and Birnbaum–Saunders (BS) distributions. When
modeling monotone hazard rates, the HN and BS distributions may be initial
choices because of their negatively and positively skewed density shapes. How-
ever, they do not provide a reasonable parametric fit for modeling phenomenon
with non-monotone failure rates such as the bathtub shaped and the unimodal
failure rates, which are common in reliability and biological studies. Such bathtub
hazard curves have nearly flat middle portions and the corresponding densities
have a positive anti-mode. The distributions which allow a bathtub fit are suf-
ficiently complex (Nelson, 2004) and usually require five or more parameters.
However, more recently, Dı́az-Garćıa and Leiva (2005) introduced a new family
of generalized BS distributions based on contoured elliptically distributions and
Cooray and Ananda (2008) defined the generalized half-normal (GHN) distri-
bution derived from a model for static fatigue. The distribution studied here
extends the last distribution.

The GHN density function (Cooray and Ananda, 2008) with shape parameter
α > 0 and scale parameter θ > 0 has the form (for x > 0)

g(x) =

√
2

π

(α
x

) (x
θ

)α
exp

[
− 1

2

(x
θ

)2α ]
. (3)

Its cdf depends on the error function

G(x) = 2Φ
[(x
θ

)α]
− 1 = erf

((
x
θ

)α
√

2

)
, (4)

where

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
and erf(x) =

2√
π

∫ x

0
e−t

2
dt.
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Its nth moment is given by (Cooray and Ananda, 2008) E(Xn) =

√
2
n
α

π Γ
(
n+α
2α

)
θn,

where Γ(·) is the gamma function. The HN distribution is a special sub-model
when α = 1.

In this article, we study a new four-parameter distribution refereed to as the
Kumaraswamy generalized half-normal (Kw-GHN) distribution, which contains
as sub-models the HN and GHN distributions. The new distribution due to its
flexibility in accommodating bathtub-shape form of the hazard function could
be an important model in a variety of problems in survival analysis. It is also
suitable for testing goodness of fit of the particular cases. By inserting (3) and
(4) in (1), the Kw-GHN density function (for x > 0), with four parameters α > 0,
θ > 0, a > 0 and b > 0, is given by

f(x) = ab

√
2

π

(α
x

) (x
θ

)α
exp

[
− 1

2

(x
θ

)2α ] {
2Φ
[(x
θ

)α]
− 1
}a−1

×
[
1−

{
2Φ
[(x
θ

)α]
− 1
}a]b−1

. (5)

If X is a random variable with density (5), we write X ∼ Kw-GHN(α, θ, a, b).
The new model contains some important sub-models. For a = b = 1, it gives
the GHN distribution. If α = 1, it yields the Kumaraswamy half-normal (Kw-
HN) distribution. If b = 1, it leads to the exponentiated generalized half-normal
(EGHN) distribution. Further, if a = b = 1, in addition to α = 1, it reduces to
the HN distribution. The cdf and hazard rate function corresponding to (5) are

F (x) = 1−

{
1− erf

((
x
θ

)α
√

2

)a}b
, (6)

and

h(x) =
ab
√

2
π

(
α
x

) (
x
θ

)α
e−(

x
θ
)2α/2

{
2Φ
[(
x
θ

)α]− 1
}a−1 [

1−
{

2Φ
[(
x
θ

)α]− 1
}a]b−1

1−
[
1−

{
2Φ
[(
x
θ

)α]− 1
}a]b ,

(7)

respectively. Plots of these functions for selected parameter values, including the
GHN and HN sub-models, are given in Figures 1 and 2, respectively.

Quantile functions are in widespread use in general statistics and often find
representations in terms of lookup tables for key percentiles. Let x = Q(u) be
the Kw-GHN quantile function derived by inverting (6). If x = QN (u) = Φ−1(u)
denotes the standard normal quantile function, we can obtain

Q(u) = θ [QN ({1 + [1− (1− u)1/b]1/a}/2)]1/α. (8)



198 Gauss M. Cordeiro, Rodrigo R. Pescim and Edwin M. M. Ortega

0 20 40 60 80 100

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Kw−GHN(1.5,40,a,b)

x

f(x
)

GHN
a=3,b=0.9
a=0.5,b=2
a=2,b=2

0 50 100 150

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Kw−GHN(1,70,a,b)

x

f(x
)

HN
a=0.3,b=0.9
a=0.5,b=2
a=2,b=2

Figure 1: Plots of the density function (5) for some parameter values
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Figure 2: Plots of the hazard rate function (7) for some parameter values

Clearly, the Kw-GHN distribution is easily simulated by X = Q(U), where U is
an uniform random variable on the unit interval (0, 1).

The article is organized as follows. In Section 2, we derive an expansion for
the Kw-GHN density function. In Section 3, we study the behavior of the Bowley
skewness and Moors kurtosis. In Section 4, we provide a general expansion for
the moments. We derive power series expansions for the quantile and generating
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functions in Sections 5 and 6, respectively. Mean deviations are explored in
Section 7. Expansions for the density of the order statistics and their moments are
given in Section 8. The probability weighted moments (PWMs) are determined
in Section 9. An alternative formula for moments of order statistics is given in
Section 10. Maximum likelihood estimation is discussed in Section 11. In Section
12, we apply the proposed model for survival data with long-term survivors.
Section 13 illustrates the importance of the new distribution applied to four real
data sets. Finally, concluding remarks are given in Section 14.

2. Expansion for the Density Function

If b > 0 is a real non-integer, we can expand the binomial term in (1) to
obtain

f(x) =
∞∑
j=0

wj h(j+1)a(x), (9)

where wj = (−1)j (j + 1)−1 b
(
b−1
j

)
and ha(x) = aGa−1(x) g(x) denotes the

exponentiated-G density with positive power a. We note that for a > 1 and
a < 1 and for larger values of x, the multiplicative factor aGa−1(x) is greater
and smaller than one, respectively. The reverse assertion is also true for smaller
values of x. The latter immediately implies that the ordinary moments associated
with the density function f(x) are strictly larger (smaller) than those associated
with the density g(x) when a > 1 (a < 1).

(9) reveals that the Kw-G density function is a linear combination of expo-
nentiated-G density functions. This result is useful to derive some mathematical
properties of the Kw-G distribution from those of the exponentiated-G distribu-
tions. If b > 0 is an integer, the index j in the above sum stops at b− 1.

Some properties of the exponentiated distributions have been studied by
several authors in recent years, see Mudholkar et al. (1995) for exponentiated
Weibull, Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001)
for exponentiated exponential and Nadarajah and Gupta (2007) for exponenti-
ated gamma distributions. We can apply (9) to the the EGHN density function
with power (j + 1)a given by

h(j+1)a(x) = (j + 1)a

√
2

π

(α
x

)(x
θ

)α
exp

[
− 1

2

(x
θ

)2α ]{
2Φ
[(x
θ

)α]
− 1
}(j+1)a−1

.

(10)

We can obtain an expansion for G(x)β (β > 0 real non-integer) given by

G(x)β =

∞∑
r=0

sr(β)G(x)r, (11)
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where

sr(β) =
∞∑
j=r

(−1)r+j
(
β

j

)(
j

r

)
.

Hence,

f(x) = g(x)
∞∑
r=0

tr

{
erf

((
x
θ

)α
√

2

)}r
, (12)

whose coefficients are

tr = tr(a, b) = a b
∞∑
j=0

(−1)j
(
b− 1

j

)
sr((j + 1)a− 1). (13)

(12) is the main expansion for the Kw-GHN density function. This equation
and other expansions derived here can be evaluated in symbolic computation
software such as Mathematica and Maple. These symbolic software have currently
the ability to deal with analytic expressions of formidable size and complexity.

3. Quantile Measures

The effect of the shape parameters a and b on the skewness and kurtosis of
the new distribution can be considered based on quantile measures determined
from (8). The Bowley skewness (Kenney and Keeping, 1962) is one of the earliest
skewness measures defined by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
.

The Moors kurtosis (see Moors, 1988) based on octiles is defined by

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

The measures B and M are less sensitive to outliers and they exist even for
distributions without moments. For symmetric unimodal distributions, positive
kurtosis indicates heavy tails and peakedness relative to the normal distribu-
tion, whereas negative kurtosis indicates light tails and flatness. For the normal
distribution, B = M = 0.

In Figures 3 and 4, we plot the measuresB andM for the Kw-GHN(1.5, 40, a, b)
distribution, as functions of a (for fixed b) and as functions of b (for fixed a), re-
spectively. These plots indicate that the Bowley skewness always decreases when
b increases (for fixed a) and first decreases steadily to a minimum value and then
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increases when a increases (for fixed b). On the other hand, the Moors kurtosis
first decreases steadily to a minimum value and then increases when b increases
(for fixed a) and always increases when a increases (for fixed b). So, these plots
indicate that both measures can be very sensitive on these shape parameters,
thus indicating the importance of the proposed distribution.
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Figure 3: The Bowley skewness of the Kw-GHN distribution as function of b
for some values of a and as function of a for some values of b
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Figure 4: The Moors kurtosis of the Kw-GHN distribution as function of b for
some values of a and as function of a for some values of b

The Bowley skewness can take positive and negative values. Tables 1 and
2 give the intervals for the parameter b (for fixed a) and for the parameter a
(for fixed b) when the Bowley skewness is positive and negative. On the other
hand, the Moors kurtosis always takes positive values. Tables 3 and 4 give the
parameter b (for fixed a) and the parameter a (for fixed b) that yield the minimum
Moors kurtosis.
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Table 1: Intervals for the parameter b (for fixed a) when B is positive and
negative

Some values of a B > 0 B < 0

a = 2 b > 0 ∅
a = 2.5 b ∈ (0, 5.280257) b ∈ (5.280257,∞)

a = 3 b ∈ (0, 3.231569) b ∈ (3.231569,∞)

a = 4.5 b ∈ (0, 2.584617) b ∈ (2.584617,∞)

Table 2: Intervals for the parameter a (for fixed b) when B is positive and
negative

Some values of a B > 0 B < 0

b = 1.5 a > 0 ∅
b = 2 a > 0 ∅
b = 2.5 a > 0 ∅
b = 3 a ∈ (0, 3.119547) a ∈ (3.119547,∞)

Table 3: Values of the parameter b (for fixed a) when M has the minimum
value

Some values of a Minimum value for M

a = 1 b = 1.275354

a = 1.2 b = 1.617821

a = 1.4 b = 2.198956

a = 1.6 b = 3.311047

Table 4: Values of the parameter a (for fixed b) when M has the minimum
value

Some values of b Minimum value for M

b = 0.25 a = 0.500965

b = 0.35 a = 0.500167

b = 0.5 a = 0.500001

b = 1 a = 0.500003

4. Moments

Here and henceforth, let X ∼ Kw-GHN(α, θ, a, b). By setting u =
(
x
θ

)α
, the

nth moment of X comes from (12) as

E(Xn) = θn
√

2

π

∞∑
r=0

tr I
(n
α
, r
)
,
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where

I
(n
α
, r
)

=

∫ ∞
0

u
n
α exp

(
−u

2

2

)[
erf

(
u√
2

)]r
du.

From the power series expansion for the error function

erf(x) =
2√
π

∞∑
m=0

(−1)m x2m+1

(2m+ 1)m!
,

and by calculating the resulting integral for any real number r + n/α, we obtain

E(Xn) = θn
√

2

π

∞∑
r=0

tr I
(n
α
, r
)
, (14)

where

I
(n
α
, r
)

= π−
r
2 2r+

n
2α
− 1

2

∞∑
m1,··· ,mr=0

(−1)m1+···+mrΓ
(
m1 + · · ·+mr +

r+n
α
+1

2

)
(m1 + 1/2) . . . (mr + 1/2)m1! · · ·mr!

.(15)

Further, in the very special case when r+n/α is even, the integral I (n/α, r) can
be expressed in terms of the Lauricella function of type A (Exton, 1978; Aarts,
2000) defined by

F
(n)
A (a; b1, · · · , bn; c1, · · · , cn;x1, · · · , xn)

=
∑∞

m1=0 · · ·
∑∞

mn=0
(a)m1+···+mn (b1)m1 ···(bn)mn

(c1)m1 ···(cn)mn
x
m1
1 ···x

mn
n

m1!···mn! ,

where (a)k = a(a+1) · · · (a+k−1) is the ascending factorial (with the convention
that (a)0 = 1). Numerical routines for the direct computation of the Lauricella
function of type A are available, see Exton (1978) and Mathematica (Trott, 2006).
Hence, E(Xn) can be expressed in terms of the Lauricella functions of type A

E(Xn) = θn
√

2

π

∞∑
r=0

Cr F
(r)
A

(
r + n

α + 1

2
;
1

2
, · · · , 1

2
;
3

2
, · · · , 3

2
;−1, · · · ,−1

)
,

where

Cr = π−
r
2 22r+

n
2α
− 1

2 Γ

(
r + n

α + 1

2

)
tr.

An alternative expression for E(Xn) follows from (9) as

E(Xn) =
∞∑
j=0

wj E(Y n
(j+1)a), (16)
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where Y(j+1)a ∼ EGHN((j + 1)a), and wj and h(j+1)a(x) are defined in (9) and
(10), respectively. (16) gives the moments of the Kw-GHN distribution as an
infinite linear combination of the corresponding EGHN moments.

The skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. Plots of the skewness and kurtosis for
some choices of b as function of a, and for some choices of a as function of b, for
α = 1 and θ = 45, are given in Figures 5 and 6, respectively. These measures
show a different behavior in terms of variation of the parameters a and b from
the quantile measures studied in Section 3. In fact, these plots indicate that the
skewness and kurtosis curves increase (decrease) with b (a) for fixed a (b).
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The pth descending factorial moment of X is

E(X(p)) = E[X(X − 1)× · · · × (X − p+ 1)] =

p∑
n=0

s(p, n)E(Xn),

where s(r, n) = (n!)−1[dnn(r)/dxn]x=0 is the Stirling number of the first kind.
Other kinds of moments may also be obtained in closed-form, but we consider
only the previous moments for reasons of space.

5. Quantile Expansion

Here, we obtain a power series expansion for the quantile function of X. By
expanding the binomial terms in (8), we have

1

2
{1 + [1− (1− u)1/b]1/a} =

∞∑
k=0

mk u
k, (17)

where m0 = [1 +
∑∞

j=0(−1)j
(
1/a
j

) (
j/b
j

)
]/2 and mk = [

∑∞
j=0(−1)j+k

(
1/a
j

) (
j/b
j

)
]/2

for k ≥ 1.

Following Steinbrecher (2002), the standard normal quantile function can be
expanded as

QN (u) =
∞∑
k=0

bk w
2k+1, (18)

where w =
√

2π (u−1/2) and the quantities bk can be calculated recursively from

bk+1 =
1

2(2k + 3)

k∑
r=0

(2r + 1) (2k − 2r + 1) br bk−r
(r + 1) (2r + 1)

.

Here, b0 = 1, b1 = 1/6, b2 = 7/120, b3 = 127/7560, · · · . The function QN (u) can
be expressed as a power series given by

QN (u) =

∞∑
r=0

dr u
r (19)

where

dr =

∞∑
k=r

(−1/2)k−r
(
k

r

)
ek

and the quantities ek are defined from the coefficients in (18) by ek = 0 for
k = 0, 2, 4, · · · , and ek = (2π)k/2 b(k−1)/2 for k = 1, 3, 5, · · · .
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Combining (17) and (19), we obtain

QN
(
{1 + [1− (1− u)1/b]1/a}/2

)
=

∞∑
r=0

dr

( ∞∑
k=0

mk u
k

)r
. (20)

We use throughout an equation of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive integer j( ∞∑

i=0

ai x
i

)j
=
∞∑
i=0

cj,i x
i, (21)

where the coefficients cj,i (for i = 1, 2, · · · ) are easily obtained from the recurrence
equation

cj,i = (ia0)
−1

i∑
m=1

[m(j + 1)− i] am cj,i−m, (22)

and cj,0 = aj0. From (20)-(22), we obtain

QN
(
{1 + [1− (1− u)1/b]1/a}/2

)
=
∞∑
k=0

h?k u
k,

where h?k =
∑∞

k=0 dr gr,k and the quantities gr,k are given by gr,0 = mr
0 and

gr,k = (km0)
−1∑k

s=1[s(r + 1) − k]ms gr,k−s for k ≥ 1. The argument of the
standard normal quantile function guarantees that the sum

∑∞
k=0 h

?
k u

k belongs
to the interval (0, 5). Setting hk = h?k/5, the quantile function of X can be
expressed as

Q(u) = θ 51/α

( ∞∑
k=0

hk u
k

)1/α

,

and then it does involve a power series in the interval (0, 1). Using (11), we can
write ( ∞∑

k=0

hk u
k

)1/α

=
∞∑
r=0

sr(α
−1)

( ∞∑
k=0

hk u
k

)r
,

where sr(α
−1) =

∑∞
j=r(−1)r+j

(
α−1

j

) (
j
r

)
. The above equation and (21) lead to

Q(u) =
∞∑
k=0

vk u
k, (23)
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where vk = θ 51/α
∑∞

r=0 sr(α
−1) qr,k for k ≥ 0, qr,k = (k h0)

−1 ∑k
m=1[m(r + 1)−

k]hm qr,k−m for k ≥ 1 and qr,0 = hr0. (23) is the main result of this section.

6. Generating Function

By setting u =
(
x
θ

)α
, the moment generating function (mgf) of X can be

obtained from (12) as

M(s) =

√
2

π

∞∑
r=0

tr

∞∑
m=0

θm sm

m!

∫ ∞
0

u
m
α exp

(
−u

2

2

)[
erf

(
u√
2

)]r
du.

Following similar lines of Section 4, M(s) can be reduced to

M(s) =
∞∑
m=0

Am s
m

m!
, (24)

where

Am =

√
2

π
θm

∞∑
r=0

tr π
− r

2 2r+
m
2α
− 1

2 I
(m
α
, r
)
,

and I
(
m
α , r

)
is defined by (15). Evidently, Am gives a second representation for

the mth moment of X.
An alternative equation for M(s) can be derived from the quantile expansion

(23). Using (21), we have

M(s) =

∫ 1

0
exp{sQ(u)}du =

∫ 1

0

∞∑
k=0

sk (
∑∞

n=0 vn u
n)k

k!
du =

∞∑
k=0

Bk s
k

k!
, (25)

where Bk =
∑∞

n=0 dk,n/(n + 1) for k = 0, 1, · · · , and dk,n can be calculated
recursively by dk,0 = vk0 and dk,n = (i v0)

−1∑n
m=1[m(k + 1) − n] vm dk,n−m for

k ≥ 1. Clearly, Bk gives a third representation for the kth moment of X. (24)
and (25) are the main results of this section.

7. Mean Deviations

We can derive the mean deviations about the mean µ = E(X) and about the
median M of X from

δ1 = 2
[
µF (µ)− J(µ)] and δ2 = µ− 2J(M), (26)

where J(q) =
∫ q
0 x f(x)dx. The median M comes from (8) by M = Q(1/2). By

setting u = (x/θ)α, this integral can be obtained from (12) as

J(q) = θ

√
2

π

∞∑
r=0

tr

∫ (q/θ)α

0
u

1
α exp

(
−u

2

2

)[
erf

(
u√
2

)]r
du.
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The error function erf
(

u√
2

)
admits the expansion

(∑∞
k=0 aku

k
)
, where a2k+1

= (−1)k21−k√
2π(2k+1)k!

and a2k = 0 for k ∈ N. Thus,

J(q) = θ

√
2

π

∞∑
r,k=0

tr cr,k

∫ (q θ−1)α

0
uk+

1
α exp

(
−u

2

2

)
du,

where the quantities cr,k are immediately calculated from the a′ks above by (22).
Setting v = u2/2, we can write

J(q) =
2θ√
π

∞∑
r,k=0

tr cr,k

∫ (qθ−1)2α/2

0
v(k+α

−1−1)/2 e−vdv.

For λ > 0, ∫ y

0
vλ−1 e−α vdv = α−λ γ(λ, α y),

where γ(a, y) =
∫ y
0 t

a−1 e−ydt is the incomplete gamma function. Then,

J(q) =
2θ√
π

∞∑
r,k=0

trcr,kγ
[
(k + α−1 + 1)/2, (qθ−1)2α/2

]
. (27)

From (26) and (27), we can obtain the mean deviations. These quantities
immediately yield the Bonferroni and Lorenz curves that have applications in
economics, reliability, demography, insurance and medicine. They are defined for
a given probability π by

B(π) =
J(q)

π E(X)
and L(π) =

J(q)

E(X)
,

respectively, where q = Q(π) comes from the quantile function (8). Using (27), we
can easily obtain B(π) and L(π). It is easy to verify that L(π) ≥ π and L(0) = 0
and L(1) = 1. In economics, if π = F (q) is the proportion of units whose income
is lower than or equal to q, L(π) gives the proportion of total income volume
accumulated by the set of units with an income lower than or equal to q.

8. Order Statistics

Order statistics make their appearance in many areas of statistical theory and
practice. The density function fi:n(x) of the ith order statistic, for i = 1, · · · , n,
from i.i.d. random variables X1, · · · , Xn following any Kw-G distribution, is
simply given by

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)i+j−1,
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where B(·, ·) denotes the beta function.

Cordeiro and de Castro (2011) derived an expression for the density function
of the Kw-G order statistics as a function of the baseline density multiplied by
infinite weighted sums of powers of G(x). This result enables us to obtain the
ordinary moments of the Kw-G order statistics as infinite weighted sums of PWMs
of the G distribution. They demonstrated that

F (x)i+j−1 =
∞∑
r=0

pi+j−1,rG(x)r, (28)

where the coefficients pu,r(a, b) can be expressed as

pu,r = pu,r(a, b) =
u∑
k=0

(−1)k
(
u

k

) ∞∑
m=0

∞∑
l=r

(−1)mr+l
(
kb

m

)(
ma

l

)(
l

r

)
(29)

for r, u = 0, 1, · · · . Let

wi = (−1)iab

(
b− 1

i

)
and wi,j,r = (−1)i+j+r a b

(
a(i+ 1)− 1

j

)(
b− 1

i

)(
j

r

)
.

If a is an integer, Cordeiro and de Castro (2011) derived fi:n(x) in the form

fi:n(x) =
g(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

) ∞∑
r,u=0

wupi+j−1,rG(x)a(u+1)+r−1, (30)

whereas if a is a real non-integer, they obtained

fi:n(x) =
g(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

) ∞∑
r,u,v=0

v∑
t=0

wu,v,t pi+j−1,rG(x)r+t.

(31)
(30) and (31) show that the density of the order statistics is a function of the
baseline density multiplied by infinite weighted sums of powers of G(x). These
generalized moments for some baseline distributions can be accurate computa-
tionally by numerical integration as mentioned before. Let Y be a GHN random
variable and τs,r = E[Y sG(Y )r] be the (s, r)th PWM of Y (for r = 0, 1, · · · ) as
defined by Greenwood et al. (1979). We can calculate τs,r using the power series
expansion given before as

τs,r =

∫ ∞
0

x serf

((
x
θ

)α
√

2

)r

g(x )dx =
∞∑
k=0

cr ,kθ
−kα

∫ ∞
0

x kα+sg(x )dx .
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The integral in the last equation is the kα+ s generalized moment of Y and then

τs,r =
θs√
π

∞∑
k=0

cr,k 2(kα+s)/(2α) Γ

(
kα+ s+ α

2α

)
. (32)

(32) is a new result for the PWMs of order (s, r) of the GHN distribution. Hence,
the sth moment of the order statistics, say E(Xs

i:n), can be obtained from (30),
(31) and (32) as

E(Xs
i:n) =

1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

) ∞∑
r,u=0

wu pi+j−1,r τs,a(u+1)+r−1,

and

E(Xs
i:n) =

1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

) ∞∑
r,u,v=0

v∑
t=0

wu,v,t pi+j−1,r τs,r+t,

if a is an integer and a is a real non-integer, respectively. Clearly, these two
equations should be used numerically with a large number in place of infinity.

9. Probability Weighted Moments

The (s, r)th PWM of X following the Kw-G distribution, say ρs,r, is formally
defined by

ρs,r = E[XsF (X)r] =

∫ ∞
−∞

xsF r(x)f(x)dx.

From (12) and (28), we can write

ρs,r =

∞∑
r,m=0

trpm,rτs,m+r.

Using (32), we obtain

ρs,r =
θs√
π

∞∑
r,m,k=0

2(kα+s)/(2α)Γ

(
k α+ s+ α

2α

)
trpm,rcr+m,k, (33)

where the quantities tr and pm,r can be calculated from (13) and (29), respec-
tively. (33) is the main result of this section.

10. Alternative Formula for Moments of Order Statistics
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We now offer an alternative formula for the moments of the order statistics
based on the PWMs of the GHN distribution. We use the formula for the sth
moment due to Barakat and Abdelkader (2004) applied to the independent and
identically distributed case, subject to existence,

E(Xs
i:n) = s

n∑
j=n−i+1

(−1)j−n+i−1
(
j − 1

n− i

)(
n

j

)
Ij(s), (34)

where Ij(s) denotes the integral

Ij(s) =

∫ ∞
0

xs−1{1− F (x)}jdx.

Using the binomial expansion and interchanging terms, the last integral becomes

Ij(s) =

j∑
p=0

(−1)p
(
j

p

)
ρs−1,p,

where ρs−1,p is immediately obtained from (33).
Inserting the expression for Ij(s) in (34) yields

E(Xs
i:n) = s

n∑
j=n−i+1

j∑
p=0

(−1)j−n+i+p−1
(
j − 1

n− i

)(
n

j

)(
j

p

)
ρs−1,p. (35)

Formula (35) is the main result of this section.

11. Estimation and Inference

The estimation of the model parameters is addressed by the method of max-
imum likelihood. If Y follows a Kw-GHN distribution with vector of parameters
λ = (α, θ, a, b)T , the log-likelihood for λ from a single observation y of Y is given
by

`(λ) = log(a) + log(b) + log

(√
2

π

)
+ log(α)− log(y) + α log

(y
θ

)
− 1

2

(y
θ

)2α
+ (a− 1) log

{
2Φ
[(y
θ

)α]
− 1
}

+ (b− 1) log
[
1−

{
2Φ
[(y
θ

)α]
− 1
}a]

, y > 0.

The components of the unit score vector U =

(
∂`

∂α
,
∂`

∂θ
,
∂`

∂a
,
∂`

∂b

)T
are

∂`

∂α
=

1

α
+ log

(y
θ

)
− log

(y
θ

)(y
θ

)2α
+

2(a− 1)√
2π

{
v log

(y
θ

)
2Φ
[(y
θ

)α]− 1

}

+
2a(1− b)√

2π

{
v log

(y
θ

) [
2Φ
[(y
θ

)α]− 1
]a−1

1−
[
2Φ
[(y
θ

)α]− 1
]a

}
,
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∂`

∂θ
=
α

θ

(y
θ

)2α
−
(α
θ

)
+

2(1− a)√
2π

{
v
(
α
θ

)
2Φ
[(y
θ

)α]− 1

}

+
2a(1− b)√

2π

{
v
(
α
θ

) [
2Φ
[(y
θ

)α]− 1
]a−1

1−
[
2Φ
[(y
θ

)α]− 1
]a

}
,

∂`

∂a
=

1

a
+ log

{
2Φ
[(y
θ

)α]
− 1
}

+ (1− b)

{{
2Φ
[(y
θ

)α]− 1
}a

log
{

2Φ
[(y
θ

)α]− 1
}

1−
[
2Φ
[(y
θ

)α]− 1
]a

}
,

∂`

∂b
=

1

b
+ log

[
1−

{
2Φ
[(y
θ

)α]
− 1
}a]

,

where v = exp[−(y/θ)2α/2](y/θ)α.

For a random sample y = (y1, · · · , yn)T of size n from Y , the total log-
likelihood is `n = `n(λ) =

∑n
i=1 `

(i)(λ), where `(i)(λ) is the log-likelihood for the
ith observation (i = 1, · · · , n). The total score function is Un =

∑n
i=1U

(i), where
U(i) has the form given before for i = 1, · · · , n. The maximum likelihood estimate
(MLE) λ̂ of λ is the solution of the system of nonlinear equations Un = 0. For
interval estimation and tests of hypotheses on the parameters in λ, we require
the 4× 4 unit expected information matrix

K = K(λ) =


κα,α κα,θ κα,a κα,b
κθ,α κθ,θ κθ,a κθ,b
κa,α κa,θ κa,a κa,b
κb,α κb,θ κb,a κb,b

 ,

whose elements are given in the Appendix.

Under conditions that are fulfilled for parameters in the interior of the param-
eter space but not on the boundary, the asymptotic distribution of

√
n (λ̂−λ) is

N4(0,K(λ)−1). The estimated asymptotic multivariate normal N4(0, n
−1K(λ̂)−1)

distribution of λ̂ can be used to construct approximate confidence intervals for
the parameters and for the hazard rate and survival functions. An asymptotic
confidence interval with significance level γ for each parameter λr is given by

ACI(λr, 100(1− γ)%) = (λ̂r − zγ/2
√
κ̂λr,λr , λ̂r + zγ/2

√
κ̂λr,λr),

where κ̂λr,λr is the rth diagonal element of n−1K(λ)−1 estimated at λ̂, for r =
1, · · · , 4, and zγ/2 is the quantile 1− γ/2 of the standard normal distribution.
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The likelihood ratio (LR) statistic is useful for comparing the new distribution
with some of its special sub-models. For example, we may use the LR statistic
to check if the fit using the Kw-GHN distribution is statistically “superior” to a
fit using the GHN distribution for a given data set. In any case, considering the

partition λ = (λT1 ,λ
T
2 )T , tests of hypotheses of the type H0 : λ1 = λ

(0)
1 versus

HA : λ1 6= λ
(0)
1 can be performed via the LR statistic w = 2{`(λ̂)− `(λ̃)}, where

λ̂ and λ̃ are the estimates of λ under HA and H0, respectively. Under the null

hypothesis H0, w
d→ χ2

q , where q is the dimension of the vector λ1 of interest.
The LR test rejects H0 if w > ξγ , where ξγ denotes the upper 100γ% point of
the χ2

q distribution.

12. A Kw-GHN Mixture Model for Survival Data with Cure Fraction

In population based cancer studies, cure is said to occur when the mortal-
ity in the group of cancer patients returns to the same level as that expected
in the general population. The cure fraction is of interest to patients and also
a useful measure when analyzing trends in cancer patient survival. Models for
survival analysis typically assume that every subject in the study population is
susceptible to the event under study and will eventually experience such event
if the follow-up is sufficiently long. However, there are situations when a frac-
tion of individuals are not expected to experience the event of interest, that is,
those individuals are cured or not susceptible. For example, researchers may be
interested in analyzing the recurrence of a disease. Many individuals may never
experience a recurrence; therefore, a cured fraction of the population exists. Cure
rate models have been used to estimate the cured fraction. These models are sur-
vival models which allow for a cured fraction of individuals. These models extend
the understanding of time-to-event data by allowing for the formulation of more
accurate and informative conclusions. These conclusions are otherwise unobtain-
able from an analysis which fails to account for a cured or insusceptible fraction
of the population. If a cured component is not present, the analysis reduces to
standard approaches of survival analysis. Cure rate models have been used for
modeling time-to-event data for various types of cancers, including breast cancer,
non-Hodgkins lymphoma, leukemia, prostate cancer and melanoma. Perhaps the
most popular type of cure rate models is the mixture model (Berkson and Gage,
1952; Maller and Zhou, 1996). In this model, the population is divided into two
sub-populations so that an individual either is cured with probability π, or has
a proper survival function S(x) with probability 1− π. This formulation leads to
an improper population survivor function S∗(x) expressed in the mixture form

S∗(x) = π + (1− π)S(x), S(∞) = 0, S∗(∞) = π. (36)
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Common choices for S(x) in (36) are the exponential and Weibull distributions.
Here, we adopt the Kw-GHN distribution. Mixture models involving these dis-
tributions have been studied by several authors, including Farewell (1982), Sy
and Taylor (2000) and Ortega et al. (2009). The book by Maller and Zhou
(1996) provides a wide range of applications of the long-term survivor mixture
model. The use of survival models with a cure fraction has become more and
more frequent because traditional survival analysis do not allow for modeling data
in which nonhomogeneous parts of the population do not represent the event of
interest even after a long follow-up. Now, we propose an application of the new
distribution to compose a mixture model for cure rate estimation.

Suppose that Xi’s are independent and identically distributed random vari-
ables having the density function (5). Consider a sample x1, · · · , xn, where xi
is either the observed lifetime or censoring time for the ith individual. Let a
binary random variable zi (for i = 1, · · · , n) indicate that the ith individual in a
population is at risk or not with respect to a certain type of failure, i.e. zi = 1
indicates that the ith individual will eventually experience a failure event (un-
cured) and zi = 0 indicates that the individual will never experience such event
(cured). The proportion of uncured 1− π individuals can be expressed such that
the conditional distribution of zi is Pr(zi = 1) = 1− π. The probability that the
individual i is cured is modeled by π and this proportion does not vary over the
individuals.

The maximum likelihood method is used to estimate the parameters. So, the
contribution of an individual that failed at xi to the likelihood function reduces
to

(1− π)a b

√
2

π

(α
x

)(x
θ

)α
exp

[
− 1

2

(x
θ

)2α ]{
2Φ
[(x
θ

)α]
− 1
}a−1

×
[
1−

{
2Φ
[(x
θ

)α]
− 1
}a]b−1

, (37)

whereas the contribution of an individual that is at risk at time xi becomes

π + (1− π)

{
1− erf

((
x
θ

)α
√

2

)a}b
, (38)

where the erf(·) function is defined in Section 1. We refer to the new model (37)
and (38) as the Kw-GHN mixture model with long-term survivors. For a = b = 1,
we obtain a new model called the GHN mixture model with long-term survivors.

Thus, the log-likelihood function for the parameter vector λ = (a, b, α, θ, π)T



The Kumaraswamy Generalized Half-Normal Distribution 215

can be obtained from (37) and (38) as

l(λ) = r log
[
(1− π)a b

√
2/π

]
+
∑
i∈F

log
( α
xi

)
+ α

∑
i∈F

log
(xi
θ

)
− 1

2

∑
i∈F

(xi
θ

)2α
+ (a− 1)

∑
i∈F

log
{

2Φ
[(xi

θ

)α]
− 1
}

+ (b− 1)
∑
i∈F

log
[
1−

{
2Φ
[(xi

θ

)α]
− 1
}a]

+
∑
i∈C

log

π + (1− π)

[
1− erf

((
xi
θ

)α
√

2

)a]b , (39)

where F and C denote the sets of individuals corresponding to lifetime obser-
vations and censoring times, respectively, and r is the number of uncensored
observations (failures).

13. Applications

Here, for the purpose of illustration, we analyze four data sets. We choose
these data because they really show in different fields that it is necessary to have
positively skewed distributions with non-negative support.

13.1 Uncensored Data

Description of the data sets.

A1 Engineering: The data refer to the failure times of 24 mechanical compo-
nents as reported in Murthy et al. (2004).

A2 Survival times: The data analyzed by Kundu et al. (2008) and Leiva
et al. (2009) correspond to 72 survival times of guinea pigs injected with
different doses of tubercle bacilli.

A3 Flood data: The flood data (n = 39) for the Floyd River located in
James, Iowa, USA. The Floyd River flood rates (for the years 1935-1973)
were reported by Akinsete et al. (2008).

Table 5 gives a descriptive summary for these data showing different degrees of
skewness and kurtosis.

Table 5: Descriptive statistics for the three data sets

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

A1 22.97 19.24 10.24 10.76 115.67 1.44 1.99 10.24 51.56
A2 99.82 70.0 60.0 81.12 6580.12 1.84 2.89 12.0 376.0
A3 6771.10 3570.0 318.0 11695.68 1E+008 4.74 25.78 318 71500
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First, in order to estimate the model parameters, we consider the maximum like-
lihood estimation method discussed in Section 11. We take the estimates of α
and θ from the fitted GHN distribution as starting values for the numerical itera-
tive procedure. The computations were performed using the NLMixed procedure
in SAS. Table 6 lists the MLEs of the parameters and the values of the follow-
ing statistics for some models: Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC).
The results indicate that the Kw-GHN model has the smallest values of these
statistics among all fitted models. So, it could be chosen as the more suitable
model.

Table 6: MLEs of the model parameters for the three data sets and the corre-
sponding AIC, CAIC and BIC statistics

Data Model a b α θ AIC CAIC BIC

A1 Kw-GHN 133.60 0.2222 0.6035 2.4404 179.0 181.0 183.7
GHN 1 1 1.6757 28.6011 185.1 185.6 187.4
HN 1 1 1 25.2703 191.9 192.0 193.0

A2 Kw-GHN 28.4765 0.7361 0.3031 4.3399 788.2 788.8 797.3
GHN 1 1 1.0163 129.24 807.5 807.6 812.0
HN 1 1 1 128.27 805.5 805.6 807.8

A3 Kw-GHN 6.0482 14.5335 0.1979 9384.0 768.1 769.3 774.7
GHN 1 1 0.6436 13384 781.7 782.0 785.0
HN 1 1 1 13384 799.8 799.9 801.4

A comparison of the proposed distribution with some of its sub-models using
LR statistics is shown in Table 7. The p-values indicate that the proposed model
yields the best fit to the three data sets.

Table 7: LR statistics for the three data sets

Data Model Hypotheses Statistic w p-value

A1 Kw-GHN vs GHN H0 : a = b = 1 vs H1 : H0 is false 10.10 0.00640
Kw-GHN vs HN H0 : a = b = α = 1 vs H1 : H0 is false 18.90 0.00028

A2 Kw-GHN vs GHN H0 : a = b = 1 vs H1 : H0 is false 23.30 <0.0001
Kw-GHN vs HN H0 : a = b = α = 1 vs H1 : H0 is false 25.30 <0.0001

A3 Kw-GHN vs GHN H0 : a = b = 1 vs H1 : H0 is false 17.60 0.0002
Kw-GHN vs HN H0 : a = b = α = 1 vs H1 : H0 is false 37.70 <0.0001

In order to assess if the model is appropriate, we show in Figure 7 the his-
tograms of the data sets, the plots of the fitted Kw-GHN and GHN density
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functions and their estimated survival functions and the plots of the empirical
distributions. We can conclude that the new distribution is a very suitable model
to fit the three data sets.

Histogram and pdf’s for A1 Survival functions and the empirical survival for A1
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Histogram and pdf’s for A2 Survival functions and the empirical survival for A2
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Figure 7: Estimated pdf’s, estimated survival functions of the Kw-GHN and
GHN models and the empirical survival for the data sets
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13.2 Uncensored Data

In this section, the proposed model for survival data with cure fraction is
applied to a real data set on cancer recurrence. The data are part of a study
on cutaneous melanoma (a type of malignant cancer) for the evaluation of post-
operative treatment performance with a high dose of a certain drug (interferon
alfa-2b) in order to prevent recurrence. Patients were included in the study from
1991 to 1995 and follow-up was conducted until 1998. The data were collected
by Ibrahim et al. (2001). The survival time X is defined as the time until the
patient’s death. The original sample size was n = 427 patients, 10 of whom did
not present a value for the explanatory variable tumor thickness. When such
cases were removed, we obtain a sample of n = 417 patients. The percentage of
censored observations was 56%. Table 8 lists the MLEs of the model parameters.
The values of the AIC, CAIC and BIC statistics are smaller for the Kw-GHN
mixture model when compared to those values of the GHN mixture model.

Table 8: MLEs of the model parameters for the melanoma data, the corre-
sponding SEs (given in parentheses) and the AIC, CAIC and BIC statistics

Model a b α θ π AIC CAIC BIC

Kw-GHN
8.8901 1.0304 0.3699 0.3824 0.4872 1059.3 1059.4 1079.4

Mixture

GHN
1 1 1.2553 2.5090 0.5150 1074.1 1074.2 1086.2

Mixture

HN
1 1 1 2.5975 0.4951 1082.8 1082.9 1090.9

Mixture

A comparison of the proposed model with some of its sub-models using LR
statistics is presented in Table 9. The p-values indicate that the Kw-GHN mixture
model yields the best fit to this data set.

Table 9: LR statistics for the melanoma data

Model Hypotheses Statistic w p-value

Kw-GHN vs GHN Mixtures H0 : a = b = 1 vs H1 : H0 is false 18.8 <0.0001
Kw-GHN vs HN Mixtures H0 : a = b = α = 1 vs H1 : H0 is false 29.6 <0.0001

In Figure 8, we plot the empirical survival function and the estimated survival
functions for the Kw-GHN, GHN and HN mixture models. The proportion of
cured individuals estimated by the Kw-GHN mixture model (πKwGHN = 0.4872)
seems more appropriate than that one (πGHN = 0.5150) estimated by the GHN
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mixture model. Further, the Kw-GHN mixture model provides a better fit to
these data.
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Figure 8: Estimated survival function for the mixtures model and the empirical
survival for melanoma data (a) Kw-GHN vs GHN mixtures (b) Kw-GHN vs
HN mixtures

14. Conclusions

We propose a new four-parameter distribution called the Kumaraswamy gen-
eralized half-normal (Kw-GHN) distribution to extend the half-normal (HN) and
generalized half-normal (GHN) (Cooray and Ananda, 2008) distributions. We de-
rive an expansion for the density function and obtain explicit expressions for the
moments, quantile and generating functions, mean deviations, density function of
the order statistics and their moments. The model parameters are estimated by
maximum likelihood and the expected information matrix is determined. We use
likelihood ratio statistics to compare the Kw-GHN model with its sub-models.
We propose a Kw-GHN model for survival data with cure fraction. Four ap-
plications of the new model to real data sets demonstrate that it can be used
quite effectively to provide better fits than its main sub-models. We hope this
generalization may attract wider applications in survival analysis and biology.

Appendix
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The elements of the 4× 4 unit expected information matrix are given by

κα,α =
1

α2
+ 2α2I0,0,0,0,2,0,2 −

2α2(a− 1)√
2π

[I0,1,0,0,1,1,2 − I0,1,0,0,3,0,2]

+ α2I0,2,0,0,2,2,2 −
2α2a(1− b)√

2π
[(a− 1)I1,2,0,1,2,2,2

+ I1,1,0,1,3,1,2 + I1,1,0,1,1,1,2 + aI2,2,0,2,2,2,2] ,

κα,θ = −1

θ
I0,0,0,0,2,0,0 − 2

(
α2

θ

)
I0,0,0,0,2,0,1 +

1

θ

− 2(1− a)√
2π

[
−α

2

θ
I0,1,0,0,3,1,1 +

1

θ
I0,1,0,0,1,1,0 +

α2

θ
(I0,1,0,0,1,1,1 − I0,2,0,0,2,1,1)

]
+

2a(1− b)√
2π

[
α2

θ
((a− 1)I1,2,0,1,2,1,1 − I1,1,0,1,3,1,1 − I2,2,0,2,2,2,1) +

1

θ
I1,1,0,1,1,1,0

]
,

κα,a = − 2α√
2π
I0,1,0,0,1,1,1 −

2α(1− b)√
2π

I1,1,0,1,1,1,1 −
2aα(1− b)√

2π

× [I1,1,1,1,1,1,1 − I2,1,1,2,1,1,1] ,

κa,a =
1

a2
− (1− b)I1,0,2,1,0,0,0 − I2,0,2,2,0,0,0, κα,b =

2aα√
2π
I1,1,0,1,1,1,1,

κa,b = I1,0,1,1,0,0,0,

κθ,θ =
α(1 + 2α)

θ2
I0,0,0,0,2,0,0 −

α

θ

− 2α(1− a)√
2π

[(α
θ

)2
I0,1,0,0,3,1,0 −

α(1 + α)

θ2
I0,1,0,0,1,1,0 −

(α
θ

)2
I0,2,0,0,2,2,0

]
− 2a(1− b)√

2π

[
(a− 2)α2

θ2
I1,2,0,1,2,1,0 +

(α
θ

)2
(I1,1,0,1,3,1,0 − I2,2,0,2,2,2,0)

− α(1 + α)

θ
I1,1,0,1,1,1,0

]
, κθ,b =

2aα

θ
√

2π
I1,1,0,1,1,1,0, κb,b =

1

b2
,

κθ,a =
2α

θ
√

2π
{I0,1,0,0,1,1,0 − (1− b) [I1,1,0,1,1,1,0 − a (I1,1,1,1,1,1,0 − I2,1,1,2,2,1,0)]} .

Here, we assume that T = 2Φ
[(
x
θ

)α]− 1, and define the expected value

Ii,j,k,l,m,n,p = E


T ia−j

(
log T

)k [
Φ−1

(
T+1
2

)]m
exp

{
− n

2

[
Φ−1

(
T+1
2

)]2}
(

1− T a
)l{

log
[
Φ−1

(
T+1
2

)]}−p
 .
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These expected values can be determined numerically using maple and math-
ematica for any a and b. For example, for a = 1.5 and b = 3, we easily calculate
all I’s in the information matrix:

I0,0,0,0,2,0,2 = 0.02752020, I0,1,0,0,1,1,2 = 0.07229, I0,1,0,0,3,0,2 = 0.04376158,
I0,2,0,0,2,2,2 = 0.1537331, I0,2,0,1,2,2,2 = 0.01490433, I1,1,0,1,3,1,2 = 0.004680388,
I1,1,0,1,1,1,2 = 0.009813646, I2,2,0,2,2,2,2 = 0.002113833, I0,0,0,0,2,0,0 = 0.1807297,
I0,0,0,0,2,0,1 = −0.0669055, I0,1,0,0,3,1,1 = −0.09313169, I0,1,0,0,1,1,0 = 0.5274895,
I0,1,0,0,1,1,0 = −0.1952747, I0,2,0,0,2,1,1 = −0.5271067, I1,2,0,1,2,1,1 = −0.05110267,
I1,1,0,1,3,1,1 = −0.01264299, I1,1,0,1,1,1,0 = 0.07160873, I1,1,0,1,1,1,1 = −0.02650929,
I1,1,1,1,1,1,1 = 0.02303475, I2,1,1,2,1,1,1 = 0.003331199, I1,0,2,1,0,0,0 = 0.03683076,
I2,0,2,2,0,0,0 = 0.005423749, I1,0,1,1,0,0,0 = 0.03964005, I0,1,0,0,3,1,0 = 0.2515737,
I0,2,0,0,2,2,0 = 1.121768, I1,2,0,1,2,1,0 = 0.1380420, I1,1,0,1,3,1,0 = 0.0341521,
I1,1,1,1,1,1,0 = −0.06222305 and I2,1,1,2,2,1,0 = −0.006214327.
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