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Abstract: When comparing the performance of health care providers, it is
important that the effect of such factors that have an unwanted effect on
the performance indicator (eg. mortality) is ruled out. In register based
studies randomization is out of question. We develop a risk adjustment
model for hip fracture mortality in Finland by using logistic regression. The
model is used to study the impact of the length of the register follow-up
period on adjusting the performance indicator for a set of comorbidities.
The comorbidities are congestive heart failure, cancer and diabetes. We
also introduce an implementation of the minimum description length (MDL)
principle for model selection in logistic regression. This is done by using
the normalized maximum likelihood (NML) technique. The computational
burden becomes too heavy to apply the usual NML criterion and therefore a
technique based on the idea of sequentially normalized maximum likelihood
(sNML) is introduced. The sNML criterion can be evaluated efficiently also
for large models with large amounts of data. The results given by sNML are
then compared to the corresponding results given by the traditional AIC
and BIC model selection criteria. All three comorbidities have clearly an
effect on hip fracture mortality. The results indicate that for congestive
heart failure all available medical history should be used, while for cancer
it is enough to use only records from half a year before the fracture. For
diabetes the choice of time period is not as clear, but using records from
three years before the fracture seems to be a reasonable choice.

Key words: Code length, hip fracture, logistic regression, maximum likeli-
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Profiling medical care providers on the basis of quality of care and utilization
of resources has become a widely used analysis in health care policy and re-
search. A major initiative to evaluate hospital performance in the United States
was launched by the Health Care Financing Administration (HCFA) in 1987
with the annual release of hospital-specific data comprising observed and ex-
pected mortality rates for Medicare patients. Hospitals observed to have higher-
than-expected mortality rates were flagged as institutions with potential quality
problems. HCFA derived mortality rates by estimating a patient-level model of
mortality for disease-based cohorts using administrative data (Normand, Glick-
man and Gatsonis, 1997).

Risk-adjustment is desirable when comparing hospitals or hospital districts
with respect to a performance indicator such as mortality. Adjustment is intended
to account for possible differences in patient case mix (Iezzoni, 1994; Landon, Iez-
zoni, Ash, Shwartz, Daley, Hughes and Mackiernan, 1996; Salem-Schatz, Moore,
Rucker and Pearson, 1994). The methodologic aspects of risk-adjustment have
been extensively discussed in the literature on observational studies (see Rosen-
baum, 2002 and references therein).

While using administrative register-based data, the comorbidities to be ad-
justed are typically identified from the data using the disease grouping rules
defined in Charlson or Elixhauser indices (Quan, Sundararajan, Halfon, Fong,
Burnand, Luthi, Saunders, Beck, Feasby and Ghali, 2005). A salient issue in
adjusting performance indicators for patients’ comorbidities using administrative
data is to decide the length of comorbidity lookup period, i.e. to decide how far
we have to go back in patient’s history (recorded in the registers) in order to
effectively identify comorbidities to be adjusted (Preen, Holman, Spilsbury, Sem-
mens and Brameld, 2006). This is an important question, because all conditions
might not affect the patient anymore after a certain amount of time has passed.
Therefore looking back too far for a certain condition, might even make the ad-
justment worse. Another reason is the fact that we might have only a few years
historical data available or that it is very costly to collect additional historical
data. It is not desirable to collect expensive extra data if we get the same results
with less information.

Often the evaluation of a risk-adjustment model for a binary response is done
using the c-statistic (Iezzoni, 2003). In this approach, the probabilities estimated
(typically) with logistic regression are used to predict a patient’s status and the
c-statistic measuring the concordance of predictions with the true events is cal-
culated. However, accurate or inaccurate classification by c-statistic does not
address the goodness of fit or the complexity of a (risk-adjustment) model (Hos-
mer and Lemeshow, 2000, Chapter 5). Even if the model is the correct one and
thus fits very well, its classification performance may be poor. On the other hand,
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the correct model may have bad fit (distances between certain observed and ex-
pected values are large) but the model still yields good classification. Clearly the
aim in deciding the length of lookup period is not to find the best prediction for
a single performance indicator in one data set, but to find good risk-adjustment
models for further analysis. In this sense, the real model selection criteria pro-
vided should be used instead of c-statistics.

There are several traditional model selection criteria available, such as the
Akaike (AIC) and the Bayesian (BIC) information criteria. Rissanen (1996) has
proposed the so called minimum description length (MDL) principle which can
be implemented through the normalized maximum likelihood (NML) framework.
The NML distributions offer a philosophically superior approach for the model
selection problem. Unfortunately, the implementation of the MDL principle for
the model selection problem in logistic regression using the standard normalized
maximum likelihood (NML) technique is computationally infeasible with large
data sets.

This paper has two purposes. First, it develops a risk adjustment model for a
binary response using logistic regression and examines the impact of the length of
the register follow-up period on adjusting the performance indicator for a set of
comorbidities. The second purpose of this paper is to introduce a new MDL-based
model selection criterion following the idea of sequentially normalized maximum
likelihood (sNML) that was recently proposed by Rissanen and Roos (2007). We
show that the sNML criterion can be evaluated efficiently and it is applicable
also to large models with large amounts of data by applying this criterion in the
case of a risk-adjustment model for hip fracture mortality in Finland. In this
case study, the focus is on the determination of the optimal length of the register
follow-up periods for comorbidities. We also compare the results given by the
sNML criterion with the corresponding results given by the traditional AIC and
BIC model selection criteria.

2. Setting

2.1 Hip Fracture

Hip fracture is a common and important cause of mortality in the elderly
population (Keene, Parker and Pryor, 1993). In Finland, the number of hip
fractures was about 7000 per year between the years 1998-2002 (Sund, 2007).
Not only patients suffer from hip fractures, but they also cause remarkable costs
to society (Hannan, Magaziner, Wang, Eastwood, Silberzweig, Gilbert, Morrison,
McLaughlin, Orosz and Siu, 2001).

The main objective in the treatment of hip fracture is to help the patient
regain his/her pre-fracture health status and level of functional ability. Because a
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successful treatment should make it possible that patients are able to continue life
in the same fashion as before the fracture, death is obviously a very unsuccessful
outcome. Although hip fracture itself doesn’t usually cause death, it is often such
a shock to the whole body that especially for elderly people in lowered physical
state it may mean the “beginning of the end” (Heithoff and Lohr, 1990). If the
hip fracture triggers the dying process, we may assume that short-term mortality
is in fact an indicator that the patient’s health status before the hip fracture was
already substantially lowered.

Quite often the mortality indicators for hip fracture are selected to measure
death within three months or one year after the fracture. Mortality is a well
defined and easily observable indicator in the sense that there is typically no
argument if a patient is dead or not. The 90 days mortality reflects the risk
connected to the hip fracture treatment and one year mortality reflects more the
overall condition of a patient than risk of death directly caused by the shock
effect of the hip fracture event.

2.2 Adjusting Mortality with Comorbidities

In order to compare mortality indicators between different areas or in time, the
differences or changes in the patient population must be risk-adjusted (Iezzoni,
2003). In other words, we wish to find factors that explain the mortality following
hip fracture, measured as a binary variable, in order to obtain a set of covariates
which profile a patient’s medical condition at the time of the hip fracture. Our
interest is in comorbidities that a patient has had before the hip fracture and
which may have effect on the outcome of the treatment. The special focus in
our study is to examine how far we have to follow the patients medical history,
and various lengths of the follow-up period (180 days, 1 year, 3-, 5- and 10-
years) are modeled in order to find the shortest period to effectively adjust for
each comorbidity. For pragmatic reasons, only three comorbidities are used in
this study: congestive heart failure, cancer and diabetes. Each time period and
comorbidity is analyzed separately. The analysis for other comorbidities could
be done in a similar fashion. On top of the comorbidities, age, hip fracture type
and sex are considered as factors to be adjusted in our risk-adjustment model.

2.3 Data

The National Institute for Health and Welfare maintains a register which con-
tains all in hospital care periods taken place in Finland. From this register all
50 year or older first time hip fracture patients were identified from the years
1999− 2005. We further excluded patients who were institutionalized before the
fracture. This resulted in a total of n = 28797 patients. For these patients (back-
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wards) hospitalization history was available up to 10 years before the fracture.
This information was complemented with data obtained from the register main-
tained by the Social Insurance Institution of Finland. From this second register,
information on drug reimbursements granted for the medication of the three co-
morbidities stated above, was obtained. The mortality was followed using the
Causes of Death register of Statistics Finland. In our final data we have com-
bined the information obtained from these three registers. It has been shown that
the quality of Finnish register data on the case of hip fractures is good (Sund,
Nurmi-Lüthje, Lüthje, Tanninen, Narinen and Keskimäki, 2007). The dataset is
based on the data used in the PERFECT (PERFormance, Effectiveness and Cost
of Treatment episodes) project in the National Institute for Health and Welfare
in Finland.

Many basic characteristics can be straightforwardly extracted from the data.
These include the date of hip fracture, sex, age, the type of hip fracture (sub-
trochanteric, trochanteric or femoral neck fracture), and the date of death. In
addition, we used ten years of medical history to construct five variables for each
comorbidity which scan different time periods before hip fracture. The time in-
tervals of interest were 180 days, 1 year, 3 years, 5 years and 10 years before the
fracture. There were two ways to get an indication for a comorbidity from our
data. In the first we have data on a patient’s all hospitalization preceding the
hip fracture until a certain (historical) time point. Now if the patient has been
hospitalized because of the chosen comorbidity between this time point and the
hip fracture, we get indication that the patient has had that comorbidity. The
second way to get indication for a comorbidity comes through information on
drug reimbursements. Now we have to check if a patient has received the right
for drug reimbursements for that comorbidity and that it was still valid when
the hip fracture occurred. This means that if a patient has had the right for
drug reimbursements when the hip fracture occurred, then the patient will have
indication for that comorbidity for all time periods.

Let us take an example where we choose the 3 year time interval. This means
we jump back three years in time from the hip fracture event. We now choose one
patient whose hospitalization record we start following towards the hip fracture
event. Assume the patient has been hospitalized because of cancer for three
weeks two years before the hip fracture. Now this patient will be identified for
cancer based on the information on hospital care records. It is also checked if
the patient has a right for drug reimbursements for some of the three comorbities
that we are interested in at the moment of hip fracture. Say we find out that
the patient has the right for drug reimbursements because of cancer but also
for congestive heart failure. Therefore this patient receives indication for cancer
(based on information from both registers) and congestive heart failure with a
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three year lookback period.

The setting is actually quite challenging from the model selection point of
view, since the number of the occurrences of a disease does not increase much
when the length of inspection period increases. If we change our view for example
from 180 days to one year before the fracture, the increase in the number of
occurrences is typically small. Therefore it may be difficult to distinguish between
models that use different time period variables. Further, if we look further back
in history, more occurrences appear, but the effect of these occurrences on the
dependent variable may become weaker, and we assume that this time dependence
may not be same for all comorbidities.

3. Modeling Mortality with Logistic Regression

With n patients, we define yt = 1 if the tth patient died within a 90 days
period after the hip fracture and yt = 0 otherwise (A corresponding model for
the 365 days mortality is also analysed). We treat the n binary outcome variables
y1, · · · , yn as independent. Let

π(xt;β) = P (yt = 1), t = 1, · · · , n,

and assume that

log
π(xt;β)

1− π(xt;β)
= βTxt, (1)

where xt = (xt1, · · · , xtk)T is the vector of k covariate values of the tth patient.

The covariates (comorbidity, age, sex and hip fracture type) are such that
there are many patients with the same values of covariates. For example, we
may take women patients in the age group 50-69 who suffered a subtrochanteric
fracture and had diabetes (inspection period one year before fracture). Let n1

denote the number of such patients. Consequently, these patients have the same
value of covariates, say x1, and hence the probability P(yt = 1) is π(x1;β) for all
these n1 patients. We say that x1 is the setting 1 of values of k covariates. We
have only l different settings x1, · · · ,xl and the number of different setting l is
much smaller than n. Let ni denote the number of the patients with the setting
i, and hence we have n = n1 + · · ·+ nl.

3.1 Bernoulli Likelihood

For notational convenience, we assume here that the observations are ordered
such that the different settings x1, · · · ,xl come first, i.e. for each t > l there exists
i ≤ l such that xt = xi. Since the yt are independent and Bernoulli distributed,
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the likelihood is

L(β; x1, · · · ,xn) =

n∏
t=1

π(xt;β)yt [1− π(xt;β)]1−yt

=
l∏

i=1

π(xi)
vi [1− π(xi)]

ni−vi , (2)

where vi =
∑

t:xt=xi
yt is the number of deaths among the patients with the setting

xi, i = 1, · · · , l. Therefore it is sufficient to record the number of observations ni
and the number of deaths vi corresponding to the settings i = 1, · · · , l. Then vi
refers to this death count rather than to an individual binary response. We will
use logistic regression (DeLong et al., 1997) to assess from register data how much
of medical history before fracture is needed in order to get sufficient indication
of comorbidity effects.

3.2 Model Selection in Logistic Regression

Let Γ be the set of all 1 × k vectors of the form γ = (γ1, · · · , γk), where
γj = 0 or 1 for j = 1, · · · , k. There are 2k such vectors in Γ. A variable selection
procedure is then equivalent to first selecting γ ∈ Γ. If γj = 1, the variable
xj , 1 ≤ j ≤ k is selected and the corresponding βj is estimated, otherwise γj = 0
and βj = 0, i.e. xi is not selected. Let βγ = diag[γ]β, where diag[γ] is the

k × k diagonal matrix with diagonal elements γ and β = (β1, · · · , βk)T is the
k-dimensional parameter vector. In our application we will consider a certain
subset of models from Γ (See Section 4.1) and compare them using the model
selection criteria NML, AIC and BIC.

It follows from assumption (1) and the likelihood (2) that the log likelihood
function of βγ equals

l(βγ) =
l∑

i=1

vi β
T
γ xi −

l∑
i=1

ni log[1 + exp(βTγ xi)]. (3)

The likelihood equations result from setting ∂l(βγ)/∂βγ = 0, and they may be
written in the form

XTv = XT µ̂,

where v = (v1, · · · , vl)T ,X = (x1, · · · ,xl)T and µ̂i = niπ(xi; β̂γ), i = 1, · · · , l.
The equations are nonlinear and require iterative solution. The likelihood equa-
tions equate the sufficient statistics to the estimate of their expected values. This
is a fundamental result for generalized linear models with canonical link (see eg.
McCulloch and Searle 2001, Chapter 5).
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4. The MDL Principle and the NML Criterion for Logistic Regression

4.1 Normalized Maximum Likelihood

Rissanen (1996) proposed his normalized maximum likelihood (NML) distri-
bution as a theoretical basis for statistical modeling. The NML distribution for
(2) may now be written as

P̂ (v|γ) = L[β̂γ(v)| v; X]/C(γ), (4)

where L[β̂γ(v)| v; X] is the maximum of the likelihood function and

C(γ) =
∑
v∈Ω

L[β̂γ(v)| v; X] (5)

is the normalizing constant. In (5) Ω denotes the sample space and the sum runs
over all different count vectors (v1, · · · , vl) such that 0 ≤ v1 + · · · + vl ≤ n and
vi ≥ 0, i = 1, · · · , l. The notation β̂γ(v) emphasizes the obvious fact that the

ML estimate β̂γ is a function of v.
There is a correspondence between so called prefix codes and probability

distributions (Rissanen, 2007, Chapter 2). Let P (v| βγ) be the probability of v.
Then there exists a prefix code for v with ideal code length log[1/P (v| βγ)] =
− logP (v| βγ). So, every distribution defines a prefix code. After observing v,

the shortest code length is log(1/P [v| β̂γ(v)]). Clearly the maximum likelihood

P [v| β̂γ(v)] is not a probability distribution of v, and therefore it does not define
a prefix code for v. However, the NML distribution (4) defines a prefix code
which has important optimality properties (see eg. Barron, Rissanen and Yu,
1998).

4.2 The Minimum Description Length Principle

Rissanen (1996) considers the NML distribution in the context of coding and
modeling theory and takes

− log P̂ (v|γ) = −l[β̂γ(v)| v; X] + logC(γ) (6)

as the “shortest code length” for the data v that can be obtained with the model
γ and calls it the stochastic complexity of v, given γ. The first term in (6) is the
minimized negative log likelihood, and the second term is called parametric com-
plexity. In essence, − log P̂ (v|γ) is the minimum of the penalized log likelihood
function. The minimized negative log likelihood measures goodness of fit to the
data, while logC(γ) penalizes the complexity of the model γ. From the coding
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theoretic point of view, − log P̂ (v|γ) is the length of the prefix code defined by
the NML distribution.

Here we consider the class of logistic regression models defined by the 2k

subsets of covariates Γ and the logistic probabilities. The aim of model selection
is to pick the optimal model γ from the set Γ. For given data v, the NML function
(4) attains its maximum and the “code length” (6) its minimum at the same value
of γ. According to the MDL (Minimum Description Length) principle (Rissanen,
2007, Chapter 8) we select the model γ̂ from Γ that minimizes the stochastic
complexity (6). Since γ̂ maximizes (4), we may call it the NML estimate of γ
within the model class Γ.

The code length interpretation of (6) provides an illustrative yardstick to
compare models. The data can be considered as a sequence of zeros and ones
0010100 · · · 0010, where 1 refers to “death”. The upper limit of the code length is
the length n = 28797 of the whole sequence. If a model will capture the regular
features of data well, then the prefix code based on the NML distribution (4)
can compress the data sequence. Our optimal logistic regression risk adjustment
model compresses the data sequence into a sequence whose length is about half of
the upper limit 28797. No actual coding is needed, of course, but the stochastic
complexity of a model is computed.

Unfortunately, the computational burden becomes too heavy to determine the
value of C(γ) for logistic regression models with moderate number of covariates
when n is large. Let kγ denote the number of covariates in the model γ and
lγ the number of different settings of covariate values in the data under the
model γ. Then the sum in (5) runs over all different count vectors (v1, · · · , vlγ )
such that 0 ≤ v1 + · · · + vlγ = vγ ≤ n and 0 ≤ vi ≤ ni, i = 1, · · · , lγ , where
n = 28797. Let γ be a model with two covariates (kγ = 2), say. When the
covariates are dichotomous, there are 22 possible covariate settings. Suppose
that in the data occur only the settings (0, 0), (1, 0) and (0, 1), and hence lγ = 3.
Then vγ takes the values 0, 1, · · · , n and for each vγ the the count vectors are
obtained by determining all different partitionings of vγ into (v1, v2, v3) such that
v1 + v2 + v3 = vγ , 0 ≤ vi ≤ ni, i = 1, 2, 3 and n1 +n2 +n3 = n. The ML estimate
has to be computed for each count vector. It is obvious that the computation
of the code length for just one model is excessive not to mention the situation
where we wish to compare several models.

Tabus and Rissanen (2006) presented an algorithm for the computation of
the stochastic complexity (6) for logistic regression. If the number of covariates
is k = 3, say, their algorithm is practical only in cases with a maximum of a few
hundred observations. The sequentially normalized ML technique will decrease
computational burden dramatically, and consequently it makes the MDL model
selection practical also for models with large k and n.
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4.3 Sequential NML

The sequentially normalized maximum likelihood was introduced by Roos
and Rissanen (2007). This approach has the advantage that the normalizing
constant is much easier to compute than in the case of the standard NML. Now
we only need to normalize over the last observation, which simplifies computations
substantially. On the other hand, if we don’t have a strict order for the data, we
have to choose one, and this ordering has naturally an effect on the results.

Roos and Rissanen (2008, equation 4) presented the sequentially normalized
maximum likelihood (sNML) function. Let Xn = (x1, · · · ,xn) denote the regres-
sor matrix and yn = (y1, · · · , yn) a sequence of the binary outcome variables.
Note that here xi denotes the regressor vector of the ith patient and Xn may
contain identical regressor vectors unlike X in the model described in (3). In the
logistic regression case, the sNML function may be written as

P̂ (yn|Xn) = P̂ (ym|Xm)

n∏
t=m+1

P̂ (yt|yt−1, Xt), (7)

where P̂ (yn|Xn) is the estimated probability to observe the string yn having
observed Xn.

The last term from (7) is the NML function for yt

P̂ (yt|yt−1, Xt) =
P (yt|yt−1, Xt, β̂(yt))

K(yt−1)
, (8)

where
K(yt−1) = P (yt = 0|yt−1, Xt, β̂0) + P (yt = 1|yt−1, Xt, β̂1) (9)

is the normalizing constant.
Here β̂i, denotes the ML estimates of β from the binary outcome vector

(yt−1, i), i = 0, 1 respectively. As can be seen from (8) we only normalize over
the last observation which simplifies the computation of the normalizing constant
compared to the standard NML.

Because the observations are independent, we have

P (yt = i|yt−1, Xt, β̂i) =
(eβ̂

T
i xt)i

1 + eβ̂
T
i xt

, i = 0, 1,

and (8) becomes

P̂ (yt = i|yt−1, Xt) =

(
(eβ̂

T
i xt)i

1 + eβ̂
T
1 xt

)
/

(
1

1 + eβ̂
T
0 xt

+
eβ̂

T
1 xt

1 + eβ̂
T
1 xt

)
, i = 0, 1.
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The negative logarithm of the sNML function (7) is

− log P̂ (yn|Xn) = − log P̂ (ym|Xm)−
n∑

t=m+1

log P̂ (yt|yt−1, Xt)

= − log P̂ (ym|Xm)−
n∑

t=m+1

logP (yt|yt−1, Xt, β̂(yt))

+
n∑

t=m+1

logK(yt−1). (10)

The computational burden of
∑n

t=m+1 logK(yt−1) in (10) is trivial contrary to

the computation of log[C(γ)] in (4). Note that − log P̂ (yn|Xn) can be interpreted
as the code length for data when a given model is used, as explained in Subsection
4.2.

4.4 Individual Code Lengths

Taking the negative base two logarithm of (7), yields

− log2 P̂ (yn|Xn) = − log2 P̂ (ym|Xm)−
n∑

t=m+1

log2[P̂ (yt|yt−1, Xt)],

where the last term is just a sum of the code lengths of individual observations
from m + 1 to n. Thus we are able to consider the contribution of individual
observations to the total code length. Let S denote a subsequence s1, s2, · · · , sv of
the sequence m+1,m+2, · · · , n of indices. Thus m+1 ≤ s1 < s2 < · · · < sv ≤ n,
where v ≤ n−m is the number of indices in S. Next take a single index s ∈ S and
let Xs denote the sequence (x1, · · · ,xm, xm+1, · · · , xs−1, xs). The sequence Xs

has s elements, m+ 1 ≤ s ≤ n. In a similar fashion ys denotes the corresponding
sequence of binary outcomes (y1, · · · , ym, ym+1, · · · , ys).

We may now compare how changing explanatory variables affects the code
length. Let X1 and X2 be two different sets of explanatory variables. The change
in code length ys (or description for ys) is obtained by computing

log2[P̂ (ys|ys−1, Xs
2)]− log2[P̂ (ys|ys−1, Xs

1)].

By summing up these individual differences over S we obtain

dS(X1, X2) =
∑
s∈S
{log2[P̂ (ys|ys−1, Xs

2)]− log2[P̂ (ys|ys−1, Xs
1)]}, (11)
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which tells us how much the observations belonging to S affect the total code
length as we switch our set of explanatory variables from X2 to X1. Let XC

1 be
the comorbidity variable “cancer” using one year of a patient’s medical history,
and XC

1/2 the corresponding variable using a half year medical history. Then

dS(XC
1 , X

C
1/2) gives the change of the code length when the patients belong to

the set S and one year of the medical history is used instead of half a year when
cancer is the comorbidity variable. Here we may understand as well that there
are also other variables in the model but only the variable XC

1 is changed to XC
1/2.

We note that (11) is generally not the same as

log2 P̂ (yn|Xn
2 )− log2 P̂ (yn|Xn

1 ). (12)

In the case where S is the full sequence of n−m indices m+ 1,m+ 2, · · · , n, we
have equality between (11) and (12).

4.5 Nonconstant Covariate Effects

If we assume that the effects of covariates may change over time, the cal-
culation for the code length of each observation should be done by using an
appropriately selected subdata from the near past. One choice is to slide a win-
dow over the data. The sNML approach is suitable for this purpose, although not
without problems. Let us consider a window of w observations. Now to encode
the whole data, we need to calculate first the ‘regular’ NML code length for the
first w observations (term P̂ (ym|Xm) in (7)). If now w is large, we face the same
problems as before in the calculation of the normalizing constant (5). In the case
study, we have circumvented this problem by just focusing on the comparison of
the code length calculated for the patients with the indices [501, 28797]. This way
we are using the information from the first 500 observations in encoding, but we
do not include the cost of coding of the first 500 observations in the total code
length.

5. Statistical Analysis

We analyse Finnish register data on hip fracture patients from the years
1999-2005. The data was described in Section 2.3. We have two binary outcome
variables, the 90 days mortality and the 365 days mortality, with possible out-
comes 1 (died) and 0 (alive). These mortality variables indicate if the patient
has died within the 90 days (or the 365 days, respectively) period after the hip
fracture.

The basic set of explanatory variables consists of five constructed dichotomous
variables. From the national registries we have information on the hip fracture
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type categorized in three classes, trochanteric, subtrochanteric and femoral neck
fractures. Patients are classified into three age groups (50-69, 70-89, 90-). We
use five dummy variables: two dummies for the hip fracture type, two dummies
for age and one dummy for sex.

The outcome variables 90 days mortality and one year mortality will be mod-
eled separately. The comorbidities of interest, congestive heart failure, cancer and
diabetes are measured in five time intervals. Therefore we have fifteen comorbid-
ity variables. The five basic explanatory variables are included in all models. In
addition to them, one comorbidity variable is selected from the set of 15 comor-
bidity variables, giving 15 alternative models with six explanatory variables and
a constant in each model.

We will do the analysis under two different assumptions: (1) the covariate
effects change over time and (2) the covariate effects stay constant. Under the
second assumption, we utilize the full medical history at each point in the com-
putation of the sNML criterion. Under the first assumption, a sliding window
technique is used.

We compute sNML with m = 25 (see (7)). The value m = 25 was chosen
to make sure we have enough dead and alive patients in the initial calculation
of sNML (done with the regular NML) (see Albert and Anderson, 1984). We
cannot estimate a model if we only have for example dead patients in our data.

When using the sliding window, we use only a limited number of past obser-
vations to calculate the code length for an observation yt. Now (7) becomes

P̂ (yn|Xn) = P̂ (ym|Xm)
n∏

t=m+1

P̂ (yt|yt−w−1,··· ,t−1, Xt−w−1,··· ,t), (13)

where w is the window length and yt−w−1,··· ,t−1 = (yt−w−1, · · · , yt−1) and
Xt−w−1,··· ,t−1 is the corresponding regressor matrix. In our calculations with
the sliding window we take m = 500 and drop the term P̂ (ym|Xm) from our
code lengths because it is not possible to calculate the regular NML with 500
observations. In our setting P̂ (ym|Xm) with m = 500 is always constant (or very
close to constant) between the different models so omitting it doesn’t really make
a difference to our comparisons as they are done between different time periods
of a comorbidity.

As we increase the time backwards from the hip fracture event, we get more
occurrences for each comorbidity. This means that in the data some 0’s of ex-
planatory variables turn into 1’s, but otherwise the data stays exactly the same
when increasing the time period.

Let A be the set of indices of the observations that change as we switch
from the comorbidity variable Xt1 to Xt2 . The subindices t1 and t2 indicate
the length of the time periods that we look backwards from the hip fracture
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event. Now the length of time period 1 is less than time period 2. By (11), we
compute dA(Xt1 , Xt2) to obtain the change in total code length due to changing
observations.

5.1 Results

We observe that in Table 1 all model selection criteria give results consistent
with each other. The AIC and BIC values were calculated from the whole data
(not sequentially) to show that in this case the sequential and non-sequential
approaches give similar results. The formulas for AIC and BIC are

AIC = −2 logP (yn|Xn; β̂) + 2k

and

BIC = −2 logP (yn|Xn; β̂) + k log n,

where k is the number of estimated parameters in the model (see eg. Burnham
& Anderson, 2002, Chapter 6). These criteria can be easily calculated in the case
of logistic regression model.

C-statistic values (calculated from the whole data) are reported because they
are often used in this kind of analysis. Also notice that the comorbidities seem
to behave quite different from each other. Congestive heart failure works best
as an explanatory variable if we use all of the data available to us. Cancer is
a good explanatory variable for mortality with just information from 180 days
preceding the fracture. In the case of diabetes, it is difficult to distinguish between
time periods. There is very little variation in the values of the model selection
criteria and the time periods from three to ten years give virtually the same
values. However, all the model selection criteria except c-statistic seem to make
the same choice of time period also for diabetes. We notice also that our models
fit better the 90 days mortality than one year mortality.

Table 2 reports the number of occurrences of congestive heart failure (CHF),
cancer and diabetes in each five time periods. The increase in occurrences is
not very big compared to the size of the whole data (n=28797). This might be
the reason why the model selection criteria do not clearly prefer any model over
the others. Especially this is the case with diabetes. The maximum increase of
occurrences is in congestive heart failure as we extend the period from 180 days to
ten years (1376 occurrences). If we don’t include any of the comorbidities in the
model, we get the code length (sNML) of 15113 bits for the 90 days mortality and
21339 bits for one year mortality. Even though the time periods within diabetes
do not differ from each other, they all clearly improve the models compared to
the models without any comorbodities.
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Table 1: Code lengths (sNML), AIC, BIC and c-statistic values for 30 mortal-
ity models for each comorbidity are given. The basic variables fracture type,
age and sex are included in all models and exactly one of the 15 comorbidity
variables is selected for each alternative model. Models for 90 day and one year
(values in brackets) mortality are given

CHF

sNML AIC BIC c-statistic

180 days 14898 (21010) 20611 (29086) 20669 (29144) 0.6746 (0.6585)
1 year 14869 (20971) 20572 (29033) 20629 (29091) 0.6767 (0.6609)
3 years 14837 (20924) 20526 (28968) 20584 (29026) 0.6799 (0.6635)
5 years 14833 (20902) 20520 (28936) 20578 (28993) 0.6804 (0.6649)
10 years 14825 (20879) 20509 (28904) 20567 (28962) 0.6812 (0.6658)

CANCER

sNML AIC BIC c-statistic

180 days 14980 (21011) 20719 (29079) 20777 (29137) 0.6644 (0.6599)
1 year 14979 (21013) 20721 (29085) 20779 (29143) 0.6647 (0.6560)
3 years 14992 (21026) 20738 (29103) 20796 (29160) 0.6653 (0.6550)
5 years 14991 (21062) 20765 (29152) 20823 (29210) 0.6640 (0.6538)
10 years 15005 (21067) 20757 (29160) 20815 (29218) 0.6646 (0.6540)

DIABETES

sNML AIC BIC c-statistic

180 days 15093 (21278) 20882 (29457) 20940 (29515) 0.6549 (0.6409)
1 year 15091 (21273) 20879 (29449) 20937 (29507) 0.6553 (0.6414)
3 years 15089 (21272) 20877 (29448) 20934 (29506) 0.6557 (0.6420)
5 years 15090 (21273) 20878 (29450) 20936 (29508) 0.6560 (0.6422)
10 years 15090 (21274) 20877 (29451) 20935 (29509) 0.6561 (0.6423)

Table 2: Number of occurences of the comorbidities within different time peri-
ods

time period CHF CANCER DIABETES

180days 4654 2205 4064
1 year 4947 2470 4152
3 years 5570 2926 4305
5 years 5820 3237 4374
10 years 6030 3548 4420

In Table 3 we have reported the code lengths computed for the three comor-
bidities by using sliding windows of different lengths. The performance of sNML
with various window lengths is close to that presented in Table 1, except for
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90 days mortality with a window length of 25 observations and congestive heart
failure as comorbidity. For diabetes the models with various time periods are
still quite close to each other. Note, however, that Table 3 and Table 1 are not
directly comparable because in the calculations for Table 3 we have omitted the
code length for the first 500 observations.

Table 3: Code lengths (sNML) for 30 mortality models for each comorbidity
(as in Table 1) using sliding windows of different lengths (25, 50, 100 and 500
observations). Code lengths for one year mortality are in brackets

CHF

25 obs 50 obs 100 obs 500 obs

180 days 18883 (23710) 17059 (22760) 15816 (21814) 14838 (20836)
1 year 18883 (23689) 17044 (22728) 15793 (21785) 14811 (20801)
3 years 18935 (23669) 17033 (22685) 15761 (21736) 14783 (20755)
5 years 18950 (23673) 17022 (22663) 15751 (21704) 14783 (20733)
10 years 18954 (23658) 17025 (22646) 15744 (21692) 14777 (20712)

CANCER
25 obs 50 obs 100 obs 500 obs

180 days 18676 (23571) 17098 (22640) 15901 (21785) 14913 (20818)
1 year 18760 (23625) 17111 (22644) 15907 (21782) 14915 (20817)
3 years 18850 (23680) 17147 (22671) 15914 (21801) 14927 (20835)
5 years 18916 (23717) 17187 (22729) 15932 (21832) 14945 (20869)
10 years 18967 (23733) 17192 (22741) 15934 (21854) 14945 (20877)

DIABETES

25 obs 50 obs 100 obs 500 obs

180 days 19169 (24047) 17335 (23006) 16028 (22078) 15030(21110)
1 year 19180 (24042) 17326 (23005) 16021 (22068) 15027(21104)
3 years 19186 (24036) 17327 (22997) 16017 (22053) 15023(21099)
5 years 19190 (24041) 17323 (22996) 16021 (22056) 15023(21097)
10 years 19193 (24042) 17329 (22999) 16027 (22062) 15022(21095)

In Table 4 we have the change in code length within the subset of added
occurrences and the whole data. With added occurrences we mean the observa-
tions that will become new occurrences of a comorbidity as we extend the time
period. Let A denote the set of added occurrences as in Section 5. Note that
for all different pairs of time periods (in connection of a given comorbidity) we

have a different set of added occurrences. For example, let XCHF
ti be the comor-

bidity variable “congestive heart failure”, when the period ti of patients medical
history before hip fracture is used. If t1 = 1/2 year and t2 = 1 year, then by (11)

dA(XCHF
t1 , XCHF

t2 ) is the first figure (24.3097) in the first row of Table 4.



Variable Selection by sNML 337

Table 4: Differences of code lengths (sNML) for changing observations and for
the whole data. In the table we have dA(Xt1 , Xt2) and d(Xt1 , Xt2) (see (11)
and Section 5) values with different time periods for t1 and t2. If for example
t1 = 1 year and t2 = 10 years, take congestive heart failure as comorbidity and
90 days mortality as outcome, then dA(Xt1 , Xt2) = 30.6144. For the whole
data d(Xt1 , Xt2) = 44.0480. Values for one year mortality are in brackets

CHF

ch obs all

180 days 1 year 24.3097 (34.2059) 28.2030 (38.2309)
3 years 46.8802 (70.0761) 60.9309 (85.1012)
5 years 48.1942 (88.2988) 64.5818 (107.7948)
10 years 52.6179 (104.8533) 72.2511 (130.1355)

1 year 3 years 23.9742 (37.7484) 32.7278 (46.8703)
5 years 25.5732 (56.4925) 36.3788 (69.5639)
10 years 30.6144 (74.1631) 44.0480 (91.9046)

3 years 5 years 1.6602 (19.9655) 3.6510 (22.6937)
10 years 6.9804 (38.7493) 11.3202 (45.0343)

5 years 10 years 5.2479 (19.2118) 7.6692 (22.3407)

CANCER

ch obs all

180 days 1 year -5.0550 (-9.0281) 0.3741 (-1.9093)
3 years -18.9243 (-25.5112) -11.8064 (-14.5274)
5 years -35.3211 (-60.0382) -31.4578 (-50.5906)
10 years -32.8788 (-65.0620) -25.2902 (-55.9012)

1 year 3 years -15.9025 (-20.8443) -12.1805 (-12.6182)
5 years -33.0806 (-57.6566) -31.8319 (-48.6814)
10 years -30.6938 (-63.7291) -25.6643 (-53.9920)

3 years 5 years -20.5161 (-41.9101) -19.6514 (-36.0632)
10 years -18.1913 (-50.8998) -13.4838 (-41.3738)

5 years 10 years 2.1115 (-12.5200) 6.1676 (-5.3106)

DIABETES

ch obs all

180 days 1 year 2.5761 (5.4076) 2.5049 (5.3779)
3 years 4.3044 (5.6134) 4.1464 (6.3606)
5 years 2.6456 (3.5228) 3.3646 (4.8051)
10 years 2.9066 (2.6675) 3.7320 (4.1115)

1 year 3 years 1.7909 (0.2711) 1.6415 (0.9828)
5 years 0.1771 (-1.8013) 0.8597 (-0.5727)
10 years 0.4110 (-2.6583) 1.2271 (-1.2664)

3 years 5 years -1.6343 (-2.1389) -0.7818 (-1.5555)
10 years -1.3560 (-2.9672) -0.4144 (-2.2492)

5 years 10 years 0.3228 (-0.8389) 0.3674 (-0.6937)
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If t1 = 5 years and t1 = 10 years, then dA(XCHF
t1 , XCHF

t2 ) = 5.2479 is the
first figure in the tenth row of Table 4. It is understood here that the basic
explanatory variables (hip fracture type, age and sex) and a constant are included
in all models.

Table 4 shows the same tendency as the results in Table 1. We observe how
much the code length changes within the subset of added occurrences and the
whole data. In the case of congestive heart failure, increasing the time period
shortens the code length among the added occurrences and also within the rest
of the data. This means the added occurrences fit the data better with outcome
value 1 than with value 0 and also improve the fit for observations coming after
them.

Cancer behaves differently. There we can see that the difference in code
length is larger for the subset of added occurrences than for the whole data. As
we increase the time period, new occurrences worsen the overall model. As seen
in Table 4, the increase in code length is largely due to the new occurrences.

For diabetes there are no big differences in code lengths between the time
periods. Pairwise comparison in Table 4 shows that the improvement in code
length is largest as we increase the time period from 180 days to 3 years. The
comparison of three years to longer time periods indicates that we will not improve
our model if we extend the time period. Again the differences between models
were very small. The three year time period seems to be a reasonable choice also
on basis of Table 4.

The worst code length for both of our mortality sequences is 28797, which
would mean that we are not able to compress our original data at all. With
the models used in this paper we obtain a code length which is approximately
half of the worst code length. If we compress both of the mortalities with the
Lempel-Ziv algorithm (Ziv and Lempel, 1978), we can get an idea of the size of
the entropy for the sequences. With Lempel-Ziv the code length obtained for
90 days mortality is 3321 bits and 4219 bits for 365 days mortality. This means
that both of the sequences could still be compressed much more than we were
able to do with the logistic regression model. On the other hand, our compression
with the logistic regression model uses information from the explanatory variables
while Lempel-Ziv uses the sequence itself. Therefore comparison based solely on
compression capability is not fair for the method presented in this paper.

6. Discussion

In this paper we have presented a sNML model selection criterion for logis-
tic regression. The sequential approach enables us to compute the normalized
maximum likelihood criterion also for large datasets. This was previously not
possible for logistic regression models because of computational difficulties in the
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normalizing constant of the NML criterion.

If the data doesn’t have a natural ordering, we have to find one. This ordering
should make sense from the applications perspective, which may be difficult in
some cases. With the hip fracture data a natural (although not unique) ordering
was obtained by using the date of arrival to hospital. The sequential approach
also enables us to assume that the covariate effects develop over time. By using
a sliding window in the calculation of the code length we are able to take this
development in covariate effects into account and if necessary try to find the most
suitable window length. If we approach the problem non-sequentially, we have to
assume that covariate effects stood constant over the data.

Our objective was to find how far back in time we should look for three
different comorbidities to get a good model for the mortality of hip fracture
patients. We viewed each comorbidity separately from the other comorbidities.
In our analysis we found out that we should use a different time period for each
comorbidity. The results from sNML, AIC, BIC and c-statistic all pointed to the
same direction for the choice of time period. This is a good result because the
agreement of the different methods gives us stronger confirmation on the behavior
of the comorbidities as explanatory variables. It also seems that in this case the
sequential approach gives results which are in line to non-sequential approaches.

Our results indicate that for congestive heart failure we should use all medi-
cal history available to us, while for cancer it is enough to use only records from
half a year before the fracture. For diabetes the message is not clear, but using
records from three years before the fracture seems to be a reasonable choice. The
results obtained by using a sliding window do not change our previous conclu-
sions on the effect of different comorbidities. This suggests that there has not
been any remarkable changes in covariate effects within the time period under
consideration.

We were also able to distinguish how much of the change in codelength is due
to the observations that become new indications of a comorbidity as we increase
the time period that we look back in time. In congestive heart failure the fit of
the whole data improves as we get new indications of that comorbidity. On the
other hand, with cancer the model fits worse especially among the new cancer
indications. Also this suggests that these two comorbidities behave in a quite
different manner from each other.

All of the comorbidities improved the model. If we use the codelength ob-
tained with Lempel-Ziv algorithm as a yardstick how far we are from the entropy,
we can see that there is still a lot to improve. However, we do not want to lose
interpretations about the explanatory variables effects on the outcome. Therefore
we cannot construct a method aiming purely for maximum compression of data.
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Appendix

We give the algorithm for the computation of sNML (see (7)) in logistic re-
gression. The mortality sequence {y1, y2, · · · , yt} is denoted as yt and the matrix
{x1,x2, · · · ,xt} of explanatory variables as Xt. Let n be the number of obser-
vations in the whole dataset and yt|a is the sequence of length t where the last
observation yt = a. First m = r must be chosen in such a way that the sequen-
tially maximized likelihood is finite (see e.g. Albert and Anderson, 1984). Then
calculate the regular NML from the r observations. Denote this by p̂(yr|Xr).
Compute the sequential part as:

0. Initialize ∆ = − log2[p̂(yr|Xr)]

1. For i = (r + 1) : n

1.1 Solve the ML-estimate β̂0 by using yi|0 and Xi (see (3))

1.2 Solve the ML-estimate β̂1 by using yi|1 and Xi

1.3 Compute

P (yt = 0|yt−1, Xt, β̂0(yt)) = 1/(1 + eβ̂
T
0 xt),

P (yt = 1|yt−1, Xt, β̂1(yt)) = (eβ̂
T
1 xt)/(1 + eβ̂

T
1 xt) and

K(yt−1) = P (yt = 0|yt−1, Xt, β̂0(yt)) + P (yt = 1|yt−1, Xt, β̂1(yt))

1.4 If yt = 0 then

∆i = − log2 P (yt = 0|yt−1, Xt, β̂0(yt)) + log2K(yt−1)

else

∆i = − log2 P (yt = 1|yt−1, Xt, β̂0(yt)) + log2K(yt−1)

1.5 Set ∆ = ∆ + ∆i

The codelength for the data is ∆.

References

Albert, A. and Anderson, J. A. (1984). On the existence of maximum likelihood
estimates in logistic regression models. Biometrika 71, 1-10.

Barron, A., Rissanen J. and Yu, B. (1998). The minimum description length
principle in coding and modeling. IEEE Transactions on Information The-
ory 44, 2743-2760.



Variable Selection by sNML 341

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer, New
York.

DeLong, E. R., Peterson, E. D., DeLong, D. M., Muhlbaier, L. H., Hacket, S.
and Mark, D. B. (1997). Comparing risk-adjustment methods for provider
profiling. Statistics in Medicine 16, 2645-2664.

Hannan, E. L., Magaziner J., Wang, J. J., Eastwood, E. A., Silberzweig, S. B.,
Gilbert, M., Morrison, R. S., McLaughlin, M. A., Orosz, G. M. and Siu, A.
L. (2001). Mortality and locomotion 6 months after hospitalization for hip
fracture: risk factors and risk-adjusted hospital outcomes. Journal of the
American Medical Association 285, 2736-2742.

Heithoff, H. A. and Lohr, K. N. (1990). Hip fracture: setting priorities for
effective research. Report of a study by the Institute of Medicine, Division
of Health Care Services, National Academy of Sciences, National Academy
press, Washington, District of Columbia, 61-64.

Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression, 2nd
edition. Wiley, New York.

Iezzoni, L. I. (1994). Using risk-adjusted outcomes to assess clinical practice:
an overview of issues pertaining to risk adjustment. Annals of Thoracic
Surgery 58, 1822-1826.

Iezzoni, L. I. (2003). Range of risk factors. In Risk Adjustment for Measur-
ing Health Care Outcomes (Edited by L. I. Iezzoni), 3rd edition. Health
Administration Press, Chicago.

Keene, G. S., Parker, M. J. and Pryor, G. A. (1993). Mortality and morbidity
after hip fractures. British Medical Journal 307, 1248-1250.

Landon, B., Iezzoni, L. I., Ash, A. S., Shwartz, M., Daley, J., Hughes, J. S. and
Mackiernan, Y. D. (1996). Judging hospitals by severity-adjusted mortality
rates: the case of CABG surgery. Inquiry 33, 155-166.

McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear and Mixed
Models. Wiley, New York.

Normand, S-L. T., Glickman, M. E. and Gatsonis, C. A. (1997). Statistical
methods for profiling providers of medical care: issues and applications.
Journal of the American Statistical Association 92, 803-814.
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