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Estimation of a Scale Parameter of Morgenstern Type Bivariate
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Abstract: In this paper, we obtain several estimators of a scale parameter
of Morgenstern type bivariate uniform distribution (MTBUD) based on the
observations made on the units of the ranked set sampling regarding the
study variable Y which is correlated with the auxiliary variable X, when
(X,Y ) follows a MTBUD. Efficiency comparisons among these estimators
are also made in this work. Finally, we illustrate the methods developed by
using a real data set.
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1. Introduction

Ranked set sampling (RSS) was first proposed by McIntyre (1952) for esti-
mating the mean pasture yields. McIntyre indicates that RSS is a more efficient
sampling method than simple random sampling (SRS) method for estimating
the population mean. In the RSS technique, the sample selection procedure is
composed of two stages. At the first stage of sample selection, n simple random
samples of size n are drawn from an infinite population and each sample is called
a set . Then, each of observations are ranked from the smallest to the largest
according to variable of interest, say X, in each set. Ranking of the units is done
with a low-level measurement such as using previous experiences, visual measure-
ment or using a concomitant variable. At the second stage, the first observation
unit from the first set, the second observation unit from the second set and going
on like this nth-observation unit from the nth-set are taken and measured ac-
cording to the variable X with a high level of measurement satisfying the desired
sensitivity. The obtained sample is called an RSS. Stokes (1980) introduced a
modified ranked set sampling procedure in which only the largest or the smallest
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judgment ranked unit is chosen for quantification. Samawi et al. (1996) investi-
gated the use of a variety of extreme ranked set samples (ERSS) for estimating
the population mean. Another scheme of ranked set sampling was investigated
by Al-Odat and Al-Saleh (2001) which is the moving extreme ranked set sam-
pling (MERSS). It is a modification of the RSS that only the lowest or largest
unit of sets of varied sizes is measured. Stokes (1977) applied RSS for bivariate
random variable (X,Y ), where X is the variable of interest and Y is a concomi-
tant variable that is not of direct interest but is relatively easy to measure. Let
X(r)r be the observation measured on the variable X in the rth unit of the RSS
and let Y[r]r be the corresponding measurement made on the study variable Y of
the same unit, r = 1, 2, · · · , n. Then clearly Y[r]r is the concomitant of rth order
statistic arising from the rth sample. The procedure of RSS described by Stokes
(1977) is as follows:
Step 1. Randomly select n independent bivariate samples, each of size n.
Step 2. Rank the units within each sample with respect to a variable of interest
X together with the Y variate associated.
Step 3. In the rth sample of size n, select the unit (X(r)r, Y[r]r), r = 1, 2, · · · , n.

A general family of bivariate distributions is proposed by Morgenstern (1956)
with specified marginal distributions FX(x) and FY (y) as

FX,Y (x, y) = FX(x)FY (y) [1 + α (1− FX(x))(1− FY (y))] , − 1 ≤ α ≤ 1, (1.1)

where α is the association parameter between X and Y . A member of this
family is Morgenstern type bivariate uniform distribution (MTBUD) with the
probability density function (pdf),

fX,Y (x, y) =
1

θ1θ2

[
1 + α

(
1− 2x

θ1

)(
1− 2y

θ2

)]
, 0 < x < θ1; 0 < y < θ2. (1.2)

From Scaria and Nair (1999), the pdf of Y[r]r for 1 ≤ r ≤ n is given by

g[r]r(y) =

∫
fY |X(y|x)fr(x)dx

=
1

θ2

[
1 + α

(
n− 2r + 1

n+ 1

)(
1− 2y

θ2

)]
, 0 < y < θ2, (1.3)

where fr(x) is density function of X(r)r, i.e.

fr(x) =
n!

(r − 1)!(n− r)!

[
xr−1(θ1 − x)n−r

θn1

]
, 0 < x < θ1, (1.4)

and therefore, the mean and variance of Y[r]r for 1 ≤ r ≤ n are given as

E
[
Y[r]r

]
= θ2βr, V ar

[
Y[r]r

]
= θ22λr, (1.5)
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where

βr =
1

2

[
1− αn− 2r + 1

3(n+ 1)

]
, λr =

1

12

[
1− 1

3
(
α(n− 2r + 1)

n+ 1
)2
]
.

Stokes (1995) has obtained the estimation of parameters of location-scale
family of distribution by RSS. Lam et al. (1994) used RSS to estimate the
two-parameter exponential distribution. Al-saleh and Ananbeh (2005, 2007) es-
timated the means of the bivariate normal distribution using moving extremes
RSS with concomitant variable. Estimation of a parameter of Morgenstern type
bivariate exponential distribution by using RSS was considered by Chacko and
Thomas (2008). Al-saleh and Diab (2009) considered estimation of the parame-
ters of Downton’s bivariate exponential distribution using RSS scheme. Barnett
and Moore (1997) derived the best linear unbiased estimator (BLUE) for the
mean of Y , based on a ranked set sample obtained using an auxiliary variable X
for ranking the sample units.

The organization of this article is as follows. In Section 2, we present four
estimators for the scale parameter, θ2 in MTBUD: an estimator based on the
ranked set sample mean, an estimator using simple random sample, a BLUE
using RSS, and a BLUE by using the upper ranked set sample (URSS) based
on measurement of Y which is taken on the unit that has the maximum value
for the X variable. Also, we consider the efficiency of these four estimators. In
Section 3, we obtain different estimators for θ2 in MTBUD by using ERSS and
MERSS methods. Also, we evaluate the efficiency of all estimators considered in
this paper. In Section 4, we illustrate the ERSS and MERSS methods using a
real data set.

2. Estimators for θ2 Based on RSS

Suppose that the random variable (X,Y ) has a MTBUD as defined in (1.2).
Let Y[r]r, r = 1, 2, · · · , n, be the RSS observations made on the units of the ranked
set sampling regarding the study variable Y which is correlated with the auxiliary
variable X. Then an unbiased estimator for θ2 based on RSS mean in (1.5) is
given by

θ̂2,RSS =
2

n

n∑
r=1

Y[r]r, (2.1)

and its variance is

V ar(θ̂2,RSS) =
θ22
3n

[
1− 1

3n

n∑
r=1

(
α(n− 2r + 1)

n+ 1

)2
]
. (2.2)
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We know that Y has a uniform distribution, Y ∼ U(0, θ2). Therefore, an unbiased
estimator of θ2 based on a simple random sample (SRS) of size n from U(0, θ2)
is 2Y with variance θ22/(3n). The relative efficiency of θ̂2,RSS to 2Y is given by

e1 = e
(
θ̂2,RSS | 2Y

)
=

V ar
(
2Y
)

V ar
(
θ̂2,RSS

) =
1

1− α2

9

(
n− 1
n+ 1

) .
Note that 1 ≤ e1 ≤ 9/8. For fixed n > 1, the efficiency increases as |α|

increases. Thus, we conclude that θ̂2,RSS is more efficient than 2Y .

Now, we study the efficiency of θ̂2,RSS relative to the BLUE of θ2, θ
∗
2, based on

Y[r]r, r = 1, 2, · · · , n of MTBUD, when α is known. Let Y[n] = (Y[1]1, Y[2]2, · · · ,
Y[n]n)′, then by using David and Nagaraja (2003) the BLUE of θ2 is derived as

θ∗2 =
(
β′W−1β

)−1
β′W−1Y[n] =

n∑
r=1

arY[r]r, (2.3)

where β = (β1, β2, · · · , βn)′, W = diag(λ1, λ2, · · · , λn), and ar = (βr/λr) ·
(
∑n

i=1 β
2
i /λi)

−1, r = 1, 2, · · · , n. The variance of θ∗2 is

V ar [θ∗2] =
(
β′W−1β

)−1
θ22 =

θ22∑n
r=1 β

2
r/λr

, (2.4)

and therefore, the relative efficiency of θ̂2,RSS to θ∗2 is given by

e2 = e
(
θ∗2 | θ̂2,RSS

)
=

n∑
r=1


(

1− α(n−2r+1)
3(n+1)

)2
1− 1

3

(
α(n−2r+1)

n+1

)2
[ 1

n
− α2(n− 1)

9n(n+ 1)

]
. (2.5)

The values of e2 for n = 2(2)10(5)25, and α = ±.25,±.5,±.75,±1 have been
computed in Table 1. As it can be seen from Table 1, θ∗2 is more efficient than
θ̂2,RSS and for fixed n ≥ 2, the efficiency increases with |α|.

Remark 1. Our assumption is that α is known, but sometimes α may not be
known. We know that the correlation coefficient between X and Y in MTBUD
is α

3 . So by using the sample correlation coefficient q of the RSS observations
(X(r)r, Y[r]r), r = 1, 2, · · · , n an estimator for α is given

α̂ =


−1, q < −1

3 ,
3q, −1

3 ≤ q ≤
1
3 ,

1, 1
3 < q.
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Table 1: The values of e2 = e(θ∗2 | θ̂2,RSS), e3 = e(θ̃2 | θ∗2), and e4 = e(θ̃2 |
θ̂2,RSS) in MTBUD

n α e2 e3 e4 n α e2 e3 e4

2 -1.00 1.0123 0.7805 0.7901 10 -1.00 1.0413 0.5944 0.6189
-0.75 1.0069 0.8345 0.8402 -0.75 1.0201 0.6730 0.6865
-0.50 1.0031 0.8892 0.8919 -0.50 1.0081 0.7657 0.7719
-0.25 1.0008 0.9445 0.9452 -0.25 1.0019 0.8739 0.8755
0.25 1.0008 1.0555 1.0563 0.25 1.0019 1.1484 1.1505
0.50 1.0031 1.1108 1.1141 0.50 1.0081 1.3257 1.3365
0.75 1.0069 1.1655 1.1736 0.75 1.0201 1.5433 1.5743
1.00 1.0123 1.2195 1.2345 1.00 1.0413 1.8203 1.8955

4 -1.00 1.0266 0.6612 0.6787 15 -1.00 1.0456 0.5817 0.6081
-0.75 1.0138 0.7356 0.7457 -0.75 1.0219 0.6593 0.6736
-0.50 1.0058 0.8164 0.8211 -0.50 1.0088 0.7538 0.7603
-0.25 1.0014 0.9043 0.9055 -0.25 1.0021 0.8663 0.8681
0.25 1.0014 1.1047 1.1062 0.25 1.0021 1.1603 1.1627
0.50 1.0058 1.2196 1.2266 0.50 1.0088 1.3564 1.3683
0.75 1.0138 1.3465 1.3650 0.75 1.0219 1.6044 1.6394
1.00 1.0266 1.4877 1.5272 1.00 1.0456 1.9342 2.0223

6 -1.00 1.0340 0.6228 0.6439 20 -1.00 1.0479 0.5758 0.6033
-0.75 1.0170 0.7009 0.7128 -0.75 1.0228 0.6525 0.6673
-0.50 1.0070 0.7889 0.7944 -0.50 1.0091 0.7477 0.7544
-0.25 1.0017 0.8881 0.8895 -0.25 1.0021 0.8624 0.8642
0.25 1.0017 1.1271 1.1290 0.25 1.0021 1.1667 1.1691
0.50 1.0070 1.2730 1.2819 0.50 1.0091 1.3731 1.3855
0.75 1.0170 1.4428 1.4673 0.75 1.0228 1.6384 1.6757
1.00 1.0340 1.6445 1.7004 1.00 1.0479 1.9999 2.0956

8 -1.00 1.0384 0.6047 0.6278 25 -1.00 1.0492 0.5725 0.6007
-0.75 1.0189 0.6834 0.6963 -0.75 1.0233 0.6484 0.6635
-0.50 1.0077 0.7746 0.7805 -0.50 1.0092 0.7440 0.7509
-0.25 1.0018 0.8793 0.8809 -0.25 1.0021 0.8600 0.8619
0.25 1.0018 1.1400 1.1421 0.25 1.0021 1.1706 1.1731
0.50 1.0077 1.3047 1.3147 0.50 1.0092 1.3835 1.3963
0.75 1.0189 1.5026 1.5309 0.75 1.0233 1.6600 1.6988
1.00 1.0384 1.7475 1.8146 1.00 1.0492 2.0427 2.1434

We can also provided a ranked set sample of size n by each sample mea-
surement of Y which is taken on the unit that has the maximum value for
the X variable. So, let Y[n]r be concomitants of largest order statistics X(n)r

of the rth sample for r = 1, 2, · · · , n. Then we call the collection of observa-
tions Y[n]1, Y[n]2, · · · , Y[n]n as the Upper ranked set sample (URSS). We can derive
BLUE of θ2 based on the observations URSS. From (1.5) the mean and variance
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of Y[n]r, for 1 ≤ r ≤ n, are given as

E[Y[n]r] = θ2βn, V ar[Y[n]r] = θ22λn.

Note that, for 1 ≤ r < s ≤ n, Cov[Y[n]r, Y[n]s] = 0. Now, a BLUE of θ2 based
on URSS is obtained as

θ̃2 =
1

nβn

n∑
r=1

Y[n]r, (2.6)

and its variance is given by

V ar
(
θ̃2

)
=
θ22λn
nβ2n

. (2.7)

From (2.4) and (2.7) the efficiency of θ∗2 relative to θ̃2 is obtained as

e3 = e
(
θ̃2 | θ∗2

)
=

n
[
1− α

(
1−n

3(n+1)

)]2
n∑
r=1

[
(1−α(n−2r+1)

3(n+1)
)2

1− 1
3

(
α(n−2r+1)

n+1

)2

][
1− 1

3

(
α(1−n)
n+1

)2] .

Also, the efficiency of θ̂2,RSS relative to θ̃2 is derived as

e4 = e
(
θ̃2 | θ̂2,RSS

)
=

[
1− α

(
1−n

3(n+1)

)]2 [
1− α2(n−1)

9(n+1)

]
1− 1

3

(
α(1−n)
n+1

)2 .

We have computed the values of e3 and e4 for n = 2(2)10(5)25, and α =
±.25,±.5,±.75,±1 in Table 1. From the table, we can easily see that θ̃2 is
relatively more efficient than θ∗2 and θ̂2,RSS for 0 < α ≤ 1. Also, e3 and e4
increases (decreases) with n and 0 < α ≤ 1 (−1 ≤ α < 0). Thus, we conclude
that θ∗2 and θ̂2,RSS are relatively more efficient than θ̃2 when −1 ≤ α < 0.

3. Estimators for θ2 Based on ERSS and MERSS Methods

In this section, first we derive different estimators for θ2 based on extreme
ranked set sampling (ERSS) method with concomitant variable. This method
introduced by Samawi et al. (1996) and can be described as follows:
Step 1. Select n random samples each of size n bivariate units from the popu-
lation.
Step 2. If the sample size n is even, then select from n/2 samples the smallest
ranked unit X together with the associated Y and from the other n/2 samples the
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largest ranked unit X together with the associated Y . This selected observations
(X(1)1, Y[1]1), (X(n)2, Y[n]2), (X(1)3, Y[1]3), · · · , (X(1)n−1, Y[1]n−1), (X(n)n, Y[n]n) can
be denoted by ERSS1.

Step 3. If n is odd then select from (n − 1)/2 samples the smallest ranked
unit X together with the associated Y and from the other (n − 1)/2 samples
the largest ranked unit X together with the associated Y and from one sample
the median of the sample for actual measurement. In this case the selected
observations (X(1)1, Y[1]1), (X(n)2, Y[n]2), (X(1)3, Y[1]3), · · · , (X(n)n−1, Y[n]n−1),
((X(1)n + X(n)n)/2, (Y[1]n + Y[n]n)/2) can be denoted ERSS2 and (X(1)1, Y[1]1),
(X(n)2, Y[n]2), (X(1)3, Y[1]3), · · · , (X(n)n−1, Y[n]n−1), (X((n+1)/2)n, Y[(n+1)/2]n) can
be denoted by ERSS3.

Now, if n is even then the estimator of the θ2 using ERSS1 is defined as

θ̂2,ERSS1 =
2

n

n/2∑
r=1

(
Y[1]2r−1 + Y[n]2r

)
. (3.1)

Since the elements in (3.1) are independent, so we have

V ar
(
θ̂2,ERSS1

)
=
θ22
3n

[
1− 1

3

(
α(n− 1)

n+ 1

)2
]
. (3.2)

If n is odd then the estimators of θ2 using ERSS2 and ERSS3 are obtained as

θ̂2,ERSS2 =
2
(
Y[1]1 + Y[n]2 + Y[1]3 + · · ·+ Y[n]n−1 + (Y[1]n + Y[n]n)/2

)
n

, (3.3)

θ̂2,ERSS3 =
2
(
Y[1]1 + Y[n]2 + Y[1]3 + · · ·+ Y[n]n−1 + Ye[(n+1)/2]n

)
n

. (3.4)

In the estimator θ̂2,ERSS2 , it is easy to see that Y[1]1, Y[n]2, Y[1]3, · · · , Y[n]n−1 are
independent of Y[1]n and Y[n]n, but the random variables Y[1]n and Y[n]n are depen-
dent. Also, we can easily check that Y[1]1, Y[n]2, Y[1]3, · · · , Y[n]n−1 and Y[(n+1)/2]n

are all independent in θ̂2,ERSS3 . So by using some simple algebra we have

V ar
(
θ̂2,ERSS2

)
=
θ22
3n

[
1− α2(n− 1)3

3n(n+ 1)2
− 1

2n
+
α2(2− n)

6n(n+ 2)

]
, (3.5)

V ar
(
θ̂2,ERSS3

)
=
θ22
3n

[
1− α2(n− 1)3

3n(n+ 1)2

]
. (3.6)

Now, by using (2.2), (3.2), (3.5) and (3.6) the efficiency of θ̂2,RSS relative to
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the estimators θ̂2,ERSS1 , θ̂2,ERSS2 and θ̂2,ERSS3 , respectively, are given by

e5 = e
(
θ̂2,ERSS1 | θ̂2,RSS

)
=

1− α2(n−1)
9(n+1)

1− 1
3

(
α(n−1)
n+1

)2 ,
e6 = e

(
θ̂2,ERSS2 | θ̂2,RSS

)
=

1− α2(n−1)
9(n+1)

1− α2(n−1)3
3n(n+1)2

− 1
2n + α2(2−n)

6n(n+2)

,

e7 = e
(
θ̂2,ERSS3 | θ̂2,RSS

)
=

1− α2(n−1)
9(n+1)

1− α2(n−1)3
3n(n+1)2

.

Note that 1 ≤ ei ≤ 4/3 for i = 5, 6, 7. Also, for fixed n > 1, ei’s increase in
|α| and increase in n for fixed |α| > 0. So we conclude that θ̂2,ERSS1 , θ̂2,ERSS2 and

θ̂2,ERSS3 are more efficient than θ̂2,RSS .

A1-Saleh and A1-Ananbeh (2007) proposed the concept of MERSS with con-
comitant variable for the estimation of the means of the bivariate normal distri-
bution. Now, Suppose that the random vector (X,Y ) has a MTBUD as defined
in (1.2). The procedure of MERSS with concomitant variable in MTBUD is as
follows:

Step 1. Select n units each of size n from MTBUD using SRS. Identify by
judgment the minimum of each set with respect to the variable X.

Step 2. Repeat step 1, but for the maximum.

Note that the 2n pairs of set {(X(1)r, Y[1]r), (X(n)r, Y[n]r); r = 1, 2, · · · , n} that
are obtained using the above procedure, are independent but not identically dis-
tributed. An unbiased estimator of θ2 based on MERSS is given by

θ̂2,MERSS =
1

n

n∑
r=1

(
Y[1]r + Y[n]r

)
. (3.7)

and its variance is

V ar
(
θ̂2,MERSS

)
=
θ22
6n

[
1− 1

3

(
α(n− 1)

n+ 1

)2
]
. (3.8)

The efficiency of θ̂2,RSS relative to θ̂2,MERSS is given by

e8 = e
(
θ̂2,MERSS | θ̂2,RSS

)
=

1− α2(n−1)
9(n+1)

1
2 −

1
6

(
α(n−1)
n+1

)2 .
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Note that 1 ≤ e8 ≤ 8/3. Thus, we conclude that θ̂2,MERSS is more efficient than

θ̂2,RSS. Also, the efficiency of θ̂2,MERSS relative to θ∗2 and θ̃2 are given by

e9 = e
(
θ∗2 | θ̂2,MERSS

)
=

(
1

2n
− 1

6n
(
α(n− 1)

n+ 1
)2
) n∑

r=1


(

1− α(n−2r+1)
3(n+1)

)2
1− 1

3

(
α(n−2r+1)

n+1

)2

 ,

e10 = e
(
θ̃2 | θ̂2,MERSS

)
=

(
1
2 −

1
6

(
α(n−1)
n+1

)2)[
1− α

(
−n+1
3(n+1)

)]2
1− 1

3

(
α(−n+1)
n+1

)2 .

Finally, the efficiency of θ∗2 relative to the estimators θ̂2,ERSS1 , θ̂2,ERSS2 and

θ̂2,ERSS3 are given by

e11 = e
(
θ̂2,ERSS1 | θ∗2

)
=

1(
1
n −

1
3n

(
α(n−1)
n+1

)2)( n∑
r=1

[ (
1−α(n−2r+1)

3(n+1)

)2

1− 1
3

(
α(n−2r+1)

n+1

)2

]) ,

e12 = e
(
θ̂2,ERSS2 | θ∗2

)
=

1(
1
n −

α2(n−1)3
3n2(n+1)2

− 1
2n2 + α2(2−n)

6n2(n+2)

)( n∑
r=1

[ (
1−α(n−2r+1)

3(n+1)

)2

1− 1
3
(
α(n−2r+1)

n+1
)2

]) ,

e13 = e
(
θ̂2,ERSS3 | θ∗2

)
=

1(
1
n −

α2(n−1)3
3n2(n+1)2

)( n∑
r=1

[ (
1−α(n−2r+1)

3(n+1)

)2

1− 1
3

(
α(n−2r+1)

n+1

)2

]) .

Furthermore, the efficiency of θ̃2 relative to the estimators θ̂2,ERSS1 , θ̂2,ERSS2 and

θ̂2,ERSS3 are given by

e14 = e
(
θ̂2,ERSS1 | θ̃2

)
=

1[
1− α

(
−n+1
3(n+1)

)]2 ,
e15 = e

(
θ̂2,ERSS2 | θ̃2

)
=

1− 1
3

(
α(−n+1)
n+1

)2
[
1− α

(
−n+1
3(n+1)

)]2 [
1− α2(n−1)3

3n(n+1)2
− 1

2n + α2(2−n)
6n(n+2)

] ,
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e16 = e
(
θ̂2,ERSS3 | θ̃2

)
=

1− 1
3

(
α(−n+1)
n+1

)2
[
1− α

(
−n+1
3(n+1)

)]2 [
1− α2(n−1)3

3n(n+1)2

] .
We have computed the values of ej for j = 9, 10, · · · , 16 with α = ±.25,±.5,

±.75, ±1, n = 5(5)20 and these are given in Table 2. From Table 2, we may
conclude:
(a) The efficiencies of θ̂2,MERSS relative to θ∗2 and θ̃2 are less than 1 for n ≥ 5.

So, θ̂2,MERSS is relatively more efficient than θ∗2 and θ̃2.

(b) The efficiencies of θ∗2 relative to the estimators θ̂2,ERSS1 , θ̂2,ERSS2 and θ̂2,ERSS3

are more than 1 for n ≥ 5. Thus, θ̂2,ERSS1 , θ̂2,ERSS2 and θ̂2,ERSS3 are relatively
more efficient than θ∗2.
(c) The efficiencies of θ̃2 relative to the estimators θ̂2,ERSS1 , θ̂2,ERSS2 and θ̂2,ERSS3

are more than (less than) 1 for −1 ≤ α < 0 (0 < α ≤ 1) and n ≥ 5. Thus θ̃2 is
relatively more efficient than θ̂2,ERSS1 , θ̂2,ERSS2 and θ̂2,ERSS3 when 0 < α ≤ 1.

4. An Application

Recently, a biological study on purslane plants (portulaca oleracea) are done
in the research and studied center of Persian Gulf University. The results of this
study show that the shoot height of the plant is a correlated character with the
shoot diameter. Now, we consider a bivariate data set from the 256 plant data
such that the first component X represents the shoot height in centimeter, and
the second components Y represents the shoot diameter in centimeter. Clearly
the shoot height can be measured very easily but the shoot diameter is difficult
to measure. Under the assumption that (X,Y ) follows MTBUD, we select 8
random samples with size 8 from 256 plant data and rank the sampling units
of each sample according to the X variate (shoot height). Now, we measure
the raked set sample observations Y[r]r corresponding to X(r)r. The obtained
RSS, ERSS1 and MERSS observations are given in Table 3. Since the sample
correlation coefficient is q > 1/3. Therefore, an estimate for α is 1 (see Remark
1).

The computed values of θ̂2,RSS, θ̂2,ERSS1 , θ̂2,MERSS are 2.9075, 2.9625, and
2.9737, and their estimated variances are 0.3212, 0.2913, and 0.1467, respectively.
We can find that the estimated values for θ2 based on different samplings are close.
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Table 2: The values of ej for j = 9, 10, · · · , 16 in MTBUD

n α e9 e10 e11 e12 e13 e14 e15 e16

5 -1.00 0.4741 0.3024 1.0545 1.1708 1.0190 1.6530 1.8354 1.5974

-0.75 0.4857 0.3472 1.0293 1.1432 1.0109 1.4400 1.5994 1.4142

-0.50 0.4937 0.3950 1.0126 1.1249 1.0049 1.2656 1.4060 1.2559

-0.25 0.4984 0.4459 1.0031 1.1145 1.0012 1.1211 1.2456 1.1190

0.25 0.4984 0.5570 1.0031 1.1145 1.0012 0.8975 0.9971 0.8958

0.50 0.4937 0.6172 1.0126 1.1249 1.0049 0.8100 0.8998 0.8038

0.75 0.4857 0.6805 1.0293 1.1432 1.0109 0.7346 0.8160 0.7215

1.00 0.4741 0.7469 1.0545 1.1708 1.0190 0.6694 0.7432 0.6469

10 -1.00 0.4449 0.2644 1.1237 1.1828 1.0924 1.8906 1.9900 1.8378
-0.75 0.4700 0.3163 1.0636 1.1195 1.0485 1.5804 1.6635 1.5580

-0.50 0.4870 0.3729 1.0266 1.0806 1.0206 1.3407 1.4112 1.3328

-0.25 0.4968 0.4341 1.0064 1.0594 1.0050 1.1516 1.2123 1.1500

0.25 0.4968 0.5705 1.0064 1.0594 1.0050 0.8764 0.9225 0.8751

0.50 0.4870 0.6456 1.0266 1.0806 1.0206 0.7744 0.8151 0.7698

0.75 0.4700 0.7254 1.0636 1.1195 1.0485 0.6892 0.7254 0.6794

1.00 0.4449 0.8099 1.1237 1.1828 1.0924 0.6173 0.6497 0.6001

15 -1.00 0.4312 0.2508 1.1592 1.1992 1.1333 1.9930 2.0617 1.9485

-0.75 0.4629 0.3051 1.0801 1.1173 1.0681 1.6384 1.6948 1.6202

-0.50 0.4839 0.3648 1.0331 1.0687 1.0284 1.3706 1.4178 1.3644

-0.25 0.4960 0.4297 1.0079 1.0427 1.0068 1.1634 1.2036 1.1622

0.25 0.4960 0.5755 1.0079 1.0427 1.0068 0.8686 0.8986 0.8677

0.50 0.4839 0.6564 1.0331 1.0687 1.0284 0.7616 0.7879 0.7582

0.75 0.4629 0.7426 1.0801 1.1173 1.0681 0.6732 0.6964 0.6658

1.00 0.4312 0.8342 1.1592 1.1992 1.1333 0.5993 0.6200 0.5859

20 -1.00 0.4235 0.2438 1.1805 1.2107 1.1587 2.0501 2.1026 2.0123

-0.75 0.4588 0.2993 1.0896 1.1176 1.0795 1.6700 1.7128 1.6550

-0.50 0.4822 0.3605 1.0368 1.0633 1.0330 1.3866 1.4222 1.3816

-0.25 0.4956 0.4274 1.0088 1.0346 1.0079 1.1697 1.1997 1.1687

0.25 0.4956 0.5782 1.0088 1.0346 1.0079 0.8646 0.8868 0.8639

0.50 0.4822 0.6621 1.0368 1.0633 1.0330 0.7551 0.7744 0.7523

0.75 0.4588 0.7517 1.0896 1.1176 1.0795 0.6650 0.6821 0.6591

1.00 0.4235 0.8470 1.1805 1.2107 1.1587 0.5902 0.6054 0.5794
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Table 3: Obtained RSS, ERSS1 and MERSS observations

r 1 2 3 4 5 6 7 8

RSS X(r)r 10.37 7.25 8.33 9.00 8.87 11.37 10.50 8.50
Y[r]r 1.37 1.27 1.10 1.15 1.72 1.75 1.57 1.70

ERSS1 X(1)2r−1 10.37 4.00 7.12 4.25
Y[1]2r−1 1.37 1.40 1.32 1.12

X(n)2r 10.00 11.25 12.50 8.50
Y[n]2r 1.57 1.57 1.80 1.70

MERSS X(1)r 10.37 6.70 4.00 6.75 7.12 7.16 4.25 5.12
Y[1]r 1.37 1.72 1.40 1.22 1.32 1.70 1.12 0.97

X(n)r 15.00 10.00 15.37 11.25 9.50 12.50 11.83 8.50
Y[n]r 1.60 1.57 1.75 1.57 1.45 1.80 1.53 1.70
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