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Empirical Likelihood Ratio Test for the Epidemic Change Model
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Abstract: Change point problem has been studied extensively since 1950s
due to its broad applications in many fields such as finance, biology and so
on. As a special case of the multiple change point problem, the epidemic
change point problem has received a lot of attention especially in medical
studies. In this paper, a nonparametric method based on the empirical
likelihood is proposed to detect the epidemic changes of the mean after
unknown change points. Under some mild conditions, the asymptotic null
distribution of the empirical likelihood ratio test statistic is proved to be the
extreme distribution. The consistency of the test is also proved. Simulations
indicate that the test behaves comparable to the other available tests while it
enjoys less constraint on the data distribution. The method is applied to the
Standford heart transplant data and detects the change points successfully.

Key words: Consistency, empirical likelihood ratio, epidemic change point,
extreme distribution.

1. Introduction

1.1 The Change Point Problem

Change point problems can be encountered in many applied fields such as
finance, biology, geology etc. In statistics, a change point can be viewed as a
place or time point such that the observations follow different distributions be-
fore and after that point. Multiple change points can be detected similarly. Page
(1954, 1955) introduced a simple process to detect a single change. Since then,
change point problems have received extensive attentions. For instance, Chernoff
and Zacks (1964), Gardner (1969), Hawkins (1992) studied the testing and esti-
mation of a change in the mean of a normal model. Hsu (1977), Inclán (1993)
studied change point problem for the variance. Worsley (1986) provided confi-
dence regions and tests for a change-point in a sequence of exponential models.
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The change point problem for the regression model has been studied by Krish-
naiah and Miao (1988). Kim and Siegmund (1989) proposed a likelihood ratio
test to detect a single change-point in a simple linear regression model. Chen
and Gupta (1997) studied the change points for the variance while the mean
is constant for the univariate normal model using information approach. Chen
and Gupta (2000) extended their results to the multivariate normal models and
discussed the testing and detection of change points for some continuous dis-
tributions besides the normal distribution such as the exponential distributions,
and also for some discrete distributions such as the gamma distribution and the
binomial distributions by using likelihood ratio test (LRT), Bayesian approach
and information approach. Ning and Gupta (2009) considered the generalized
lambda distribution change point model (GLDCM) and applied it to detect the
variations of the copy numbers of DNA. Ning (2011) proposed a nonparametric
method to detect the mean change in a linear trend.

The special multiple change points problem is that of the epidemic change
point problem, which can be described as the change of the parameters at some
unknown location such that θ1 = · · · = θp = θq+1 = · · · = θn = α and θp+1 =
· · · = θq = β, where p, q, α, β are unknown. The epidemic change point problem
is of great practical interest with applications in many fields such as medical
studies. Readers can refer to Levin and Kline (1985), Yao (1993), Ramanayake
(1998), Ramanayake and Gupta (2003, 2004) and Guan (2004) for more details.

1.2 The Empirical Likelihood Method

Consider independently and identically distributed d-dimensional observa-
tions, say x1, · · · , xn, from an unknown population distribution F. The main
idea of empirical likelihood methods proposed and systematically developed by
Owen (1990,1991) is to place an unknown probability mass at each observation.
Let pi = P (X = xi) and the empirical likelihood function of p is defined as

L(F ) =
n∏
i=1

pi.

It is clear that L(F ) subject to the constraints

pi ≥ 0 and
∑
i

pi = 1

is maximized at pi = 1/n, i.e., the likelihood L(F ) attains its maximum n−n

under the full nonparametric model. When a population parameter θ identified
by Em(X, θ) = 0 is of interest, the empirical log-likelihood maximum when θ has
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the true value θ0 is obtained subject to the additional constraint∑
xipi = θ0.

The empirical log-likelihood ratio (ELR) statistic to test θ = θ0 is given by

R(θ0) = max{
∑
i

log npi : pi ≥ 0,
∑

pi = 1,
∑

pim(xi, θ0) = 0}.

Owen (1988) showed, similar to the likelihood ratio test statistic in a parametric
model setup, −2 logR(θ0) → χ2

r in distribution as n → ∞ under the null model
θ = θ0 with mild regular conditions, where r is the dimension of m(x, θ).

The empirical likelihood method as outlined above can be extended to tri-
angular arrays that are independent or nearly independent but not necessarily
identically distributed (see Owen, 2001).

2. Methods

2.1 Epidemic Hypothesis of the Mean

Let X1, X2, · · · , Xn be a sequence of independent random variables in Rd from
a common distribution family F. We want to test the null hypothesis of no change
in the mean against the epidemic change in the mean. That is, we test the
following hypotheses.

H0 : µi = µ0, i = 1, 2, · · · , n
H1 : ∃p, q ∈ Z+, such that 1 < p < q < n and

µi =


µ0, if i ≤ p,
µ∗ = µ0 + δ, if p < i ≤ q,
µ0, if q < i ≤ n.

where µ0 and δ are both unknown and δ > 0. Ramanayake and Gupta (2003)
studied this problem for the exponential family. They proposed the LRT statistic
and investigate its asymptotic properties. In this paper, an empirical likelihood
ratio test without the constraint of the data distribution to detect the epidemic
changes is proposed in Section 2. The null distribution of the test statistic and
the consistency of the test are proved in Section 3. Simulations conducted in
Section 4 indicate that the ELR test is comparable with other existing tests. The
method is applied to a real data in Section 5. Some discussions are provided in
Section 6.

2.2 Empirical Likelihood Ratio Test
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For a fixed (p, q), the empirical log-likelihood function is

l(µ0, µ
∗|p, q) =

∑
i

log ui +
∑
j

log vj ,

where i = 1, · · · , p, q+1, · · · , n; j = p+1, · · · , q, ui = P (X = xi), vj = P (X = xj)
and X is a random variable. With the constraints

∑
i ui =

∑
j vj = 1, l(p, q)

reaches the maximum value at ui = (n− q+p)−1 and vj = (q−p)−1 by Lagrange
multiplier method. Therefore, the empirical log-likelihood ratio function is

lr(µ0, µ
∗|p, q) =

∑
i

log((n− q + p)ui) +
∑
j

log((q − p)vj).

Then, the profile empirical likelihood ratio function for given µ0 and µ∗ is written
as

R(µ0, µ
∗|p, q) = sup{lr(µ0, µ

∗|p, q) :
∑
i

ui =
∑
j

vj = 1,
∑
i

uixi = µ0,∑
j

vjxj = µ∗},

where ui ≥ 0 and vj ≥ 0. To test the hypothesis µ∗ = µ0 or equivalently test δ =
0, the test statistic is defined as

Zn,p,q = −2 sup
µ0
{R(µ0, µ0|p, q)}

= −2 sup
µ0
{
∑
i

log((n− q + p)ui) +
∑
j

log((q − p)vj)}.

With the Lagrange multiplier method, we define

G(µ0, λ1, η1, λ2, η2, ui, vj) =
∑
i

log((n− q + p)ui)− nλ′1(
∑
i

uixi − µ0)

+ η1(
∑
i

ui − 1) +
∑
j

log((q − p)vj)− nλ′2(
∑
j

vjxj − µ0) + η2(
∑
j

vj − 1),

where i = 1, · · · , p, q + 1, · · · , n; j = p + 1, · · · , q. By taking the first derivative
of G with respect to ui, we obtain

∂G

∂ui
=

1

ui
− λ′1(xi − µ0) + η1 = 0

=⇒ ui =
1

nλ′1(xi − µ0)− η1
.
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From the above equation, we have the following result immediately.∑
ui
∂G

∂ui
=
∑

ui{
1

ui
− λ′1(xi − µ0) + η1} = 0

=⇒ η1 = −(n− q + p) =⇒ ui =
1

(n− q + p) + nλ′1(xi − µ0)
.

In the similar way, we also obtain

vj =
1

(q − p) + nλ′2(xj − µ0)
.

Finally, we take the first derivative of G respect to µ0,

∂G

∂µ0
= λ1 + λ2 = 0 =⇒ λ2 = −λ1.

Therefore,

vj =
1

(q − p)− nλ′1(xj − µ0)
.

For convenience, we denote θpq = n−(q−p)
n and λ1 = λ. It follows that

ui =
1

nθpq + nλ′(xi − µ0)
=

1

nθpq
· 1

1 + θ−1
pq λ′(xi − µ0)

,

vj =
1

n(1− θpq)− nλ′(xj − µ0)
=

1

n(1− θpq)
· 1

1− (1− θpq)−1λ′(xi − µ0)
.

Hence,

Z(θpq, λ, µ0) = (λ, µ0)

= 2{
∑
i

log(1 + θ−1
pq λ

′(xi − µ0)

+
∑
j

log(1− (1− θpq)−1λ′(xj − µ0))}.

Define the score functions

φ1(λ, µ0) =
∂Z(θpq, λ, µ0)(λ, µ0)

2∂λ

=
∑
i

θ−1
pq (xi − µ0)

1 + θ−1
pq λ′(xi − µ0)

−
∑
j

(1− θpq)−1(xj − µ0)

1− (1− θpq)−1λ′(xj − µ0)
,
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and

φ2(λ, µ0) =
∂Z(θpq, λ, µ0)(λ, µ0)

−2λ∂µ0

=
∑
i

θ−1
pq

1 + θ−1
pq λ′(xi − µ0)

−
∑
j

(1− θpq)−1

1− (1− θpq)−1λ′(xj − µ0)
.

Then (λ̂(θpq), µ̂0(θpq)) are determined by

φ1(λ̂(θpq), µ̂0(θpq)) = 0,

φ2(λ̂(θpq), µ̂0(θpq)) = 0.

Therefore, we have

Zn,p,q = Z(θpq, λ̂(θpq), µ̂0(θpq)).

Since p, q are unknown, it is natural to use the maximally selected empirical
likelihood ratio statistic which is defined as

Z∗n = max
1<p<q<n

{Zn,p,q},

and we will reject the null hypothesis with a significantly large value of Z∗n.
However, if p or q or q − p is too small, the empirical likelihood estimators of
(λ̂(θpq), µ̂0(θpq)) may not exist, that is, our test may not detect the change points
occurring at the very beginning or the very end or two changes points which are
too close. Therefore, we suggest the trimmed likelihood ratio statistic as

Zn = max
k0<p<q<n−k1

{Zn,p,q}. (2.1)

As Perron and Vogelsang (1992) pointed out that k0 and k1 can be chosen arbi-
trarily. In our paper, we choose k0 = k1 = 2[log n] where [x] means the largest
integer not larger than x.

3. Asymptotic Distribution of Zn

The main results in this section are similar to the results obtained by Csörgő
and Horvath (1997) through the parametric likelihood ratio method.

Theorem 1. Suppose that EF ||X||3 <∞, and EF (XX ′) is positive definite. If
H0 is true, then we have

P (A(log(t(n)))(Zn)1/2 ≤ x+Dr(log(t(n))) −→ exp(−e−x) (3.1)
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as n −→∞ for all x, where

A(x) = (2 log x)1/2,

Dr(x) = 2 log x+ (r/2) log log x− log Γ(r/2),

t(n) =
n2 + (2[log n])2 − 2n[log n]

(2[log n])2
,

and r is the dimension of the parameter space.

Theorem 2. Under mild conditions, Assumption 1 and Assumption 2, if θpq →
θ ∈ (0, 1) as n → ∞, the ELR test is consistent. That is, under the alternative
hypothesis,

Zn →∞ (3.2)

in probability.

Proofs of Theorem 1 and Theorem 2, and Assumptions 1 and 2 of Theorem 2 are
given in the Appendix.

4. Simulation Results

In this section, we conduct three simulations to illustrate the behavior of the
ELR test under different settings of the data distribution, and compare with some
other available tests.

Simulation I. We compare the performance of the nonparametric ELR test
developed in the previous section with some existing parametric change point
tests against epidemic alternatives. Ramanayake and Gupta (2003) considered
four different tests T1, T2, and T3, T4 under the assumption that the observations
are exponentially distributed. The first two tests are based on the likelihood
ratio test statistic, and the last two are modified LRT tests proposed by Aly
and Bouzar (1992). Table 1 compares the powers of the ELR test developed in
the previous section and these four tests. The simulations were done after 5000
repetition Monte Carlo experiments using a sample size of n = 50 and δ = 1, 3
with a significance level α = 0.05. We see in Table 1 that the ELR test performs
very comparable to the other four tests T1, T2, T3, and T4 for selected values of
(p, q), especially when δ = 1, it has the higher power than at least two of those
tests for all the selected change point locations. The ELR test achieves higher
power for large values of δ. It also indicates that the difference q−p between two
change points is larger and the change points are closer to the center of the data,
the performance of the test is better. The difficulty their tests may have is to
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choose the best test with the highest power according to the different locations
of change points, which are not known usually in real cases. Before using these
tests, the validity of exponential assumptions also have to be checked. The ELR
test obviously avoids these possible difficulties. The Type I error of our test is
0.032 from the simulations, which is well controlled within the given nominal
level.

Table 1: Comparison of powers; exponential distribution; n = 50, α = 0.05

δ = 1 δ = 3

p q ELR T1 T2 T3 T4 ELR T1 T2 T3 T4

8 24 0.346 0.246 0.365 0.421 0.259 0.852 0.686 0.947 0.964 0.905

8 40 0.661 0.613 0.391 0.367 0.244 0.956 0.986 0.961 0.915 0.889

12 24 0.365 0.303 0.289 0.349 0.238 0.902 0.801 0.879 0.916 0.847

12 40 0.685 0.678 0.443 0.438 0.273 0.966 0.996 0.979 0.969 0.927

16 24 0.283 0.264 0.181 0.233 0.174 0.848 0.722 0.700 0.777 0.708

16 40 0.522 0.632 0.449 0.472 0.280 0.960 0.991 0.983 0.981 0.933

20 28 0.240 0.305 0.180 0.225 0.160 0.832 0.789 0.701 0.778 0.703

20 40 0.463 0.524 0.429 0.477 0.293 0.924 0.969 0.977 0.979 0.932

24 32 0.262 0.287 0.184 0.227 0.156 0.832 0.766 0.694 0.771 0.706

24 40 0.390 0.381 0.369 0.425 0.261 0.913 0.876 0.954 0.967 0.912

28 36 0.260 0.214 0.184 0.230 0.171 0.864 0.635 0.696 0.783 0.719

28 44 0.253 0.131 0.367 0.425 0.267 0.858 0.335 0.952 0.966 0.906

32 40 0.303 0.048 0.097 0.110 0.101 0.810 0.066 0.883 0.927 0.856

Simulation II. Yao (1993) compared the powers of five different statistics under
the normal distribution setting including (1) Levin & Kline’ statistic by Levin
and Kline (1985), which they suggested using the maximum likelihood estimate
of µ0 to replace the unknown true value of µ0 in the log-likelihood ratio statistic;
(2) the semi-likelihood ratio by Siegmund (1986), where he derived the asymp-
totic approximation for a significance level under certain assumptions; (3) a gen-
eralized likelihood ratio statistic suggested by Siegmund (1985,1986) under the
situation µ0 and δ are unknown. Later he (1988) developed the large deviation
approximations for the significance level; (4) the score-like statistic; and (5) the
recursive residual by Brown et al. (1975) which was initially used to test the
change point in a linear model. They are corresponding to Z1, Z2, Z3, Z4 and Z5

in the above table, to detect the epidemic mean change in a normal distribution
with the constant variance. Yao also suggested the choice of the better statistic
according to the difference between change points with respect to the sample size.
We compare the ELR test with these five statistics under the same distribution
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settings in Table 2. From the table, we can see that when q − p = 6, 10 and the
increment δ = 0.8, 1.2, the ELR test performs better than the other five tests
with respect to all the differences. When δ = 1.2 and 1.6, the power of the ELR
is higher than the five tests at the differences 6 and 10, but lower than the others
at the differences 20 and 30 within an acceptable range. The results indicate that
the ELR test is a comparable candidate for detecting the epidemic mean change.
The Type I error is also well controlled within a given nominal level.

Table 2: Comparison of the powers; normal distribution; n = 60, α = 0.05

δ q − p ELR
Z1 Z2

Z3 Z3

Z4

Z5

δ0 = 0.2 δ0 = 0.2
m0 = 1 m0 = 6 m0 = 6
m1 = 59 m1 = 54 p+ q = n

0.8 6 0.46 0.18 0.17 0.20 0.21 0.15 0.32

1.2 0.61 0.37 0.34 0.43 0.47 0.31 0.58

1.6 0.77 0.64 0.57 0.73 0.76 0.52 0.82

0.8 10 0.61 0.37 0.35 0.30 0.40 0.32 0.48

1.2 0.83 0.73 0.68 0.67 0.75 0.65 0.80

1.6 0.94 0.95 0.93 0.93 0.95 0.91 0.96

0.8 20 0.69 0.68 0.68 0.54 0.65 0.67 0.47

1.2 0.89 0.96 0.96 0.91 0.95 0.96 0.78

1.6 0.93 1.00 1.00 1.00 1.00 1.00 0.96

0.4 30 0.31 0.24 0.28 0.17 0.25 0.27 0.28

0.8 0.62 0.73 0.77 0.60 0.69 0.77 0.63

1.2 0.76 0.97 0.98 0.95 0.97 0.98 0.91

0 0.014 0.052 0.053 0.048 0.053 0.048 0.056

Simulation III. We conduct the simulations of powers with various distributions
and different sample sizes. Table 3 displays the simulated power of the ELR
test when the underlying distributions are poisson and binomial distributions
with various combinations of change locations, different increment of means and
different sample sizes. From the table, we observe that, in general, the power
gets higher when the epidemic change point pair is closer to the center, and the
difference q − p, that is, the proportion of the data with an epidemic change is
larger. It illustrates that the ELR test is more sensitive to detect such changes.
We notice that when the increment δ, that is, the magnitude of the epidemic
change is larger, the ELR test performs better. When the sample size increases,
the power of the ELR test also increases. The Type I errors for both cases are
controlled within the given nominal level.
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Table 3: Power of the ELR; α = 0.05

n = 50 δ = 1 δ = 2

p q Poisson Binomial Poisson Binomial

No change 0.027 0.026 0.027 0.026
8 16 0.427 0.511 0.717 0.893
8 38 0.713 0.730 0.923 0.943
12 20 0.523 0.617 0.733 0.887
12 32 0.630 0.690 0.793 0.893
16 26 0.553 0.671 0.790 0.913
16 36 0.593 0.707 0.827 0.883
24 32 0.427 0.571 0.743 0.887
24 34 0.480 0.674 0.781 0.907
32 40 0.437 0.467 0.733 0.875

n = 70 δ = 1 δ = 2

p q Poisson Binomial Poisson Binomial

No change 0.018 0.023 0.018 0.023
8 18 0.715 0.437 0.883 0.877
8 28 0.855 0.567 0.968 0.883
18 26 0.730 0.473 0.823 0.852
18 38 0.833 0.663 0.925 0.932
24 32 0.697 0.513 0.860 0.933
24 40 0.783 0.663 0.960 0.973
30 38 0.715 0.577 0.828 0.943
30 46 0.813 0.643 0.968 0.961
42 50 0.718 0.487 0.863 0.883
42 58 0.772 0.687 0.945 0.930

5. Analysis of Stanford Heart Transplant Data

We apply the ELR procedure for detecting epidemic changes on the Stanford
heart transplant data taken from “The Statistical Analysis of Failure Time Data
2nd Edition” by Kalbfleisch and Prentice (2002), Appendix A, pp. 387-389. This
data set originally consists of 103 subjects indexed according to 35 known age
groups. The average survival time is computed for each age group. One purpose of
studying this data is to evaluate the effect of heart transplantation on subsequent
survival. Kalbfleisch and Prentice (2002) fit the data by the hazard function and
argued that the heart transplant is more beneficial for the age group under 46.
This data was also studied by Ramanayake and Gupta (2003) by using epidemic
change point model under the exponential assumption. We test the same epidemic
change point hypothesis that H0 : δ = 0 vs HA : δ > 0. The estimated epidemic
change points were p = 7 and q = 23 corresponding to ages 29 and 48 years
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old, respectively. It indicates that the heart transplant is more beneficial to the
age group between 29 and 48 than to the age group below 29 and the age group
above 48. This result is the same as the ones obtained by the authors above using
parametric tests developed with the assumption that the observations have an
exponential distribution. It is also similar to the result obtained by Kalbfleisch
and Prentice (2002). The resulting test statistic Zn = 11.85 is significant with
p-value 0.03184 from Theorem 1. The left graph in Figure 1 shows the scatterplot
of the data, and the right graph shows the values of the empirical likelihood ratio
corresponding to all the possible combinations of p and q. The highest peak in
the graph corresponds to the largest ELR values with the change points p = 7
and q = 23.
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Figure 1: Left: scatterplot for survival time ordered by age of Stanford heart
transplant data; right: empirical likelihood ratio values

6. Discussion

In this paper, we propose a test to detect the epidemic mean changes in the
data based on the empirical likelihood method. The null distribution of the test
statistic is derived under the mild conditions. The consistency of the test is also
proved. Simulations are conducted for some continuous and discrete distributions
corresponding to the various locations of change points. The results of the powers
show that the ELR test performs well. We also compare our test with the LRT
proposed by Ramanayake and Gupta (2003), in which they assumed the pop-
ulation distribution coming from the exponential family. Results indicate that
the ELR test performs better than their tests in some scenarios, and comparable
to the others. Simulations of the power of the ELR test under different distri-
bution settings illustrate that the ELR test is robust to the data distribution.
The power comparison under a normal model with the five statistics mentioned
in Yao (1993) shows that the ELR behaves reasonable well and sometimes more
competitive than the other tests with various differences between change point
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locations and the increment of the epidemic change. The ELR method is applied
to the Stanford heart transplant data and detects two change points significantly.

The limitation of our test is that it may not detect the change points occurring
at the very beginning or the very end of a data since the empirical estimators may
not exist due to the properties of the empirical likelihood method. Modification
of the test in order to handle such situations is the problem we are working
on. In this paper, the proposed method only can detect one pair of change
points occurring in an epidemic data. Therefore, the extension of the ELR test
proposed in this paper to detect multiple pairs of change points occurring among
the periodic epidemic data is one of the future research topics we would like to
investigate.

Appendix

Proof of Theorem 1. We need the following lemmas. From the score functions,
we let

g(λ) =
1

n

∑ xi − µ0

θpq + λ′(xi − µ0)
− 1

n

∑ xj − µ0

(1− θpq)− λ′(xj − µ0)
= 0.

Lemma 1. Under the condition of Theorem 1,

λ̂(θpq) = min(θpq, 1− θpq)Op(min(n− q + p, q − p))−1/2.

proof. Let λ̂(θpq) = ρφ, where ||φ|| = 1. Without any confusion, we sim-
plify θpq as θ through the whole following part but we should remind that θ is
related to p, q. Then

0 = ||φ′|| · ||g(ρφ)|| ≥ |φ′g(ρφ)|

=

∣∣∣∣∣∣ 1

nθ

∑
i

φ′(xi − µ0)

1 + ρφ′θ−1(xi − µ0)
− 1

n(1− θ)
∑
j

φ′(xj − µ0)

1− ρφ′(1− θ)−1(xj − µ0)

∣∣∣∣∣∣
=

∣∣∣∣∣ 1

nθ

[∑
i

φ′(xi − µ0)− ρ
∑
i

φ′(xi − µ0)(xi − µ0)′φ/θ−1

1 + ρφ′θ−1(xi − µ0)

]

− 1

n(1− θ)

∑
j

φ′(xj − µ0) + ρ
∑
j

φ′(xj − µ0)(xj − µ0)′φ/(1− θ)−1

1− ρφ′(1− θ)−1(xj − µ0)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
 1

nθ

∑
i

φ′(xi − µ0)− 1

n(1− θ)
∑
j

φ′(xj − µ0)


− ρ

(
1

nθ2

∑
i

φ′(xi − µ0)(xi − µ0)′φ

1 + ρφ′θ−1(xi − µ0)

+
1

n(1− θ)2

∑
j

φ′(xj − µ0)(xj − µ0)′φ

1− ρφ′(1− θ)−1(xj − µ0)

∣∣∣∣∣∣
≥ ρ

 1

nθ2

∑
i

φ′(xi − µ0)(xi − µ0)′φ

1 + ρφ′θ−1(xi − µ0)
+

1

n(1− θ)2

∑
j

φ′(xj − µ0)(xj − µ0)′φ

1− ρφ′(1− θ)−1(xj − µ0)


− 1

nθ

∑
i

∣∣φ′(xi − µ0)
∣∣− 1

n(1− θ)
∑
j

∣∣φ′(xj − µ0)
∣∣

= ρ

 1

nθ2

∑
i

(xi − µ0)φ′(xi − µ0)′

1 + ρφ′θ−1(xi − µ0)
+

1

n(1− θ)2

∑
j

(xj − µ0)φ′(xj − µ0)′

1− ρφ′(1− θ)−1(xj − µ0)


− 1

nθ

∣∣∣∣∣
p∑
l=1

e′l
∑
i

(xi − µ0)

∣∣∣∣∣− 1

n(1− θ)

∣∣∣∣∣∣
p∑
l=1

e′l
∑
j

(xj − µ0)

∣∣∣∣∣∣ ,
where ei and ej are the unit vectors in the ith and jth coordinate directions.
The negative sum of the last two expressions is of magnitude of min{θ, 1 −
θ}Op(min(n − q + p, q − p)−1/2) by the central limit theorem. For the first two
terms

ρ

{
1

nθ2

∑ φ′(xi − µ0)(xi − µ0)′φ

1 + ρφ′θ−1(xi − µ0)
+

1

n(1− θ)2

∑ φ′(xj − µ0)(xj − µ0)′φ

1− ρφ′(1− θ)−1(xj − µ0)

}
= ρ

{
1

θ

1

n− q + p

∑ φ′(xi − µ0)(xi − µ0)′φ

1 + ρφ′θ−1(xi − µ0)

+
1

1− θ
1

q − p
∑ φ′(xj − µ0)(xj − µ0)′φ

1 + ρφ′(1− θ)−1(xj − µ0)

}
=

1

θ

ρφ′Sn−q+pφ

1 + ρφ′θ−1(xi − µ0)
+

1

1− θ
ρφ′Sq−pφ

1− ρφ′(1− θ)−1(xj − µ0)

≥ 1

θ

ρφ′Sn−q+pφ

1 + ρφ′z1
+

1

1− θ
ρφ′Sq−pφ

ρφ′z2
≥ 1

θ

ρφ′Sn−q+pφ

1 + ρφ′z
+

1

1− θ
ρφ′Sq−pφ

ρφ′z

where

Sn−q+p =
1

n− q + p

∑
i

(xi − µ0)(xi − µ0)′,
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Sq−p =
1

q − p
∑
j

(xj − µ0)(xj − µ0)′.

We also have

z1 = max
1<i≤p,q+1≤i<n

||xi − µ0||/θ−1 = op((nθ)
1/2)/θ−1,

z2 = max
p+1≤j≤q

||xj − µ0||/(1− θ)−1 = op((n(1− θ))1/2)/(1− θ)−1,

because of EF |X|3 ≤ ∞ and z = max{z1, z2}. We also note that

φ′Sn−q+pφ ≥ σp1 + op(1),

φ′Sq−pφ ≥ σp2 + op(1),

where σp1 and σp2 are the smallest eigenvalues of covariance matrices of {x1, · · · ,
xp, xq+1, · · · , xn}, {xp+1, · · · , xq} respectively. Therefore, we obtain

λ̂(θpq) = min{θ, 1− θ}Op(n− q + p, q − p)−1/2. (6.1)

which completes the proof. For the convenience, we denote λ̂(θpq) = λ̂. Therefore,

g(λ̂) =
1

n

∑ xi − µ0

θ + λ̂′(xi − µ0)
− 1

n

∑ xj − µ0

(1− θ)− λ̂′(xj − µ0)

=
1

nθ

∑ xi − µ0

1 + λ̂′θ−1(xi − µ0)
− 1

n(1− θ)
∑ xj − µ0

1− λ̂′(1− θ)−1(xj − µ0)

=
1

nθ

∑
(xi − µ0)(1 + θ−1γi)

−1 − 1

n(1− θ)
∑

(xj − µ0)(1− (1− θ)−1γj)

=
1

nθ

∑
(xi − µ0)

(
1− θ−1γi +

(θ−1γi)
2

1− θ−1γi

)
− 1

n(1− θ)
∑

(xj − µ0)

(
1 + (1− θ)−1γj +

((1− θ)−1γi)
2

1 + (1− θ)−1γi

)
=

1

nθ

∑
(xi − µ0)− 1

nθ2

∑
(xi − µ0)γi +

1

nθ

∑
(xi − µ0)

(θ−1γi)
2

1− θ−1γi

− 1

n(1− θ)
∑

(xj − µ0)− 1

n(1− θ)2

∑
(xj − µ0)γj

− 1

n(1− θ)
∑

(xj − µ0)
((1− θ)−1γj)

2

1− (1− θ)−1γj
.

Denote wi = xi − µ0 and wj = xj − µ0. Then

g(λ̂) = 0 =⇒ (w̄1 − w̄2)− 1

nθ2

∑
wiw

′
iλ̂−

1

n(1− θ)2

∑
wjw

′
j λ̂

+
1

nθ

∑
(xi − µ0)

(θ−1γi)
2

1− θ−1γi
− 1

n(1− θ)
∑

(xj − µ0)
((1− θ)−1γj)

2

1− (1− θ)−1γj
= 0.
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The absolute value of the last two terms can be bounded by

1

nθ

∑
||xi − µ0||

∣∣∣∣ (θ−1γi)
2

1− θ−1γi

∣∣∣∣
=

1

nθ

∑
||xi − µ0|||γi|2

∣∣∣∣ (θ−1)2

1− γiθ−1

∣∣∣∣
=

1

nθ

∑
||xi − µ0||3||λ̂||2|θ−1|

∣∣∣∣ θ−1

1− γiθ−1

∣∣∣∣
= o((n− q + p)1/2) min{θ, 1− θ}Op(min(n− q + p, q − p)−1)Op(1)

= min{θ, 1− θ}op(min(n− q + p, q − p)−1/2),

and

1

n(1− θ)
∑
||xj − µ0||

∣∣∣∣ ((1− θ)−1γj)
2

1− (1− θ)−1γi

∣∣∣∣
=

1

n(1− θ)
∑
||xj − µ0|||γj |2

∣∣∣∣(1− θ−1)2

1− γjθ−1

∣∣∣∣
=

1

n(1− θ)
∑
||xj − µ0||3||λ̂||2|(1− θ)−1|

∣∣∣∣ (1− θ)−1

1− γj(1− θ)−1

∣∣∣∣
= o((q − p)1/2) min{θ, 1− θ}Op(min(n− q + p, q − p)−1)Op(1)

= min{θ, 1− θ}op(min(n− q + p, q − p)−1/2),

Hence, we can rewrite λ̂, that is, λ̂(θpq) as

λ̂(θpq) = (w̄1 − w̄2)

(
1

nθ2

∑
wiw

′
i +

1

n(1− θ)2

∑
wjw

′
j

)−1

+ β, (6.2)

where ||β|| = min{θ, 1− θ}op(min(n− q+ p, q− p)−1/2). Note that under the null
hypothesis and the observations are i.i.d, we have

1

θ
· 1

nθ

∑
wiw

′
i =

1

θ
(S +Op((nθ)

−1/2)),

1

1− θ
· 1

n(1− θ)
∑

wjw
′
j =

1

1− θ
(S +Op((n(1− θ))−1/2)),

where S = EF (X − µ0)(X − µ0)′. Therefore, λ can be rewritten as follows

λ̂(θpq) = (θ−1S + θ−1Op((nθ)
−1/2) + (1− θ)−1

+ (1− θ)−1Op((n(1− θ))−1/2))(w̄1 − w̄2) + β

= θ(1− θ)S−1(w̄1 − w̄2) + β̃, (6.3)
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where β̃ = min{θ, 1 − θ}op(min(n − q + p, q − p)−1/2). With two-term Taylor

expansion at (λ̂(θpq), µ̂0(θpq)) = (0, 0) and some algebraic calculations, we obtain

Zn,p,q = nθ(1− θ)(w̄1 − w̄2)′S−1(w̄1 − w̄2) +Op(||λ̂(θpq)||/min(θ, 1− θ)). (6.4)

Lemma 2. Under the conditions of Theorem 1, for all the δ > 0, we can find
C = C(δ), T0 = T0(δ) and N = N(δ)such that for T > T0 and n > N ,

P

(
max

T≤n−(q−p)≤n−T
(m/ log logm)1/2||λ̂(θpq)/min(θ, 1− θ)|| > C

)
≤ δ,

P

(
n−1/2 max

T≤n−(q−p)≤n−T
(m||λ̂(θpq)/min(θ, 1− θ)|| > C

)
≤ δ,

where m = Op(min(n− q + p, q − p)−1/2).
proof. The proof is similar to the proof of Lemma 1.2.2 of Csörgő and Horvath
(1997).

Lemma 3. Under the conditions of Theorem 1, for all 0 ≤ α ≤ 1/2 we have:

nαmax
θ∈Θn

[θ (1− θ)]α |Zn,p,q −Rpq| = Op(1)

max
θ∈Θn

[θ (1− θ)]α |Zn,p,q −Rpq| = Op(n
−1/2(log log n)3/2),

where

Rpq = nθ(1− θ)(w̄1 − w̄2)′S−1(w̄1 − w̄2),

and

S = EF (xi − µ0)(xi − µ0)′,

Θn = {1− q − p
n

: k0 ≤ p < q ≤ n− k1}.

proof. From (6.4), we have

Zn,p,q = nθ(1− θ)(w̄1 − w̄2)′S−1(w̄1 − w̄2) +Op(||λ̂(θpq)||/min(θ, 1− θ)).

Then apply Lemma 2 to complete the proof.

Proof of Theorem 1. Using Lemma 3 and argument similar to the proof of Theo-
rem 1.3.1 of Csörgő and Horvath (1997), we can prove the theorem. Note in the
proof of Theorem, we use Theorem A.3.4 instead of Corollary A.3.1 from Csörgő
and Horvath (1997) because we will derive the null distribution of the trimmed
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test statistic Zn.

Proof of Theorem 2. First we need the following notations. Define ∆0 = ∆n = 0
and ∆pq = Z(p, q)/2n. We also define W = θ + λ′(x − µ), where (λ(θ), µ(θ)) is
the solution of the equations g1(θ, λ, µ) = 0 and g2(θ, λ(θ), µ(θ)) = 0, where g1, g2

are defined as follows. We also define

dP = {θI{θ ≤ θ0}+ θ0I{θ > θ0}}dF + (θ − θ0)I{θ > θ0}dG,
dQ = {(1− θ)I{θ ≥ θ0}+ (1− θ0)I{θ < θ0}}dG+ (θ − θ0)I{θ < θ0}dF,
dR = I{θ < θ0}dF + I{θ > θ0}dG,

where I is an indicator function, F,G are the distributions for the observations
{x1, · · · , xp, xq+1, · · · , xn} and {xp+1, · · · , xq} respectively, and we assume the
true value of θpq = 1 − (q − p)/n under the alternative hypothesis converges to
θ0 in probability. We let

ς(θ, λ, µ) =

∫
logWdP +

∫
log(1−W )dQ− θ log θ − (1− θ) log(1− θ),

and then functions g1, g2 are defined as

g1(θ, λ, µ) =
∂ς(θ, λ, µ)

∂λ
=

∫
x

W
dP −

∫
x

1−W
dQ,

g2(θ, λ, µ) =
∂ς(θ, λ, µ)

∂µ
=

∫
1

W
dP −

∫
1

1−W
dQ.

We also let

Ω =

(
−∂g1

∂λ −∂g1
∂µ

−∂g2
∂λ −∂g2

∂µ

)
.

To prove the consistency of the test, we assume

Assumption 1. The following two integrals are finite∫
1

W 2
+

1

(1−W )2
d(F +G) <∞,∫

(x− µ)(x− µ)′

W 2
+

(x− µ)(x− µ)′

(1−W )2
d(F +G) <∞.

Assumption 2. Ω is nonsingular for all the θ ∈ (0, 1).

The existence of Ω can be guaranteed by the Assumption 1. With the As-
sumption 2, the matrix Ω can be easily proved to be positive definite, therefore,
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ζ(θ, λ(θ), µ(θ)) is the unique maximum of ζ(θ, λ, µ) for a fixed θ.

Suppose both assumptions hold. Under the alternative hypothesis, if θpq →
θ ∈ (0, 1),then we can show that the ELR test is consistent with the argument
similar to the proof of Theorem 2 of Zou et al. (2007). It completes the proof of
the Theorem 2.
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