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Abstract: Multiple binary outcomes that measure the presence or absence
of medical conditions occur frequently in public health survey research. The
multiple possibly correlated binary outcomes may compose of a syndrome
or a group of related diseases. It is often of scientific interest to model
the interrelationships not only between outcome and risk factors, but also
between different outcomes. Applied and practical methods dealing with
multiple outcomes from complex designed surveys are lacking. We propose
a multivariate approach based on the generalized estimating equation (GEE)
methodology to simultaneously conduct survey logistic regressions for each
binary outcome in a single analysis. The approach has the following attrac-
tive features: 1) It enables modeling the complete information from multiple
outcomes in a single analysis; 2) it permits to test the correlations between
multiple binary outcomes; 3) it allows of discerning the outcome-specific ef-
fect and the overall risk factor effect; and 4) it provides the measurement of
difference of the association between risk factors and multiple outcomes. The
proposed method is applied to a study on risk factors for heart attack and
stroke in 2009 U.S. nationwide Behavioral Risk Factor Surveillance System
(BRFSS) data.

Key words: Behavior Risk Factor Surveillance System (BRFSS), cardiovas-
cular disease, generalized estimating equation (GEE), heart attack, odds
ratio (OR), stroke.

1. Introduction

Key public health data such as BRFSS are often obtained through complex
design, which involves stratification, clustering, multistage sampling, and un-
equal probability of selection of participants and responding rates. In order to
make valid inference for the interested population where samples originated, ap-
propriate statistical methods are required to analyze the complex survey data.
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For binary outcomes that measure the presence or absence of certain medical
conditions, e.g. with or without a cardiovascular disease (CVD), survey logistic
regression model is the standard approach to analyze the relationship between
the binary dependent variable and a set of explanatory variables by incorporating
the sample design information, including stratification, clustering, and unequal
weighting (Greenlund et al., 2004; Kim and Beckles, 2004). If multiple binary
outcomes are assessed on the same individual, for example, several CVD related
health conditions, including stroke and heart attack, they are subject to share the
same characteristics to that individual and are likely to exhibit the correlations
within the subject (Fitzmaurice et al., 1995; France et al., 2009; Sergeev and
Carpenter, 2010). The standard survey logistic regression method is inapplicable
for these situations.

In this manuscript, we propose a marginal multivariate approach using GEE
techniques (Liang and Zeger, 1986; Prentice, 1988; Lipsitz et al., 1991) to model
the relationship of multiple responses with explanatory variables, and the associa-
tion between pairs of responses in a single analysis by incorporating the sampling
design adjustment for complex survey data. The first-order generalized estimat-
ing equations (Liang and Zeger, 1986) are implemented to describe the effects
of explanatory variables on each binary response, while the odds ratio estimated
by modified second-order estimating equations (Lipsitz et al., 1991) is applied
to characterize the degree of association between binary responses. Horton and
Fitzmaurice (2004) proposed independence estimating equations for purposes of
estimation and made an adjustment to standard errors of estimators to account
for the correlation among the outcomes. Our method explicitly models the de-
pendence among the outcomes, while Horton and Fitzmaurice (2004) regarded it
as a nuisance feature of data, assuming working independence among outcomes.
Modeling the dependence has the potential to yield more efficient estimators.
The proposed method has several advantages: First, it captures the complete in-
formation about multiple outcomes in a single regression model; second, it allows
the assessment of correlation between outcomes by taking into account the covari-
ance structure of responses; third, it provides the test of outcome-specific effects
and overall risk factor effect; fourth, it supplies the measurement of difference
of associations between risk factors and multiple outcomes; finally, the degree
of dependence between the responses from the same individual is measured by
the odds ratio rather than the correlation, since the odds ratio is easy to inter-
pret and provides a natural way for modeling the within-subject dependence for
binary responses.

This paper is organized as follows. Section 2 describes the GEE method for
complex survey sample with multiple correlated binary responses. Also, the com-
parison between univariate and multivariate estimations is discussed. In Section
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3, the proposed method is applied to BFRSS data. Finally, Section 4 concludes
with a discussion.

2. Methods

2.1 Complex Survey Data

In many epidemiological studies the source data arise from complex survey
sample. There are three main features that need to be accounted in the analysis:
(i) stratification, (ii) clustering, and (iii) sampling weight. For example, the
BFRSS used a complex survey design with stratification, multi-stage clustering,
and unequal sampling weights. It is very common in survey study to divide
the population into distinct subpopulations, referred to as strata. Within each
stratum, a separate sample is selected from the sampling units independently.
The variance of the estimate will decrease if the sampling units within each
stratum are homogeneous. Failure to account for the stratification in the analysis
will result in overestimation of the standard error, and hence too wide confidence
interval. The second common feature in complex survey data is called clustering.
In clustering, the total population is divided into some groups (or clusters) and a
sample of the groups is selected. In multistage clustering, the clusters selected at
first stage are called primary sampling units or PSUs. Further sample selection
occurs within PSUs and so on. In general, failure to account for the clustering
in the analysis may lead to underestimation of variabilities. Finally, unequal
selection in each PSU occurs in many epidemiological surveys. The sampling
weight is used as the measure of how many units in the population which the
sampled PSU represents. The unequal selection probabilities must be taken into
account in analysis to reduce the bias of the estimate and the underestimation of
variabilities.

2.2 GEE Approach for Complex Survey Data

In this section we consider extensions of the population-averaged marginal
GEE approach for complex survey data. Assume the population is divided into
H distinct strata. In each stratum h, the sample is consisted of nh clusters
and each cluster is comprised of mhi

units, h = 1, · · · , H, i = 1, · · · , nh. Let
Yhij = (Yhij1, · · · , YhijT )T and Xhij = (Xhij1, · · · , XhijT )T denote the T×1 vector
of binary responses and the T ×p matrix of covariate for hijth unit, respectively,
j = 1, · · · ,mhi

. The sampling weight for the hijth unit is denoted by ωhij .
Suppose that covariates Xhijt are associated with each marginal observation Yhijt,
t = 1 · · ·T . Let K be the sample size. We wish to estimate a logistic regression
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model in the marginal means

logit Pr(Yhijt = 1) = logitπhijt = XT
hijtβ,

for t = 1, · · · , T , where β is a p-dimensional vector of regression coefficients. It
is assumed that the individuals Yhij are independent, but the marginal obser-
vations Yhij1, · · · , YhijT may be correlated, h = 1, · · · , H, i = 1, · · · , nh, and
j = 1, · · · ,mhi

. We take into account the correlation among the multiple re-
sponses by applying the first-order generalized estimating equations proposed
by Liang and Zeger (1986) to estimate regression coefficients β and standard
errors se(β). The efficiency is expected to increase by utilization of the covari-
ance structure of responses. We refer to R(α) as a working correlation matrix
of Yhij1, · · · , YhijT , where α is a vector which fully characterizes R(α). Then the
first estimating equations can be written as

U1(α, β) =
H∑

h=1

nh∑
i=1

mhi∑
j=1

ωhijD
T
hijV

−1
hij Shij = 0, (1)

where Di = ∂πhij/∂β = AhijXhij , Vhij = A
1/2
hijR(α)A

1/2
hij , Ahij = diag{πhijt(1 −

πhijt)} and Shij = Yhij − πhij . These generalized estimating equations yield
consistent estimators of regression parameters β under the correct specification of
the form πhij . The covariance matrix of U1(α, β), which is the negative expected
value of ∂U1(β)/∂β, can be written as

I1 =
H∑

h=1

nh∑
i=1

mhi∑
j=1

ωhijD
T
hijV

−1
hijDhij .

The correlation α is usually estimated by a Thij × (Thij − 1)/2 vector of
empirical correlations with elements

rhijst =
(Yhijs − πhijs)(Yhijt − πhijt)√
πhijs(1− πhijs)πhijt(1− πhijt)

,

and then use a second set of equations similar to (1). In this manuscript, we
apply the odds ratio method proposed by Lipsitz et al. (1991) to measure the
association between pairs of binary responses. Let Zhij = {Zhijst} be a Thij ×
(Thij − 1) random vector, where

Zhijst = I[Yhijs = 1, Yhijt = 1] = YhijsYhijt,

and I[·] is an indicator function. The joint probability of success for Yhijs and
Yhijt is

πhijst = E(Zhijst) = Pr[Yhijs = 1, Yhijt = 1].
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Now the odds ratio, τhijst, between the binary responses Yhijs and Yhijt can be
written as a function πhijs, πhijt, and πhijst

τhijst =
πhijst(1− πhijs − πhijt + πhijst)

(πhijs − πhijst)(πhijt − πhijst)
.

Solving for πhijst in terms of odds ratios τhijst and the two marginal probabilities
πhijs and πhijs leads to

πhijst =


fhijst − [f2hijst − 4τhijst(τhijst − 1)πhijsπhijt]

1/2

2(τhijst − 1)
, if τhijst 6= 1,

πhijsπhijt, if τhijst = 1,

where fhijst = 1− (1− τhijst)(πhijs +πhijt). Now we model the logarithm of odds
ratio as the linear combination of α

log τhijst = eThijstαst,

1 ≤ s < t ≤ T . Note that πhijst = E(Zhijst) is a function of β through marginal
means πhijs and πhijft and α through odds ratios τhijst. The first derivative of
πhij = E(Zhij) with respect to parameter α can be expressed as

∂πhijst
∂α

=

πhijs + πhijt −A
1/2
hijstηhijst

2(τhijst − 1)
−
fhijst −A

1/2
hijst

2(τhijst − 1)2

 ∂τhijst
∂α

,

where

ηhijst = fhijst(πhijs + πhijt)− (4τhijst − 2)πhijsπhijt,

Ahijst = fhijst − 4τhijst(τhijst − 1)πhijsπhijt.

Then the second set of estimating equations is

U2(α, β) =
H∑

h=1

nh∑
i=1

mhi∑
j=1

ωhijC
T
hijW

−1
hijQhij = 0, (2)

where Chij =
∂πhijst
∂α

, Whij = diag{πhijst(1 − πhijst)}, Qhij = Zhij − θhij , and

θhij is the model for E(Zhij). Similarly, the covariance matrix of U2(α, β) can be
written as

I2 =
H∑

h=1

nh∑
i=1

mhi∑
j=1

ωhijC
T
hijW

−1
hijChij .
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Let (α̂, β̂) be solutions of (1) and (2). By Taylor expansion, the valid estima-
tors of variances of α̂ and β̂ that take into accounts the stratification, clustering,
and unequal selection probability are provided by

Ĉov(β̂) = Î−1
1 V̂1Î

−1
1 , (3)

Ĉov(α̂) = Î−1
2 V̂2Î

−1
2 , (4)

where,

V̂1 =
H∑

h=1

nh
nh − 1

nh∑
i=1

(Bhi − B̄hi)(Bhi − B̄hi)
T ,

V̂2 =

H∑
h=1

nh
nh − 1

nh∑
i=1

(Ahi − Āhi)(Ahi − Āhi)
T ,

Bhi
=

mhi∑
j=1

ωhijX
T
hijÂ

1/2
hij R̂

−1Â
1/2
hijXhij ,

Ahi
=

mhi∑
j=1

ωhijĈ
T
hijŴ

−1
hij Ĉhij ,

Āhi
= 1/nh

nh∑
i=1

Ahi
, B̄hi

= 1/nh

nh∑
i=1

Bhi
.

The estimates Î1, Î2, Âhij , Ĉhij , Ŵhij and R̂ are evaluated at (α̂, β̂). Note that
(3) and (4) are similar to those advocated by Liang and Zeger (1986) and Lipsitz
et al. (1991), except that (3) and (4) account for unequal selection probability
and use V1 and V2 , the pooled within-stratum estimators of U1 and U2. These
variance estimators are robust in the sense of being consistent even if the working
covariances are misspecified.

2.3 Computational Implementation

To compute the estimators (α̂, β̂) of (1) and (2), a Fisher-scoring type iterative
algorithm can be applied with starting values (α0, β0) for (α, β). Let the mth
step estimate be (α(m), β(m)). The (m+ 1)th step estimates are

β(m+1) = β(m) −

∑
h,i,j

D
(m)T
hij V

(m)−1
hij D

(m)
hij

−1∑
h,i,j

D
(m)T
hij V

(m)−1
hij (Yhij − π

(m)
hij )

 ,

α(m+1) = α(m) −

∑
h,i,j

C
(m)T
hij W

(m)−1
hij C

(m)
hij

−1∑
h,i,j

C
(m)T
hij W

(m)−1
hij (Uhij − θ

(m)
hij )

 ,
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where D
(m)
hij , C

(m)
hij , V

(m)
hij , W

(m)
hij , π

(m)
hij and θ

(m)
hij are evaluated at (α(m), β(m)). The

iteration converges at (m+ 1)th step if

|β(m+1) − β(m)|
|β(m)|+ 10−6

< ε = 10−8 and
|α(m+1) − α(m)|
|α(m)|+ 10−6

< ε = 10−8.

Denote D = (DT
1 , · · · , DT

K)T , C = (CT
1 , · · · , CT

K)T , S = (ST
1 , · · · , ST

K)T and
Q = (QT

1 , · · · , QT
K)T . Let V and W be block diagonal matrices with Vhij and

Whij as the diagonal elements, respectively. Then the iterative procedure can be
written as

β(m+1) = (DTV −1D)−1DTV −1(Dβ(m) − S),

α(m+1) = (CTW−1C)−1CTW−1(Cα(m) −Q).

Define the modified outcomes Z1 = Dβ − S and Z2 = Cα − Q. Then the
iterative procedure for calculating β̂ and α̂ is equivalent to performing iteratively
reweighted regression of Z1 on D with weight V −1 and regression of Z2 on C with
weight W−1. The algorithm was implemented in R 2.13.0.

2.4 Comparison between Univariate and Multivariate Estimates

For correlated binary responses arising from complex survey sample, the stan-
dard survey logistic regression is inapplicable. To address this issue, one approach
(Greenlund et al., 2005; Hayes et al., 2006) is to pool multiple binary outcomes
into a single categorical outcome and then regress the new summary response on
predictors. The main limitation in this approach is that the relationship between
specific outcome and predicators can be masked by combining the indicators of
multiple processes. Another approach (Koziol-McLai et al., 2001; Cumyn et al.,
2009; Bitton et al., 2010) is to fit separate logistic models for each outcome. Al-
though the effects of covariates on each outcome can be discerned, this approach
is inability to test the difference of risk factor effects on multiple outcomes and
the association between multiple responses.

To account for the possible paired correlations, there are three main ap-
proaches. The first approach (Horton and Fitzmaurice, 1994) is to assume that
the observations are independent for the purposes of estimation, but make a
suitable adjustment of standard errors for the possible correlation among the ob-
servations. The estimator of β is called independence estimating equation (IEE)
estimator. Note that the IEE estimator is equivalent to the univariate estima-
tor with a robust variance correction. Liang and Zeger (1986) showed that the
IEE estimator is consistent for β and asymptotically normally distributed. The
IEE estimator is preferable, since it is easily implemented in existing statistical
packages. The second approach is to devise a generalized estimating equation
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proposed by Liang and Zeger (1986) and Prentice (1988), which generalize the
independent estimating equation to incorporate a working correlation, or some
other association such as odds ratio. Under the assumption of correct specifi-
cation of mean functions, the GEE estimator is consistent and asymptotically
normal. The third approach is to completely specify the joint distribution of the
observations, by introducing the extra parameters for the association among the
observations; see, for example, Rosner (1984), Prentice (1986), Liang and Zeger
(1989), and Lipsitz et al. (1990) among others.

The asymptotic relative efficiency of the IEE estimator and the GEE estima-
tor has been discussed extensively (Emrich and Piedmonte, 1992; Sharples and
Breslow, 1992; Lee et al., 1993; Mancl and Leroux, 1996). McDonald (1993)
considered bivariate data with possibly different covariates for each binary obser-
vation and recommended the IEE estimator for practical purpose whenever the
association between the paired observations is a nuisance. Zhao et al. (1992)
suggested that incorrectly assuming independence can lead to important losses
of efficiency when the correlation between responses is high. Fitzmaurice (1995)
demonstrated that the asymptotic relative efficiency depends on not only the
strength of correlation between the paired responses, but also the covariate dis-
tribution, such as between-cluster and within-cluster covariate designs; that is, a
covariate is constant or varies within the cluster. In this manuscript, we adopt
the within-cluster covariate design, in which a within-cluster indicator variable
is used to fit a survey logistic regression of multiple responses simultaneously.
We assume the mean structure is correctly specified, but allow the correlation
among the responses to be misspecified, including by incorrectly assuming inde-
pendence. Following the approach of Fitzmaurice (1995), we can show that when
the responses are strongly correlated and the covariate distribution is within clus-
ter, the IEE estimator which assumes the independence can lead to considerable
loss of efficiency, compared to the GEE estimator for complex survey sample.
Therefore, for correlated binary responses arising from complex survey sample,
we adopt the GEE estimator which is relatively straightforward, compared to
the full likelihood estimator, and is more efficient than the IEE estimator for
within-cluster covariate design.

3. Data Analysis: Application to BRFSS Data

3.1 Sample Data

The BRFSS is a state-based, random-digit telephone survey of the U.S. nonin-
stitutionalized, civilian population. Self-reported data from 353,280 people aged
over 18 years who participated in the 2009 BRFSS were collected. The response
rate, based on the Council of American Survey Research Organization (CASRO)
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guidelines (White, 1984), was 52.48% ranging from 37.90% to 66.85% among
states and territories for the 2009 BRFSS. Relative to other surveys, data from
BRFSS have acceptable reliability and validity (Bowlin et al., 1993; Nelson et al.,
2001). BRFSS data analysis involves the data weighting process which attempts
to remove the bias in the sample probability of selection due to nonresponse and
noncoverage errors, as well as to adjust variables of age, race, and gender between
the sample and the entire population. Weight factors included are the number of
residential telephones in a household, the number of adults in a household, and
geographic or density stratification. Information on quality assurance and other
aspects of this survey is available online at www.cdc.gov/brfss/index.htm. There
are two dependent binary variables, heart attack and stroke which were collected
as “Have you ever told by a healthcare professional that you had a heart attack
(myocardial infarction)?” and “Have you ever told by a healthcare professional
that you had a stroke?”.

3.2 Multivariate Survey Logistic Regression Analysis

We apply the proposed multivariate survey logistic regression method to U.S.
2009 BRFSS data. In addition to using covariates, such as age, sex, education
level, marital status, overweight or obesity, and annual income as independent
variables in the model, we also include an indicator variable in the model to
allow us to fit a single logistic regression model to the data of multiple responses
simultaneously. To simplify the notations, we omit subscriptions for stratum
and cluster. Assume I is the indicator variable, where I = 0 stands for stroke
and I = 1 stands for heart attack. Gender is defined as 1 for males and 0 for
females. Age is defined as 1 for those aged 55 or older and 0 otherwise. Race is
defined as 1 for non-Hispanic white and 0 otherwise. Education is defined as 1 for
those attended some college or technical school or graduated from college and 0
otherwise. Overweight or obesity is set to be 1 for body mass index (BMI) greater
than or equal to 25 and 0 for BMI less than 25. Marital status is defined as 1 for
those are married or a member of unmarried couple, 2 for those who are divorced
or widowed or separated, and 3 for those who are never married. Annual income
is defined as 1 for those whose annual household income is less than $35,000, 2
for those whose income is between $35,000 and $75,000, 3 for those whose income
is above $75,000. We use two dummy variables for martial status and annual
income. Let X be a set of covariates defined above and β = (β0, · · · , β10)T and
γ = (γ1, · · · , γ10)T be the corresponding regression parameters for X and IX,
respectively. Then the bivariate survey logistic regression model in the matrix
form is

log
π

1− π
= β0 +XTβ + Iγ0 + IXTγ,
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logOR = α,

where π is the probability of a positive response and OR represents the odds ratio
between binary outcomes stroke and heart attack, conditional on covariates. The
regression parameters for stroke are β0, · · · , β10, while β0 + γ0, · · · , β10 + γ10 are
corresponding coefficients for heart attack. The parameters for this interaction
model are easy to interpret. For the purpose of illustration, we only interpret
risk factors age and gender. The other covariates can be interpreted similarly.
The response-specific log odds for stroke and heart attack are β0 and β0 + γ0,
respectively. The parameters β1 and β1 + γ1 are the average log odds ratios
for stroke and heart attack, respectively, for those who are aged fifty five or
older, compared to younger individuals. Likewise, β2 and β2 + γ2 are the average
log odds ratios for stroke and heart attack, respectively, for males compared to
females. The differences of log odds ratios between heart attack and stroke for
age and gender are measured by γ1 and γ2, respectively. The positivity of γ1
indicates that the effect of age on heart attack is greater than that on stroke.
Likewise, the positivity of γ2 demonstrates that the odds ratio of heart attack is
greater than that of stroke for the risk factor gender. If the effects of risk factors
do not vary by multiple responses, the interaction terms may be removed, and
the overall effect to responses can be estimated. For example, the model

log
π

1− π
= β0 +XTβ

assumes that the effects of covariates X do not vary by the responses. The heart
attack and stroke odds ratio, exp(γ0), measures the extent to which individuals
are more likely to contract heart attack than stroke. A value greater than 1
indicates that heart attack is more likely to occur than stroke, conditional on
covariates. On the other hand, the log odds ratio α can be used to compare
the strength of association between two binary responses. A value greater than
0 suggests positive association between stroke and heart attack, after adjusting
for covariates. Since exp(α) is estimated with covariates, it can be considered
as adjusted for risk factors. The adjusted odds ratio is usually smaller than the
corresponding crude odds ratio.

3.3 Results

The results of estimated regression coefficients and standard errors from uni-
variate survey logistic regression model, pooled survey logistic regression model,
and bivariate survey logistic regression model are presented in Tables 1 and 2.
The estimated odds ratios are based on the estimated coefficients reported in
Tables 1 and 2. Define a summary heart disease response variable HD = 1 if the
subject was diagnosed with stroke or heart attack or both and 0 otherwise for



Multivariate Logistic Regression for Complex Survey 167

Table 1: Results of univariate survey logistic regressions for BFRSS heart dis-
ease study. Stroke and heart attack are binary outcomes in models 1 and 2,
respectively. In pooled model, the binary outcome is stroke or heart disease or
both. * represents p-value < 0.05

Model 1 Model 2 Pooled Model

Parameter Estimate ± SE Estimate ± SE Estimate ± SE

Intercept -4.262±0.071∗ -4.448±0.066 ∗ -3.831 ± 0.054∗

Age 1.622±0.046∗ 1.784±0.042 ∗ 1.769 ± 0.033∗

Gender 0.117±0.038∗ 0.804±0.033 ∗ 0.553 ± 0.027∗

Race -0.014±0.046 0.171±0.043 ∗ 0.122 ± 0.035∗

Education -0.086±0.039∗ -0.166±0.033 ∗ -1.134 ± 0.028∗

Widowed/divorced/separated 0.386±0.041∗ 0.239±0.034 ∗ 0.305 ± 0.029∗

Never married -0.382±0.096∗ -0.711±0.075 ∗ -0.577 ± 0.065∗

Overweight/obesity 0.073±0.039 0.281±0.034 ∗ 0.211 ± 0.029∗

Smoking 0.362±0.048∗ 0.336±0.043 ∗ 0.361 ± 0.036∗

Middle income -0.665±0.046∗ -0.559±0.037 ∗ -0.586 ± 0.032∗

High income -1.149±0.063∗ -1.085±0.050 ∗ -1.101 ± 0.042∗

Table 2: Results of bivariate survey logistic regression for BFRSS heart disease
study. * represents p-value < 0.05. ** represents the estimates of interactions
of covariates and I, where I is defined as 0 for stroke and 1 for heart attack

Stroke Heart Attack Interaction∗∗

Parameter Estimate ± SE Estimate ± SE Estimate ± SE

Intercept -4.268±0.072∗ -4.445±0.067∗ -0.177±0.089∗

Age 1.628±0.046∗ 1.782±0.042∗ 0.153±0.056∗

Gender 0.120±0.038∗ 0.803±0.032∗ 0.683±0.046∗

Race -0.009±0.046 0.168±0.043∗ 0.178±0.057∗

Education -0.088±0.039∗ -0.168±0.033∗ -0.080±0.047
Widowed/divorced/separated 0.384±0.041∗ 0.240±0.034∗ -0.144±0.048∗

Never married -0.381±0.097∗ -0.710±0.077∗ -0.329±0.114∗

Overweight/obesity 0.070±0.040 0.282±0.034∗ 0.212±0.048∗

Smoking 0.359±0.048∗ 0.339±0.043∗ -0.021±0.058
Middle income -0.661±0.046∗ -0.559±0.037∗ 0.103±0.055
High income -1.143±0.064∗ -1.082±0.051∗ 0.061±0.075

pooled survey logistic regression. The univariate survey logistic regression model
and the pooled survey logistic regression model were fitted using SAS SURVEY-
LOGISTC Procedure in SAS 9.2 software, while the bivariate survey logistic re-
gression model (GEE model) was fitted in R 2.13.0 using a Fisher-scoring type al-
gorithm to estimate the regression coefficients and the corresponding odds ratios.
The pooled survey logistic regression yielded that age (OR = 5.86, p < .0001),
male (OR = 1.74, p < .0001), non-Hispanic white (OR = 1.13, p = 0.0005),
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widowed or divorced or separate (OR = 1.36, p < .0001), overweight or obesity
(OR = 1.24, p < .0001), and smoking (OR = 1.44, p < .0001) are significant risk
factors for heart disease, while high education level (OR = 0.87, p < .0001), never
married (OR = 0.56, p < .0001), middle annual income (OR = 0.56, p < .0001),
and high annual income (OR = 0.33, p < .0001) appeared to be significant ben-
eficial factors for heart disease. The univariate survey logistic regression models
generated similar results to those of the pooled model, except that neither gender
(OR = 0.98, p = 0.753) nor overweight or obesity (OR = 1.08, p = 0.065) has
significant effect on stroke. The bivariate model demonstrated similar estimates
of the relationships between the covariates and binary outcomes (Table 2). More-
over, the bivariate model showed that the effects of age (OR = 5.94 vs. OR =
5.09), gender (OR = 2.23 vs. OR = 0.99), race (OR = 1.18 vs. OR = 1.13), and
overweight or obesity (OR = 1.33 vs. OR = 1.07) on heart attack are significantly
stronger than those on stroke, with p-values 0.006, < .0001, 0.002, and < .0001,
respectively, while the models demonstrated that effects of widowed or divorced
or separate (OR = 1.27 vs. OR = 1.47) and never married (OR = 0.49 vs. OR
= 0.68) have significantly smaller effects on heart attack than those on stroke,
with p-values 0.003 and 0.004, respectively. The bivariate model did not reject
the possibility that there are no differences of odds ratios between heart attack
and stroke in education level (OR = 0.86 vs. OR = 0.91), smoking (OR = 1.40
vs. OR = 1.43), middle annual income (OR = 0.57 vs. OR = 0.52), and high
annual income (OR = 0.33 vs. OR = 0.32), with p-values 0.086, 0.721, 0.062, and
0.414, respectively. The GEE model estimated the odds ratio for within cluster
(within-subject) dependence, i.e., exp(α), to be 7.53, p < .0001, after adjusting
for covariates.

4. Discussion

A health survey is often conducted to obtain information about the preva-
lence of diseases and unhealthy behaviors, exposures to potential risk factors,
and cost and utilization of health-care services of a population. Binary outcomes
that measure the presence or absence of certain medical conditions are common
in survey research. Many survey studies measure a vector of health conditions
to make an overall assessment about an individual health status. It is often an
important task for health researchers to exam the relationship between multiple
health conditions and predicators, including behaviors and socioeconomic mea-
sures in complex surveys. Since multiple binary outcomes are obtained from the
same individual, they are likely to be correlated within the subject. Ignoring
the interrelations among the multiple outcomes essentially will lead to inefficient
estimates in statistical analysis. It is neither scientifically appropriate nor statis-
tically efficient to fit separate logistic models for each binary outcome. Therefore,
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the standard univariate survey logistic regression method is inapplicable for com-
plex survey data with multiple binary outcomes.

Most of the statistical approaches that simultaneously model the correlated
binary response variables can be grouped into two groups: population-averaged
marginal modeling using generalized estimating equations and cluster-specific hi-
erarchical modeling using generalized linear mixed models (Stiratelli et al., 1984;
Breslow and Calyton, 1993; Fahrmeir and Tutz, 1994; Das et al., 2004; Molen-
berghs and Verbeke, 2005). There are several advantages to utilize the popula-
tion averaged marginal modeling approach. From a public health perspective,
the GEE model provides population averaged estimates of the relationships be-
tween risk factors and clinic outcomes. Furthermore, the GEE approach is robust
to model misspecification in terms of the covariance structure among the multi-
ple responses. Moreover, compared with the cluster-specific modeling approach
involving intensive multidimensional integral computation, the GEE estimation
algorithm is relatively computationally efficient for large data sets (in our data,
n = 353, 280) and widely implemented in standard statistical software, such as
SAS, SPSS, Splus/R, STATA, and SUDAAN.

Different from previous approaches when dealing with correlated binary re-
sponses arising from complex survey sample, e.g. combining multiple binary out-
comes into a single categorical or using separated logistic models, our approach
utilized GEE techniques to model the relationships between multiple clinical out-
comes and risk factors, and the degree of dependence between the outcomes si-
multaneously. The results from BRFSS sample data can not only provide detailed
odds ratios for the predicting variables to heart attack and stroke, either from
univariate or bivariate survey logistic models, but also estimate the odds ratio for
within cluster (within-subject) dependence (e.g. exp(α), to be 7.53, p < .0001).

Our multivariate approach has added following advantages to analyze com-
plex survey data. First, we may gain more precision by utilizing all information
about multiple outcomes in a single analysis, instead of modeling separate logis-
tic regression for each binary outcome; second, simultaneous modeling of all the
outcomes allows not only to provide the test of outcome-specific effects and the
overall risk factor effect, but also to characterize the association between the pairs
of outcomes by taking into account the covariance structure of responses; finally,
it permits the assessment of differences of associations between risk factors and
multiple outcomes. This paper has illustrated the use of multivariate logistic in-
teraction model as a flexible method for analysis of complex survey data involving
multiple binary outcomes. The parameters in this interaction model have simple
interpretations. The effects of covariates on specific outcome can be expressed as
odds ratios, which are preferable for binary outcomes. The multivariate logistic
regression interaction model has the advantage of allowing of testing whether the
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effects of risk factors vary by responses. When the outcome-risk factor interaction
term is present, separate outcome specific risk factor estimates can be computed.
The difference of log odds ratio between two outcomes for specific risk factor
can also be estimated and may have important interpretations. For example,
the stronger association between sex and heart attack was observed than that
between sex and stroke in BFRSS study.

The multivariate regression approach proposed in this paper can be gener-
alized to more general settings where multiple outcomes are measured from the
same subject and the distributions of outcomes are exponential family. In fact, it
is applicable to continuous, categorical, and count response variables by changing
the link function of expected value of the outcome. For continuous and count
variables, the link function would be identity function and logarithm function,
respectively. It would also be interesting to adopt cluster specific hierarchical
modeling using generalized linear mixed models (GLMM) to multistage strati-
fied cluster sampling, especially in the situation that the estimation of effects of
within-cluster covariates is of interest, and study the differences in conceptualiza-
tion and interpretation between the population-averaged model and the cluster
specific model for complex survey data.
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