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Surfaces with Application to Ache Honey Gathering

Timothy Hanson1∗ and Garnett P. McMillan2

1University of South Carolina and 2Portland VA Medical Center

Abstract: We propose two simple, easy-to-implement methods for obtaining
simultaneous credible bands in hierarchical models from standard Markov
chain Monte Carlo output. The methods generalize Scheffé’s (1953) ap-
proach to this problem, but in a Bayesian context. A small simulation study
is followed by an application of the methods to a seasonal model for Ache
honey gathering.
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1. Introduction and Motivation

Generalized linear models are a popular and widely used class of models en-
compassing standard normal-errors linear regression, Poisson regression, binomial
regression, and many more. The addition of random effects broadens the scope
and usefulness of these models allowing for dependent or grouped data. All of
these models may be cast in the form of a general hierarchical model.

In longitudinal studies, it is often of interest to obtain a simultaneous credible
band (SCB) for the regression surface for an average individual from the popu-
lation or for a particular individual. These bands provide a region in which the
entire regression surface lay with high probability and are useful as a diagnostic
tool to check model adequacy, but also for making simultaneous statements about
individual- or population-level mean response. To date there has been very lit-
tle in the literature on computing these regions in the Bayesian or non-Bayesian
setting in general hierarchical models. Recent contributions focusing on penal-
ized splines include Crainiceanu et al. (2007), Brezger and Lang (2008), and
Krivobokova, Kneib, and Claeskens (2010). Although cruder, the approaches we
present here are more general, simpler to compute, and work well across several
simulations in Section 3.
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In this paper we aim to provide some approximate methods for obtaining a
SCB in a very general framework, with emphasis on introducing and empirically
comparing the methods. The methods rely on the approach of Scheffé (1953)
by first obtaining a crude but workable 1 − α highest posterior density region
R∗ for the parameters of interest, typically regression parameters and possibly a
subject-specific random effect. Once the region R∗ is computed, the SCB is from
the minimum and maximum of a mean function over R∗ for a set of covariates
X . The idea is simple, yet strangely absent from the literature so far.

In Section 2 we describe methods of obtaining regions of high posterior mass
and computing the SCB, and recommend two methods for general use. Section
3 presents a modest simulation study in simple linear regression, penalized B-
spline, and generalized nonlinear modeling situations. In Section 4 we provide an
example of these approaches on a binomial regression model for Ache (ah-CHAY)
honey gathering. Section 5 details our conclusions and future research.

2. Approximate Simultaneous Credible Bands

We propose a method based on using the functional form of the posterior
density and three alternative methods for obtaining a representative subset R∗

from regions of high posterior density. These subsets are used to obtain a SCB for
an average or subject-specific mean function in a general hierarchical regression
model.

We assume a general hierarchical model on data y = (y1, · · · , yn)′ that in-
cludes generalized linear mixed models (GLMM):

yi|β, γ, τ
ind.∼ f(yi|β, γ),

β, γ|τ ∼ f(β)f(γ|τ),
τ ∼ f(τ).

(1)

The components of γ are typically zero mean random effects that are specific to
subjects or groups and we assume for each individual covariates xi and zi.

The posterior is proportional to the product

f(β, γ, τ |y) ∝

[
n∏
i=1

f(yi|β, γ)

]
f(β)f(γ|τ)f(τ), (2)

and inferences of interest are typically unavailable in closed-form. Inference can
be obtained through any number of MCMC schemes (see, for example, Robert and
Casella, 2004) resulting in a discrete approximation to the posterior distribution
in the form of, say, M point masses {(βj , γj , τ j)}Mj=1 each with equal mass 1/M .

For model (1), define h to be the mean function

E(yi|β, γ) = h(xi, zi;β, γ).
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In GLMM’s we typically see additional structure of the form

E(yi|β, γ) = h(x′iβ + z′iγ),

where h is monotone.
For fixed z and x, we may be interested in posterior credible intervals for

the mean h(x, z;β, γ), easily obtained from the MCMC output. If several means
are to be examined simultaneously over a set of covariate values x ∈ X , then a
simultaneous credible band B(x) is useful. That is, we seek a relatively “small”
region B(x) such that P (h(x, z;β, γ) ∈ B(x),∀x ∈ X |y) ≥ 1− α. If some of the
components are equal over all values in X and/or z contains zero elements, only
a posterior subset of β, γ need be considered. Denote the parameters of interest
to be θ and the remaining, “nuisance” parameters to be η. Redefine h then to be
a function of the free parameters in X and those elements of γ corresponding to
nonzero elements of z.

A standard approach to finding the band B is to first obtain a 1−α posterior
probability region R for θ that is in some sense “small”. Then one obtains

L(x) = inf
θ∈R
{h(x; θ)} and U(x) = sup

θ∈R
{h(x; θ)}.

Define B(x) = (L(x), U(x)). Then θ ∈ R implies h(x; θ) ∈ B(x) for all x ∈ X
and thus P (h(x; θ) ∈ B(x), ∀x ∈ X |y) ≥ 1− α.

Method 1

Following Wei and Tanner (1990) we define a region R to be the Highest
Posterior Density (HPD) region of content 1 − α if P (θ ∈ R|y) = 1 − α and
f(θ1|y) ≥ f(θ2|y) whenever θ1 ∈ R and θ2 /∈ R. We can numerically calculate
f(θ|y) by noting that

f(θ|y) ∝ f(θ)f(y|θ) = f(θ)

∫
f(y|η, θ)f(η|θ)dη.

For example, if θ = β and η = (γ, τ) we have

f(β|y) ∝ f(β)

∫
f(y|γ, β)f(γ|τ)f(τ)dγdτ,

essentially (2) integrated with respect to γ and τ , which is easily approximated by
either numerical or Monte Carlo integration. The latter is achieved by simulation
assuming one can simulate from the priors f(τ) and f(γ|τ).

Another example, pertinent to computing a SCB for an individual, is when
θ = (β, γk) and η = (γ(k), τ) where γ(k) is the vector γ with the kth component
removed. Then we have

f(β, γk|y) ∝ f(β)

[∫
f(γk|τ)f(τ)dτ

] [∫
f(y|γ, β)f(γ(k)|τ)f(τ)dγ(k)dτ

]
.
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Note that these integrals are similar to those required when computing Bayes
factors, but are readily approximated.

In a similar context, Held (2004) suggests using the “Rao-Blackwellized” es-
timator

f̂(θ|y) ∝ 1

M

M∑
j=1

f(y|θ, ηj)f(θ, ηj)

f(ηj |y)

•∝
∫
f(θ|η, y)P (dη|y) = f(θ|y),

of Gelfand and Smith (1990). Typically, the function f(η|y) is unknown and Held
estimates f(η|y) by f̂(η|y) =

∑M
j=1 f(η|θj , y)/M, requiring on the order of M2

operations to estimate f(θ|y) once. In two examples Held is able to find closed
forms for f(η|θ, y), but for the general model (1) we consider this will typically
not be the case.

On a side note, formula (2.5) in Held (2004) suggests the use of the me-
dian rather than the mean, but this does not provide a simulation consistent
estimator of f(θ|y) in general. However, the mean (Held (2004)’s 2.4) is simu-
lation consistent by the law of large numbers for ergodic chains and the law of
total probability. If the sample size is large η|y can be approximately normal
and therefore the random variable f(θ|η, y) as a function of η|y will also be ap-
proximately normal by the delta method. Then the median will approximately
estimate the mean. Brezger and Lang (2008) use this approach to compute SCBs
for penalized B-spline models and find that estimated contour probabilities based
on the mean of the log-density “to be noticeably higher than the ones based on
the median”.

A finite, representative subset of R, call it R∗, is obtained by taking αM of
the {θj}Mj=1 with the largest values of f(θj |y). Probability statements involving
R are thus approximated using the set R∗ and we obtain the approximate bands

L(x) = min
θ∈R∗
{h(x; θ)} and U(x) = max

θ∈R∗
{h(x; θ)}. (3)

Alternatively, approximate regions of high posterior mass may be found using
a smoothed empirical approximation to the posterior f(θ|y) based on the output
{θj}Mj=1, for example using shifted histograms or frequency polygons as introduced
by Scott (1985a, 1985b). Kernel-smoothed methods are impractical due to the
typically high dimension of the vector β.

Method 2

Hanson and Johnson (2002) suggest simply removing (1− α)M of the points
in {θj}Mj=1 with the largest Euclidean distance to the next nearest point. That is,

for each MCMC iterate θj the distance Dj = mini 6=j ||θj − θi|| is computed. An
approximate, finite region R∗ is obtained by removing from {θj}Mj=1 the (1−α)M
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MCMC realizations θj with the largest values of Dj . The SCB is then computed
using (3). They suggest that this approach removes those discrete point masses
that are literally “less dense” as measured by Euclidean distance. To compute
all distances, M(M − 1)/2 comparisons are required, e.g. half a million when
M = 1000. A further downside of this approach is that the resulting approx-
imate region will not be invariant to scale changes in the predictor variables;
for consistency, one might consider standardizing covariates before using this
method.

Method 3

An approach that is invariant to changes in the measurement scale of the
predictors assumes that the posterior is approximately elliptical in shape. An
approximate HPD 95% probability ellipsoid for θ|y is computed based on the
Mahalanobis distance. Specifically, compute the posterior mean θ̄ and covariance
Sθ = 1

M

∑M
j=1(θ

j − θ̄)(θj − θ̄)′. Remove αM of the vectors from {θj}Mj=1 with the

largest Mahalanobis distance from θ̄, Dj = (θj − θ̄)′S−1θ (θj − θ̄)′. The resulting
subset R∗ has 95% of the posterior mass and is approximately HPD, assuming
that θ|y is approximately multivariate normal. Again, the SCB is then computed
using (3). This is analogous to the approach of Hauck (1983) for standard logistic
regression.

As an alternative to the mean θ̄ we may also consider other measures of
multivariate location that are more robust to skew such as the spatial median,
the vector θsm that minimizes

∑M
j=1 ||θsm − θj || or θch, the convex hull median,

the mean of data lying on the the innermost convex hull layer after successively
removing data laying on outermost convex hulls. The Mahalanobis distance ap-
proach yields the smallest ellipsoid that contains 1 − α of the posterior mass
centered at some measure of multivariate location; as an alternative to an el-
lipsoid we can consider a polytope quantile, essentially the smallest convex hull
that encompasses (1− α)M of the {θj}Mj=1. The latter is less restricted in shape
but is nonetheless convex. All of these statistics can be calculated, for example,
in the “Multivariate Descriptive Statistics” package in Mathematica (Wolfram
Research, Inc.).

Method 4

Methods 1, 2, and 3 work for any X including the whole of the parameter
space. Often X will be some compact subset (the same or lower dimension) of
the parameter space. As a final method for such sets X , we propose for a finite
uniform grid X0 ⊂ X of size αM/2, to sequentially take every x ∈ X0, compute

j1 = arg max
j

h(x; θj) and j2 = arg min
j

h(x; θj),



180 Timothy Hanson and Garnett P. McMillan

and remove the corresponding θj1 and θj2 from the remaining {θj}; call the
resultant setR∗ and proceed with (3). We are selectively removing those offending
θj ’s that make the SCB “large” over a representative subset X0 of X .

Note that this approach can be easily adapted for the computation of one-
sided credible regions, and hence credible bounds on a regression surface. A very
simple, related method due to Besag et al. (1995) that sequentially removes θjs
− ignoring h(x; θj) − produces regions R∗ that are hypercubes; see also Held
(2004). We found this approach to be very conservative and do not pursue it
further.

3. Simulations

3.1 Simple Linear Regression

We examine how the fastest approaches, Methods 3 and 4, perform in the
simplest of situations: normal-errors linear regression with one predictor. Over
the domain [0, 10] we consider m1(x) = 0.2x − 1, see Figure 1. The predictor
values are xi = 0.1i for i = 1, · · · , 100 and data generated according to

yi = m1(xi) + ei, ei
iid∼ N(0, σ2),

for i = 1, · · · , 100. Two values of σ were considered: 0.1 and 0.5. For each σ, 2000
data sets of size n = 100 were generated. For each data set a Gibbs sampler was
run for 12000 iterations taking every third iterate, yielding M = 4000 iterates
kept. Thus we removed αM = 200 iterates to obtain R∗ for both methods. Two
different models for the mean were considered: the correct linear mean, m(x) =
β1 + β2xi, and the richer but unnecessary quadratic, m(x) = β1 + β2xi + β3x

2
i .

We are interested in the actual coverage rates of 95% SCBs for both linear and
quadratic models as well as their volumes.

Let X be the n×p design matrix for either model. Let β = (β1, β2)
′ for linear

and β = (β1, β2, β3)
′ for quadratic. For either, we assume β ∼ Np(0, 1000Ip)

where p = 2, 3 independent of σ−2 ∼ Γ(a, b) where a = b = 0.001. The full
conditional distributions are well known:

β|σ ∼ Np(σ
−2V −1X ′y, V −1), where V −1 = [0.001Ip + σ−2X ′X]−1,

and

σ−2|β ∼ Γ(a+ 0.5n, b+ 0.5||y −Xβ||2).

Table 1 has coverage probabilities and volumes for Methods 3 and 4. The
coverage probabilities have standard deviation about 0.005, so a 95% probability
interval for coverage is the point estimate ±0.01. Overall, both methods perform
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about the same, reaching the nominal coverage level of 0.95 within the margin of
error of the simulation study. Figure 1, for σ = 0.5, shows that Methods 3 and 4
produce similar SCBs. Fitting the quadratic versus the linear function increases
the volume by 20–30% but coverage stays the same. Increasing σ from 0.1 to 0.5
increases the volume by a factor of 5, but again, nominal levels are reached.

Table 1: Coverage and volume of 95% SCB from Methods 3 & 4: linear and
quadratic mean functions

σ Mean Method Coverage Volume

0.1 linear 3 0.944 0.67 (0.58, 0.78)

4 0.939 0.68 (0.59, 0.78)

quadratic 3 0.955 0.91 (0.78, 1.04)

4 0.942 0.89 (0.75, 1.01)

0.5 linear 3 0.953 3.4 (2.9, 3.8)

4 0.952 3.4 (2.9, 3.9)

quadratic 3 0.967 4.5 (3.9, 5.2)

4 0.951 4.4 (3.8, 5.0)
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dashed = Method 3  

Figure 1: SCBs averaged over 2000 simulated data sets of size n = 100 where
true mean is m(x) = 0.2x− 1 & σ = 0.5
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3.2 Poisson Regression with Nonlinear Mean

The second simulation investigates SCBs obtained from fitting a Poisson
growth model with a nonlinear mean, specifically

yi
ind.∼ Poisson(µi), where µi = β1[1− exp(−β2xi)],

for i = 1, · · · , 100. The same predictor values x1, · · · , x100 are used as in Section
3.1. Here, β1 is a horizontal asymptote and β2 affects curvature. The true
values were set at β = (β1, β2)

′ = (10, 0.5)′, see Figure 2. The improper prior
p(β) ∝ (β1β2)

−1 was used yielding the posterior

log p(β|y) = C−β1
n∑
i=1

[1−exp(−β2xi)]+yi
n∑
i=1

log{β1[1−exp(−β2xi)]}−log(β1β2),

where C is a constant that depends only on (y1, · · · , yn)′. A standard Metropolis-
within-Gibbs algorithm was implemented using random-walk proposals for β1 and
β2 tuned to achieve roughly 40% acceptance for both. In total 2000 data sets of
size 100 were generated. For each data set a Gibbs sampler was run for 12000
iterations taking every third iterate, yielding M = 4000 iterates kept. Thus we
removed αM = 200 iterates to obtain R∗ for both methods.
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Figure 2: Poisson growth: SCBs averaged over 2000 simulated data sets of size
n = 100
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Figure 2 shows that Method 4 provides, on average, a slightly reduced volume
SCB than 3. The median volume for Method 3 is 20.1 with 95% interval (18.6,
22.2); for Method 4 the median is 18.3 with 95% interval (17.3, 19.5). Coverage
was 0.953 for Method 3 and 0.948 for Method 4. Both reach the nominal level
but Method 4 provides a 10% smaller SCB.

3.3 Penalized B-splines

The Bayesian penalized B-spline model (Lang and Brezger, 2004) is considered
in the final simulation for two regression functions. Over the domain [0, 10]
we consider m2(z) = sin(0.2zπ) and m1(z) = 0.2z − 1, see Figures 3 and 4.
The predictor values as before xi = 0.1i for i = 1, · · · , 100 and data generated
according to

yi = mj(xi) + ei, ei
iid∼ N(0, σ2), j = 1, 2,

for i = 1, · · · , 100. Two values of σ were considered: 0.1 and 0.5. We are
interested in the actual coverage rates of 95% SCBs for both functions m1(x) and
m2(x) as well as their volumes from the B-spline approach. For each function and
σ, 2000 data sets of size 100 were generated. For each data set a Gibbs sampler
was run for 12000 iterations taking every third iterate, yielding M = 4000 iterates
kept. Thus we removed αM = 200 iterates to obtain R∗ for both methods. We
used 21 quadratic B-spline basis functions over 20 knots equispaced over [0, 10].
For completeness, the model is

yi = m(xi) + ei =

21∑
j=1

βjφj(xi) + ei,

where φj(x) = ψ{19x/10 + 3− j} and

2ψ(x) = x2I[0,1](x) + (−3 + 6x− 2x2)I[1,2](x) + (3− x)2I[2,3](x).

Note that constant, linear, and quadratic polynomials over [0, 10] are special
cases of the B-spline expansion, and so generalize these common trend functions.
The design matrix X has ijth element φj(xi) for i = 1, · · · , 100 and j = 1, · · · , 21.

Let D be a bidiagonal matrix of dimension 20 × 21 with non-zero elements
di,i = 1 and di,i+1 = −1 for i = 1, · · · , 20, i.e. a first-difference matrix. The prior
on β = (β1, · · · , β21)′ is given by

p(β|λ) ∝ λ21/2 exp(−0.5λ||Dβ||2),

which encourages an overall level of smoothing based on the precision λ. The
model is completed by assuming λ ∼ Γ(c, d) independent of σ−2 ∼ Γ(a, b); we
take a = b = c = d = 0.001. The full conditional distributions are
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Figure 3: Credible bands averaged over 2000 simulated data sets where true
mean is sin(0.2xπ)
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Figure 4: Credible bands averaged over 2000 simulated data sets where true
mean is 0.2z − 1
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β|σ, λ ∼ N21(σ
−2V −1X ′y, V −1), where V −1 = [λD′D + σ−2X ′X]−1,

σ−2|β ∼ Γ(a+ 0.5n, b+ 0.5||y −Xβ||2),

and

λ|β ∼ Γ(c+ 0.5(21), d+ 0.5||Dβ||2).

Figures 3 and 4 show the posterior 95% SCBs averaged over the 2000 simu-
lated data sets. Table 2 suggests Method 4 outperforms 3 in terms of volume.
Both methods are conservative in coverage, but Method 4 comes closer to the
nominal level of 0.95.

Table 2: Coverage and volume of 95% SCB from Methods 3 & 4

Mean function σ Method Coverage Volume

sine wave 0.1 3 0.975 2.9 (2.5, 3.2)
4 0.955 2.6 (2.3, 3.0)

0.5 3 0.993 11.0 (9.6, 12.3)
4 0.975 9.7 (8.5, 10.9)

line 0.1 3 0.987 2.5 (2.2, 2.9)
4 0.965 2.3 (2.0, 2.6)

0.5 3 0.994 9.5 (8.3, 10.7)
4 0.980 8.2 (7.2, 9.3)

4. Example: Ache Honey Gathering

The Ache are a group of indigenous people currently living in a small number
of reservation settlements in Eastern Paraguay. Traditionally, the Ache were full
time nomadic hunter-gatherers, subsisting on wild plants and animals that could
be collected in the semi-tropical rain forest. The Ache had only hostile and spo-
radic encounters with outsiders until peaceful contact and resettlement occurred
in the mid-1970s. Intensive lumber harvesting has destroyed most of the original
Ache forest habitat. In 1991 the Paraguayan government, with help from the
Nature Conservancy and various development agencies, created the Mbaracayu
wildlife reserve as the largest tract of undisturbed forest in Eastern Paraguay.
The law creating the Mbaracayu reserve as a legal entity states that the Ache
have permission for unlimited use within its boundaries as long as traditional
hunting and gathering practices are maintained and their impact on the forest
ecology, including plant and game animal depletion, are closely monitored (Hill
et al., 1997; Hill and Padwe, 1998). The current analysis examines the effects of
Ache honey collection on the Mbaracayu forest.
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Small bands of Ache will periodically trek into the Mbaracayu reserve and
stay anywhere from two to 24 days. While on trek, dependence on wild foods,
including armadillo, Capuchin monkey, paca, peccary, palm tree products, fruit,
and insects, is complete. The Ache also consume about 14 different varieties of
wild honey. Honey collection is a labor-intensive process, requiring that one cut
down the tree, typically a large, ancient hardwood, within which a bees’ nest is
built. While honey collection is within the scope of traditional Ache land use, the
rate at which these trees are cut down poses a concern to conservation biologists.

A careful balance between wilderness conservation, particularly in the belea-
guered rainforests, and the interests of indigenous people requires that policy
decisions be based on carefully scrutinized evidence. Policy makers might con-
sider curbing Ache access to the Mbaracayu reserve to limit hardwood tree felling
for honey collection, but will only do if rates exceed acceptable limits and if there
is a great deal of certainty about daily rates of tree felling and honey collection.
To this end it is of interest to determine 1) the daily rate of honey collection for
an average Ache adult male, how this rate varies over the year, and the accuracy
of this model; and 2) determine the highest daily rate of honey collection over
the year that we are 95% certain an average Ache man will not exceed.

The second author collected forest trek data for all residents of one Ache
colony between September 12, 1997 and September 12, 1998 (McMillan, 2001).
Only men, older than 17 years, who had spent more than 10 days on forest trek
during the year, are included in this analysis. The final sample consists of 26
Ache men and 912 person-days on trek, with each man contributing between 10
and 91 total person-days on trek. The event that one (or more) honey trees were
cut down and the date was documented for each man on each day of forest trek.
The data are available from either author upon request.

We model the daily probability that a man cuts down a honey tree using
logistic regression with a random effect for each man. The seasonal component
is modeled as a cosine function with one 12 month period (Stolwijk, Straatman,
and Zielhuis, 1999),

f(x) = α cos

(
2πx

12
− κ
)
,

where α is the amplitude, κ the horizontal shift, and x is the month of the year
(1 = January, 2 = February, etc.). f(x) is transformed to the linear function
f(x) = β1 sin(2πx/12)+β2 cos(2πx/12) and is included within the linear predictor
of the logistic regression model. Details of this modeling framework are found in
Stolwijk et al. (1999). Define yij as Bernoulli indicating the event that male i
cut down one or more trees on day j while on forest trek and xij as the month
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of this date. The data model is then

yij |pij
ind.∼ Bernoulli(pij),

logit(pij) = β0 + β1 sin(2πxij/12) + β2 cos(2πxij/12) + γi,

γi|τ
ind.∼ N(0, τ2),

τ ∼ U(0, 200).

Informative, independent priors are available for some of the parameters of the
logistic regression model. Namely, the mean function is expected to peak in late
spring, during the highest flowering season, when bee activity and honey produc-
tion are highest and is lowest in late fall when bee hives are largely dispersed or
dormant. Priors on the regression effects are

β0 ∼ N(0, 1000), β1 ∼ N(0, 100) and β2 ∼ N(0.28, 10).

A binary age indicator, with age = 50 years set as the demarcation, was originally
included in the analysis but results showed a wide credible interval that included
zero. The age indicator was subsequently omitted from the analysis.

We are also interested in the point during the year at which the probability
of cutting down one or more honey trees is greatest, κ∗ = arg maxx∈[0,12)h(x; θ),
and the amplitude α∗ = {maxx∈[0,12) h(x; θ)−minx∈[0,12) h(x; θ)}/2 of the mean
function. The parameters κ∗ and α∗ are analogous to κ and α but on the month
and probability scales respectively.

The logistic regression model was fit in WinBUGS. Two starting values were
used and the model was run for 100,000 iterations. A modified Gelman-Rubin
convergence diagnostic (Brooks and Gelman, 1998) was examined and showed
good convergence of the individual chains. Posterior means, standard deviations,
medians, 2.5%, and 97.5% quantiles from the last 50,000 iterations of the second
chain are shown in Table 3. Posterior distributions for the amplitude α∗ and shift
κ∗ were computed from the posterior distribution of β.

Table 3: Posterior results for Ache data

Par. Mean S.D. 2.5% Median 97.5%

β0 −2.53 0.26 −3.05 −2.52 −2.06

β1 −0.40 0.18 −0.77 −0.39 −0.04

β2 0.24 0.18 −0.08 0.23 0.59

τ 0.83 0.27 0.43 0.80 1.45

α∗ 0.04 0.02 0.01 0.04 0.07

κ∗ 9.8 0.95 8.0 10.0 11.0
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Figure 5 show the estimated mean function for a randomly selected individ-
ual from the population along with the estimated 95% SCB using each method
described; here, X = [0, 12). Overlayed on each plot are the average of the 26
Ache sample proportions of days in each month in which one or more trees were
chopped down over the observed sample. These averages are thus unweighted
with respect to the total days spent on trek per man or over all men in the sam-
ple. Figure 6 shows the same data and mean function with all SCBs together;
the dashed line is the SCB of Method 4.

For these data Method 1, based on an approximation to the HPD region for θ|y
as defined by Wei and Tanner (1990), provides the largest SCB. Held (2004) points
out that simultaneous credible regions R calculated in the manner of Method 1
may not accurately reflect the true support of the posterior distribution and
“often include areas which are not supported by the posterior at all”. This may
help explain why perhaps the most natural approach yields the least useful SCB
of the methods presented for these data. In contrast Method 4, which depends
on X , provides the tightest SCB. We note that Method 1 takes on the order of
hours to compute whereas the Methods 3 and 4 take a few seconds at most, and
Method 2 a bit longer depending on M .

(a) Method 1 (b) Method 2

(c) Method 3 (d) Method 4

Figure 5: SCB for probability of cutting down one or more honey trees, Methods
1–4, September–September
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Figure 6: Per-capita daily probability of collecting honey, Methods 1–4 super-
imposed

Figure 5 show some degree of deficiency in the basic one-cosine seasonal model.
The Method 1 SCB does not include the observed rates for March and May,
and none of the other SCBs include the October and February data. The one-
cosine seasonal function appears to poorly describe the observed seasonal honey
collection process. Since the Ache recognize at least 14 kinds of honey, each of
which is produced by a unique insect species that occupy distinct ecological and
seasonal niches, a mixture of two or more cosine functions might better fit the
data. A two cosine seasonal model 95% SCB from Method 4, including periods
of both 6 and 12 months is shown in Figure 7. This is a decidedly better fit
to the data, although the March and June data points remain outside the 95%
SCB. If this model is accepted, then we are 95% certain that the per-capita
daily probability of collecting honey never exceeds about 0.24 in mid summer
(January-February) and about 0.21 in early spring (August-September). We are
95% certain that the per-capita probabilities never exceed about 0.06 in late fall
/ early winter (May-June).

Figure 7: Ache data: two cosine model, Method 4
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5. Conclusions

We have introduced several methods for obtaining an approximate SCB in
hierarchical models from standard MCMC output. All four methods are easy to
code and implement, although Methods 3–4 are an order of magnitude faster than
Method 2, which is an order of magnitude faster than Method 1. Our simulation
study only varied some of the model parameters, for example we only considered
n = 100, but is large enough in scope to give a good feel for overall performance
and validation. Overall, Method 4 provides the smallest volume while reaching
nominal coverage; Methods 3 and 4 are also extremely fast to compute. Method 3
is particularly easy to implement; we have included sample SAS 9.2 code using the
new PROC MCMC that implements Method 3 for a nonlinear Poisson regression
example in the Appendix.

In the frequentist realm, obtaining thinner bands than through Scheffé’s
method was elegantly accomplished by Casella and Strawderman (1980) for the
standard linear normal-errors model and for logistic regression by Piegorsch and
Casella (1988); the latter method as well as the method of Hauck (1983) appeal
to the asymptotic normality of maximum likelihood estimators in these models.
It is possible that these approaches could be modified to deal with MCMC output
as well.

Appendix: SAS Code to Implement Method 3

title1 ‘Nonlinear Poisson Regression’; title2
"Example 52.4 from PROC MCMC documentation";

data calls;
input weeks calls @@;
datalines;

1 0 1 2 2 2 2 1 3 1 3 3
4 5 4 8 5 5 5 9 6 17 6 9
7 24 7 16 8 23 8 27
;

run;

proc mcmc data=calls outpost=callout thin=10 seed=53197 ntu=1000
nmc=20000;

parms alpha -4 beta 1 gamma 2;
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
prior gamma ~ gamma(3.5, scale=12);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;

*** Use principal components analysis to quickly compute
**** Mahalanobis distance from each theta_j to the mean vector;
proc princomp data=CallOut std out=out noprint;

var alpha beta gamma;
run; data mahalanobis_to_mean;

set out;
D = sqrt(uss(of prin:));

***** Mahalanobis distance = sqrt(uncorrect sum of squares of principal components ****;
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run;
************ Compute percentiles for the set of mahalanobis distances and pull out the
highest 95%;
********* Dataset RStar is composed theta_js in R*;
proc rank data = mahalanobis_to_mean

out = RStar(where=(RankD <=94)) /*percentiles are 0 to 99. */
groups = 100;

var D;
ranks RankD;

run;

***** compute mean for each theta_j in R* over observed range of weeks;
Data PlotInit1;

set RStar;
do weeks = 1 to 8;

h = gamma*logistic(alpha+beta*weeks);
output;

end;
run;

****** extract max and min h by week;
**** These are L(x) and U(x) from (3) in the paper;
proc sql;

create table SBC
as select weeks, min(h) as LWeeks, max(h) as UWeeks

from PlotInit1
group by weeks;

quit;

********** Combine SBC with observed data for plotting;
Data PlotData;

set SBC calls;
run; ods listing; goptions reset = all ftext = swiss; symbol1 value
= circle i = none c = black; symbol2 value = none i = join c = red;
symbol3 value = none i = join c = red; proc gplot data = PlotData;

plot (calls LWeeks UWeeks)*weeks / overlay legend;
run; quit;
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