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Abstract: An empirical study is employed to investigate the performance
of implied GARCH models in option pricing. The implied GARCH models
are established by either the Esscher transform or the extended Girsanov
principle. The empirical P -martingale simulation is adopted to compute
the options efficiently. The empirical results show that: (i) the implied
GARCH models obtain accurate standard option prices even the innova-
tions are conveniently assumed to be normal distributed; (ii) the Esscher
transform describes the data better than the extended Girsanov principle;
(iii) significant model risk arises when using implied GARCH model with
non-proper innovations in exotic option pricing.

Key words: Empirical martingale simulation, Esscher transform, extended
Girsanov principle, implied GARCH model, option pricing.

1. Introduction

Conditional heteroscedastic models such as the ARCH and the GARCH mod-
els (Engle, 1982; Bollerslev, 1986) play an important role in time series model-
ing and financial derivative pricing. Many studies have indicated that GARCH
models outperform the well-known Black-Scholes (BS) model (Black and Scholes,
1973) in financial derivative pricing, see for example, Rosenberg and Engle (1994;
1995), Duan (1995) and Hagerud (1996). In the literature, many different types
of GARCH models with different innovations have been proposed to depict the
financial time series data. However, the model that best fits historical data
does not necessarily have its minimum mean squared error between the option
prices observed in the market and the prices derived from the GARCH model.
Therefore, the implied method was proposed to improve the pricing performance
(Fofana and Brorsen, 2001; Yung and Zhang, 2003).

The implied GARCH model is obtained by matching the GARCH option
prices with the market “plain vanilla” option values under certain loss function.

∗Corresponding author.



88 Shih-Feng Huang, Yao-Chun Liu and Jing-Yu Wu

This concept is similar to the implied volatility function model in the BS frame-
work. However, investigation of the pricing performance when using normal or
heavy-tailed innovations in the implied GARCH models is still lacking. Further-
more, based on different economic considerations, many different risk-neutral
measures for GARCH models have been proposed to compute the no-arbitrage
prices of financial derivatives. However, it is still uncertain which economic con-
sideration is preferred by most investors if GARCH models are believed to depict
the market behavior well. In this current work, an empirical study is employed to
investigate whether the implied GARCH models can obtain accurate option prices
even when a simple type of GARCH model is used. Also, we examine whether
different innovations or different risk-neutral measures would significantly affect
the implied GARCH option pricing. Moreover, it is important to know whether
the implied method under the GARCH framework is suitable for any financial
derivative.

One of the challenges of computing GARCH option prices is to define a risk-
neutral measure. Since a GARCH model is a discrete-time and continuous-
state model, thus the market described by the model is incomplete and the
risk-neutral measure is not unique. Duan (1995) considered the derivation of
risk-neutral GARCH model with normal innovations (denoted by GARCH-N).
However, many empirical studies show that the financial returns are conditional
leptokurtic (Bollerslve, 1987; Baillie and Bollerslev, 1989; Hsieh, 1989; Baillie
and DeGennaro, 1990; Wang, Christopher, Christopher and James, 2001; Siu,
Tong, and Yang, 2004). Thus researchers have considered GARCH models with
leptokurtic innovations. For example, the GARCH model with standardized t in-
novations (Bollerslev, 1987), generalized exponential innovations (Nelson, 1991),
shifted-gamma innovations (Siu, Tong and Yang, 2004) and double-exponential
innovations (Huang, 2011; Huang and Guo, 2011) have been discussed. To evalu-
ate the financial derivatives in GARCH models with leptokurtic innovations, the
Esscher transform (Gerber and Shiu, 1994) and the extended Girsanov principle
(Elliott and Madan, 1998) are two popular change of measure processes used in
practice (Badescu and Kulperger, 2008). In this study, we consider the cases of
normal and double exponential innovations. The corresponding change of mea-
sure processes of these models are derived under the Esscher transform and the
extended Girsanov principle in Section 2.

Another technical issue arises from the computational efficiency of the GARCH
option pricing because there is usually no closed-form solution to obtain the no-
arbitrage price under the GARCH framework. The standard Monte-Carlo simu-
lation usually develops heavy computational burden when higher accuracy is re-
quired. In order to tackle this problem, Duan and Simonato (1998) proposed an
empirical martingale simulation (EMS) method to compute option prices more ef-
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ficiently by generating random paths of the underlying assets from the risk-neutral
model. Since an explicit expression of the risk-neutral model may be difficult to
obtain in a complex model, Huang (2011) proposed an empirical P -martingale
simulation (EPMS) method, which extends the EMS from the risk-neutral frame-
work to the dynamic P measure. The strong consistency of the EPMS method
is established and its efficiency is demonstrated by simulation studies. There-
fore, the EPMS method is employed to construct the implied GARCH model and
compute the option prices in this study.

In the empirical study, S&P 500 index options from January 2, 2003 to
June 30, 2009 are adopted to conduct several comparison studies of the im-
plied GARCH models between different innovations and between the two change
of measure processes. The results show that the implied GARCH models are
capable of computing accurate plain vanilla option prices even the innovations
are conveniently assumed to be normal distributed. In addition, the change of
measure process derived by the Esscher transform describes the data better than
that derived by the extended Girsanov principle. Moreover, significant model
risk arises when using implied GARCH model with non-proper innovations for
exotic option pricing, which is consistent with the simulation results in Hull and
Suo (2002) for the BS framework.

The rest of this study is organized as follows. In Section 2, we introduce the
construction of the implied GARCH models. The change of measure processes
obtained from the Esscher transform and the extended Girsanov principle in
GARCH models with normal and double exponential innovations are derived.
In addition, the EPMS method is introduced briefly. Section 3 conducts several
empirical studies such as investigate the pricing effect caused by using different
innovations or change of measure processes, and examine the evidence of the
model risk in exotic option pricing. Conclusions are in Section 4, and theoretical
proofs are given in the Appendix.

2. Implied GARCH Models

The traditional scheme for computing the GARCH option prices includes the
following steps:

1. Fit the GARCH model by historical asset prices under the dynamic mea-
sure.

2. Transform the dynamic GARCH model into the risk-neutral GARCH model.

3. Compute the option prices by Monte-Carlo simulation method under the
risk-neutral GARCH model.
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However, the best fitting asset model in Step-1 does not necessarily have the
minimum mean squared error between the option prices observed in the market
and the prices derived from the GARCH model. Therefore, many studies suggest
using the implied method to handle this problem (Fofana and Brorsen, 2001; Yung
and Zhang, 2003). The parameters of an implied GARCH model are obtained
by matching the prices derived from the model with the prices observed in the
market under certain measures of hedging loss. In this study, we use the root
mean squared error (RMSE) as the criterion to estimate the GARCH model
parameters (denoted by β̃). That is,

β̃ = arg min
β

RMSE(β) = arg min
β

{ 1

N

N∑
j=1

(
Cmarketj − Cmodelj (β)

)2} 1
2
,

where Cmarketj denotes the j-th market plain vanilla option price, Cmodelj denotes
the corresponding GARCH model option price, j = 1, · · · , N , and N is the total
number of trading options.

Since the GARCH models considered in this study have leptokurtic innova-
tions, two popular change of measure processes proposed in the literature are used
to derive the corresponding risk-neutral measures. One is the Esscher transform
(Gerber and Shiu, 1994) and the other one is the extended Girsanov principle
(Elliott and Madan, 1998). The details of these two change of measure processes
are given in Section 2.1.

However, if high accuracy in computing the option prices is required, then the
standard Monte-Carlo simulation in Step-3 usually develops heavy computational
burden. To resolve this, Huang (2011) proposed an EPMS method to compute the
option prices more efficiently and established its strong consistency. The EPMS
method generates the random paths of the underlying assets under the dynamic
P measure, which is more flexible and convenient than the EMS method of Duan
and Simonato (1998) under the risk-neutral framework particularly when the
explicit expression of the risk-neutral model is not easy to obtain. The procedure
of the EPMS method is illustrated in Section 2.4.

2.1 Change of Measure Processes

Here, we briefly introduce two change of measure processes derived by the
Esscher transform and the extended Girsanov principle.

Esscher transform

Let St denote the price of the underlying asset at time t and Rt = log(St/St−1)
denote the log return process. The conditional moment generating function (mgf)
of Rt given Ft−1 is defined by MRt|Ft−1

(z) = Et−1(e
zRt), where Ft−1 denotes the
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information set consisting of the prices of riskless bond and the underlying asset
prior to time t − 1 and the notation Et−1(·) denotes the conditional expecta-
tion given Ft−1 under the dynamic P measure. Let ft(·) denote the conditional
probability density function (pdf) of Rt|Ft−1. Define a new conditional pdf as

ft(xt; δt) =
eδtxtft(xt)

MRt|Ft−1
(δt)

(2.1)

with an extra parameter δt. If the parameter δt = δ∗t is chosen such that
the discounted prices of the underlying asset are a martingale, that is, St−1 =
EQ

ess

t−1 (e−rSt), where r is the riskless interest rate, and EQ
ess

t−1 (·) denotes the condi-
tional expectation under the selected conditional pdf ft(xt; δ

∗
t ). Define a change

of measure process {Λesst , t = 1, · · · , T} by

Λesst =

t∏
k=1

fk(xk; δ
∗
k)

fk(xk)
=

t∏
k=1

eδ
∗
kxk

MRk|Fk−1
(δ∗k)

, (2.2)

where fk(xk), fk(xk; δ
∗
k), MRk|Fk−1

(δ∗k) and δ∗k are defined as above. The risk-
neutral probability measure Qess under the Esscher transform is then defined
by dQess = ΛessT dP . The economic foundation of the Esscher transform is to
maximize the power utility function of the representative investor. For details,
the reader is referred to Gerber and Shiu (1994).

Extended Girsanov principle

Assume the discounted asset price process S̃t = Ste
−rt satisfies the mul-

tiplicative decomposition, S̃t = S̃0AtMt, where At ≡
∏t
k=1Ek−1(S̃k/S̃k−1) is

a predictable process and Mt = S̃t/(S̃0At) is a positive martingale under the
physical probability measure P . Define a change of measure density process
{Λegpt , t = 0, 1, · · · , T} by

Λegpt =
t∏

k=1

φk(S̃k/S̃k−1)e
uk

φk(e−uk S̃k/S̃k−1)
, (2.3)

which is a P -martingale, where uk = logEk−1(S̃k/S̃k−1) = logEk−1[exp(Rk − r)]
denotes the risk-premium of the underlying asset and φk(y) is the conditional
density of Y = Mk/Mk−1 = e−uk S̃k/S̃k−1 = exp(Rk)/Ek−1[exp(Rk)] given Fk−1
under the physical measure P . The equivalent martingale measure Qegp under
the extended Girsanov change of measure is then defined by dQegp = ΛegpT dP .
The economic foundation of the extended Girsanov principle is to minimize the
adjusted hedging capital of investors hedging portfolio. For details, the reader is
referred to Elliott and Madan (1998).

2.2 GARCH-N Model
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In this section, we consider the case of a GARCH model with normal inno-
vations, which is commonly used in practice. Since the GARCH(1,1) model is
the most popular for financial applications (Fan and Yao, 2003) and to simplify
the illustration, we consider the following GARCH(1,1) model for the log return
process Rt, {

Rt = r + λσt − 1
2σ

2
t + σtεt, εt ∼ N(0, 1),

σ2t = α0 + α1σ
2
t−1ε

2
t−1 + βσ2t−1.

(2.4)

Model (2.4) is also discussed by Duan (1995). The change of measure processes
derived by the Esscher transform and the extended Girsanov principle for the
GARCH-N model are obtained in the following proposition.

Proposition 2.1. In Model (2.4), the change of measure processes Λesst and Λegpt
derived by the Esscher transform and the extended Girsanov principle, respec-
tively, satisfy

Λesst = Λegpt =

t∏
k=1

exp
{
− 1

2σ2k

(
λ2σ2k + 2λσk(Rk − r − λσk +

1

2
σ2k)
)}
.

Consequently, the risk-neutral measures Qess and Qegp derived from the two
approaches are the same.

Interestingly, Proposition 2.1 shows that the two change of measure processes
Λesst and Λegpt are identical although the economic consideration of the Esscher
transform and extended Girsanov principle are different. Furthermore, from the
proof of Proposition 2.1 in the Appendix, the conditional density of Rt given Ft−1
defined in (2.1) can be obtained as

ft(Rt; δ
∗
t ) =

1√
2πσ2t

exp
{
− 1

2σ2t
(Rt − r +

σ2t
2

)2
}

by choosing δ∗t = −λ/σt. That is, the log return Rt conditional on Ft−1 is
normal distributed with mean r− σ2t /2 and variance σ2t under Qess. As a result,
let ξt = εt +λ, and the risk-neutral GARCH-N counterpart of Model (2.4) under
measure Qess (or Qegp) is written as follows,{

Rt = r − σ2
t
2 + σtξt, ξt ∼ N(0, 1),

σ2t = α0 + α1σ
2
t−1(ξt−1 − λ)2 + βσ2t−1,

which is the same as Duan (1995)’s result derived from the locally risk-neutral
valuation relationship with an expected utility maximizer.

2.3 GARCH-DE
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Next, we consider the following GARCH models with double exponential
innovations (denoted by GARCH-DE henceforth):{

Rt = r + λσt − 1
2σ

2
t + σtεt, εt ∼ DE(0, 1),

σ2t = α0 + α1σ
2
t−1ε

2
t−1 + βσ2t−1,

(2.5)

where DE(0, 1) stands for the double exponential distribution with zero mean
and unit variance. The corresponding change of measure processes Λesst of Model
(2.5) are derived in the following.

Proposition 2.2. For Model (2.5), we have the following results:

(i) The change of measure process Λesst derived by the Esscher transform is

Λesst =

t∏
k=1

{
1−

(δ∗kσk)
2

2

}
exp

{
δ∗k

(
Rk − r − λσk +

σ2k
2

)}
,

where δ∗k =
−σk+

√
akσ

2
k+2(ak−1)2

σk(1−ak) and ak = exp(λσk −
σ2
k
2 ).

(ii) The change of measure process Λegpt derived by the extended Girsanov prin-
ciple is

Λegpt =
t∏

k=1

exp
{
−
√

2

σk

(∣∣∣Rk − r − log(1−
σ2k
2

)
∣∣∣− ∣∣∣Rk − r − λσk +

σ2k
2

∣∣∣)}
provided by σ2k < 2.

Remark 2.1. Although the simple case of a GARCH model with one ARCH
parameter and one GARCH parameter and a particular type of mean equation
is discussed in Sections 2.2 and 2.3, the derivations of the change of measure
processes given in Proposition 2.1 and 2.2 can be extended to more general
GARCH models, like GARCH(p, q) and threshold GARCH models, by adjust-
ing the volatility parts, σt, in the formulae of Λesst and Λegpt . Furthermore, the
derivation of the change of measure processes can be extended directly to other
types of mean equation.

Unlike the result in Proposition 2.1 for the GARCH-N model, the change of
measure processes Λesst and Λegpt in Proposition 2.2 are no longer equal. Huang
and Guo (2011) established the derivation of the risk-neutral GARCH models
under Qegp in a general setting. Hence, by applying Proposition 3.1 of Huang and
Guo (2011), the risk-neutral GARCH models with double exponential innovations



94 Shih-Feng Huang, Yao-Chun Liu and Jing-Yu Wu

considered in this study under Qegp can be obtained. On the other hand, under
Qess, first note that the mgf of a double exponential distribution with mean µ
and variance 2b2 is M(z) = ezµ/(1−z2b2) for |z| < 1/b. Next, by straightforward
computation, the mgf of Rt conditional on Ft−1 under Qess is

MRt|Ft−1
(z; δ∗t ) = exp

{
z(r + λσt −

1

2
σ2t )
}( 1− (δ∗t σt)

2/2

1− (z + δ∗t )
2σ2t /2

)
, (2.6)

where δ∗t is defined in Proposition 2.2 (i). Recall that in GARCH-N, the condi-
tional distribution of Rt given Ft−1 under Qess belongs to the same distribution
family as in the dynamic model. However, this is not the case in the GARCH-
DE model since the mgf in (2.6) is not related to a double exponential distribu-
tion. As a result, it is not a trivial task to obtain an explicit expression of the
risk-neutral GARCH-DE model under Qess. And the traditional Monte Carlo
simulation method and the empirical martingale simulation method of Duan and
Simonato (1998) under the risk-neutral framework can not be applied in this
situation. Huang (2011) proposed an EPMS method to solve this problem by
computing the no-arbitrage GARCH option prices more efficiently under the dy-
namic P measure with the help of the change of measure processes obtained in
Propositions 2.1 and 2.2. Details are in the next section.

2.4 Empirical P -martingale simulation

Let YT denote a Radon-Nikodým derivative of a P̃ measure with respect to the
dynamic P measure. Thus E(YT ) = 1 and dP̃ = YTdP . Define Yt = E(YT |Ft),
0 ≤ t < T , where Ft denotes the information set up to time t. Then Yt is
called the Radon-Nikodým derivative process (or a change of measure process)
and is a martingale process under the P measure (abbreviated as P -martingale).
The objective of the proposed EPMS method is to guarantee that the simulated
processes of the discounted underlying asset prices and the change of measure
values are both empirical P -martingale. The procedure is as follows:

1. Generate the paths of stock prices Ŝt,i, for i = 1, · · · , n and t = 1, · · · , T ,
by the naive Monte Carlo method.

2. Let Y ∗0 = Ŷ0 = Y0 = 1 and define the empirical martingale change of
measure process Y ∗t,i, i = 1, · · · , n, iteratively by

Y ∗t,i =
Wi(t, n)

W0(t, n)
, (2.7)

where Wi(t, n) =
Y ∗
t−1,i

Ŷt−1,i
Ŷt,i, W0(t, n) = 1

n

∑n
i=1Wi(t, n) = 1

n

∑n
i=1

Y ∗
t−1,i

Ŷt−1,i
Ŷt,i

and Ŷt,i = Yt(Ŝu,i , 0 ≤ u ≤ t).
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3. Let S∗0 = Ŝ0 = S0 and defined the empirical martingale stock prices S∗t,i,
i = 1, · · · , n, iteratively by

S∗t,i = S0
Zi(t, n)

Z0(t, n)
, (2.8)

where Zi(t, n) =
S∗
t−1,i

Ŝt−1,i
Ŝt,i and Z0(t, n) = e−rt

n

∑n
i=1 Zi(t, n)Y ∗t,i.

Note that the two processes Y ∗t,i and S∗t,i defined in (2.7) and (2.8), respectively,
are themselves functions of the sample size n and satisfy

1

n

n∑
i=1

Y ∗t,i = Y0 = 1,

and
1

n

n∑
i=1

e−rtS∗t,iY
∗
t,i = S0,

for any integer n and t = 1, · · · , T . That is, Y ∗t,i and e−rtS∗t,i are the so-called
“emprical P -martingale processes”. Huang (2011) proved that the derivative
prices obtained by these two empirical P -martingale processes also converge to
the theoretical value.

Combining the results obtained in Section 2.2-2.4, one can establish the im-
plied GARCH-N and implied GARCH-DE models under the change of measure
processes Λess and Λegp. In the next section, we investigate the pricing perfor-
mances of these implied GARCH models and conduct several comparison studies
between different innovations and between Λess and Λegp.

3. Empirical Study

In this section, data description is given in Section 3.1, and Section 3.2 shows
that the implied GARCH models are capable of obtaining accurate standard op-
tion prices. Section 3.3 demonstrates the test results of normal versus double
exponential innovations and Λess versus Λegp. Section 3.4 shows the pricing per-
formance of the implied method in different economic periods, that is, recession
and recovery periods. Section 3.5 investigates the empirical evidence of model
risk in up-and-out option pricing.

3.1 Description of Data

The data used in this study are S&P 500 index European options traded on
the Chicago Board Option Exchange (CBOE). The sample period extends from
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January 2, 2003 to June 30, 2009. Figure 1 shows the time series plots of the
indices and the corresponding log returns. The time period from December 2007
to June 2009 highlighted in Figure 1 denotes the recession period, as announced
by the NBER’s business circle Dating Committee when the U.S. economy reached
a trough. Herein, the trading days are used as time measure, i.e., 252 trading
days per year. The data set contains the information of Option Trading Date,
Expiration Date, Spot Price, Strike Price, Best Bid and Best Offer, Trading
Volume, BS implied volatility, Delta, Gamma, Vega, and Theta. The mid-point
of the best bid and best offer quote is adopted to be the option price (Dumas,
Fleming and Whaley, 1998), and the annual risk-free interest rate is set to be
2.79%, which is the average of the Daily Treasury Bill Rates in the sample period.
Moreover, the following filters are applied to screen data:

1. Only call options are considered.

2. To ensure the option liquidity, we select the options with maturities T
between 10 and 180 days, moneyness (K/S0) between 0.9 and 1.1, and
positive trading volume.

3. Similar to Badescu and Kulperger (2008), we consider the trading data for
the last Wednesday of each month. If the Wednesday is a holiday, then we
choose the Tuesday.

Hence, there are 78 days and 7,330 options traded in our data set. The average
option price is 30.696.
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Figure 1: The time series plots of the S&P500 index and the corresponding
log returns from January 2, 2003 to June 30, 2009 with recession period from
December 2007 to June 2009
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3.2 Implied GARCH Option Pricing

In this section, we consider six types of GARCH models: the GARCH-N,
GARCH-DEess, GARCH-DEegp, TGARCH-N, TGARCH-DEess and TGARCH-
DEegp models, where GARCH-DEess denotes the case of computing the GARCH-
DE option prices by the change of measure process Λesst , etc., and TGARCH
stands for the following threshold GARCH model:{

Rt = r + λσt − 1
2σ

2
t + σtεt,

σ2t = α0 + α1σ
2
t−1ε

2
t−1 + γI(εt−1<0)σ

2
t−1ε

2
t−1 + β1σ

2
t−1,

where α0, α1, β1 and γ are nonnegative numbers, α1 + β1 + γ/2 < 1, I(·) is
an indicator function, and εt’s are i.i.d. random variables with zero mean and
unit variance. As mentioned in Remark 2.1, the change of measure process for
TGARCH models with normal or double exponential innovations can be obtained
analogously to the standard GARCH models. We use these six implied GARCH
models to fit the data set introduced in Section 3.1 by the EPMS method and
compute the corresponding RMSEs. Figure 2 shows the boxplots of RMSEs of the
implied GARCH models. The medians of the RMSEs of the six implied GARCH
models are 2.091, 2.081, 2.185, 0.813, 0.782 and 0.958, respectively. Comparing
the magnitudes of these medians to the values reported in the literature (for
example, Badescu and Kulperger, 2008, Table 7), the implied GARCH models
are capable of computing accurate plain vanilla option prices. Moreover, it is
not surprising to find that the implied TGARCH models outperform the implied
GARCH models since an extra parameter γ is added to the GARCH models.
One of the interesting findings is that not only are the values of the RMSEs of
the implied TGARCH models smaller than their implied GARCH counterparts,

(a) (b) (c) (d) (e) (f)
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Figure 2: The boxplots of the RMSEs of the implied (a) GARCH-N, (b)
GARCH-DEess, (c) GARCH-DEegp, (d) TGARCH-N, (e) TGARCH-DEess

and (f) TGARCH-DEegp models
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but also the dispersions of the RMSEs of the implied TGARCH models are sig-
nificantly less than the implied GARCH models. This reveals that the parameter
γ is not only useful to depict the asymmetric property of the dynamics of the
data but also plays a crucial role in option pricing. Another interesting find-
ing in Figure 2 is that the implied TGARCH-N model, implied TGARCH-DEess

and implied TGARCHegp models seem to be comparable, which implies that the
simple normal innovations are enough to depict the market behavior in the im-
plied GARCH framework, and the two change of measure processes do not make
difference in GARCH option pricing. In next section, we examined the above
phenomenon by a statistical test.

3.3 Testing the Pricing Performances

We investigate whether there are significant differences in option pricing be-
tween the normal and double exponential innovations or between the change of
measure processes Λess and Λegp. The case of the implied GARCH-N model ver-
sus the implied GARCH-DEess is used to be an example for illustration. Let
d1, · · · , d78 be the differences of the RMSEs between the implied GARCH-N
model and the implied GARCH-DEess model for the 78 selected trading days.
Further let Md be the median of d1, · · · , d78. By using the sign test for test-
ing H0 : Md = 0 versus H1 : Md > 0, the corresponding p-value is less than
10−4, which implies that the implied GARCH-DEess model describes the data
significantly better than the implied GARCH-N model. Herein, A � B de-
notes that Model A performs significantly better than Model B and A ≈ B
denotes that the two models are comparable. After conducting the pairwise
tests of the implied GARCH models considered in Section 3.2, we have the fol-
lowing result: TGARCH-DEess ≈ TGARCH-N � TGARCH-DEegp � GARCH-
DEess � GARCH-N � GARCH-DEegp. Therefore, the change of measure process
Λess describes the data significantly better than Λegp. Interestingly, the implied
TGARCH-N model is comparable to the implied TGARCH-DEess model. In
next section, we further examine the pricing performances of the implied GARCH
models in different economic periods.

3.4 Recession Period versus Recovery Period

In this section, we investigate the pricing performances of the implied GARCH
models in the recession and recovery periods. By the report of New NBER
Research published at September 20, 2010, the recession period during our study
sample is from December 2007 to June 2009. As shown in Figure 1, the dynamics
of the S&P500 index fluctuates widely in the recession period. Therefore, we
divide the data into two groups accordingly and investigate the option pricing
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performance of the implied method in the recession and recovery periods. Figure
3 gives the boxplots of the RMSEs of the implied GARCH models in both periods.
These boxplots show that the implied models are capable of obtaining good option
prediction in both periods since the medians of the implied GARCH models are
less than 3 and the medians of the implied TGARCH models are less than 1.2.
Moreover, by using the testing procedure in Section 3.3, we have TGARCH-DEess

≈ TGARCH-N � TGARCH-DEegp � GARCH-DEess � GARCH-N � GARCH-
DEegp in the recovery period and TGARCH-N � TGARCH-DEess � TGARCH-
DEegp � GARCH-N ≈ GARCH-DEess � GARCH-DEegp in the recession period.
The comparing results in the recovery period is the same as those in Section
3.3. However, for the data in the recession period, the implied TGARCH-N
model performs better than others. Consequently, it seems that the heavy-tailed
property of the innovations does not contribute significantly to implied TGARCH
option pricing if the asymmetry property has been characterized. To examine this
argument, the exotic option pricing by using the implied method is considered in
next section.
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Figure 3: The left and right panels are the boxplots of the RMSE during the
recovery and recession periods, respectively, for (a) GARCH-N, (b) GARCH-
DEess, (c) GARCH-DEegp, (d) TGARCH-N, (e) TGARCH-DEess and (f)
TGARCH-DEegp models

3.5 Exotic Option Pricing

As demonstrated in the previous sections, the implied TGARCH-N model is
an adequate model for pricing plain vanilla options. Further note that the risk-
neutral TGARCH-N models derived by Λess and Λegp processes are the same,
which means that practitioners do not have to worry about the selection of the
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change of measure processes if the innovations are assumed to be normal dis-
tributed. Therefore, the implied model with normal innovations seems to be a
convenient choice for derivative pricing in practice. In the following, we show
that this convenient way might not be suitable in exotic option pricing.

Exotic options are traded over the counter (OTC). In general, pricing exotic
options is more complicated than pricing plain vanilla options since their payoffs
depend on the history (or path) of the underlying asset prices. Hull and Suo
(2002) discovered a model risk of the implied volatility model under the BS
framework in barrier option pricing when the true model is assumed to be a
stochastic volatility model. Recently, Huang and Guo (2011) demonstrated the
model risk of an implied GARCH-N model in assessing barrier and lookback
options when the underlying assets are generated from a GARCH-t model. Both
simulation studies show that there exists significant model risk when pricing
exotic options with an implied model. In this study, we investigate the empirical
evidence of model risk in pricing exotic options.

Suppose that the stock prices follow a GARCH model with heavy-tailed in-
novations. We are interested in investigating the model risk of using the implied
GARCH model with normal innovations in exotic option pricing. For example,
let the true model be GARCH-DEess but an implied GARCH-N model is em-
ployed to evaluate the plain vanilla and up-and-out call options. The payoff of an
up-and-out call is defined by max(ST −K, 0)I{max0≤t≤T St≤B}, where B is the bar-
rier price and I{·} is an indicator function. Denote the prices of plain vanilla call

options derived by the implied GARCH-N and GARCH-DEess models by C(1)

and C(2), respectively. Similarly, UOC(1) and UOC(2) denote the corresponding
up-and-out call option prices. The real data introduced in Section 3.1 are used
and the implied GARCH models obtained in Section 3.2 are employed to compute
the option prices by the EPMS method with 10,000 sample paths. The values of
C(1), C(2), UOC(1) and UOC(2) are computed for the 78 trading days. Then, we
compute the following mean squared losses:

MSL2,1 =
1

78

78∑
i=1

(
max

(C(2)
i

C
(1)
i

,
C

(1)
i

C
(2)
i

)
− 1
)2
,

and

MSL∗2,1 =
1

78

78∑
i=1

(
max

(UOC(2)
i

UOC
(1)
i

,
UOC

(1)
i

UOC
(2)
i

)
− 1
)2
.

If there exists severer model risk in exotic option pricing than in plain vanilla
case, then MSL∗2,1 would be significantly greater than MSL2,1. Table 1 shows
the values of MSL∗i,j/MSLi,j with S0/K = 0.9, 1, 1.1 and (T,B) = (63, S0/0.85),
where (i, j) = (2, 1), (3, 1), (5, 4), (6, 4) stand for the cases of GARCH-DEess
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versus GARCH-N, GARCH-DEegp versus GARCH-N, TGARCH-DEess versus
TGARCH-N, and TGARCH-DEegp versus TGARCH-N, respectively. Appar-
ently, the values of MSL∗ are all significantly greater than their MSL counter-
parts, especially when the option is at-the-money (S0/K = 1) or in-the-money
(S0/K = 1.1). Moreover, the results of the cases with (T,B) = (126, S0/0.85),
(63, S0/0.95) and (126, S0/0.95) are all similar to those shown in Table 1. Hence,
we do not report them here for saving the space. From the above finding, the up-
and-out option prices derived from implied GARCH-DE model (or TGARCH-DE
model) are very different from those obtained by the implied GARCH-N model
(or TGARCH-N model), which is consistent with the simulation findings of Hull
and Suo (2002) and Huang and Guo (2011).

Table 1: The values of (a) MSL∗
2,1/MSL2,1, (b) MSL∗

3,1/MSL3,1, (c)
MSL∗

5,4/MSL5,4, and (d) MSL∗
6,4/MSL6,4, where K = S0/0.9, S0, S0/1.1 and

(T,B) = (63, S0/0.85)

S0/K 0.9 1.0 1.1

(a) MSL∗
2,1/MSL2,1 9.5 37.6 202.3

(b) MSL∗
3,1/MSL3,1 2.2 31.8 157.5

(c) MSL∗
5,4/MSL5,4 1.4 32.2 64.0

(d) MSL∗
6,4/MSL6,4 1.6 13.4 41.0

Therefore, as shown in the previous sections, the model risk is not sever if
the implied model with normal innovation is applied to evaluate plain vanilla
options. However, when pricing exotic options, one can not just rely on the
implied method. The effect of the innovation distribution on exotic option pricing
can not be ignored.

4. Conclusion

In this study, we use the implied method to estimate the GARCH model pa-
rameters. Two popular change of measure processes and an efficient simulation
method are employed in the investigation. The empirical results show that the
implied GARCH models are capable of computing accurate plain vanilla option
prices even the innovation is simply assumed to be normal distributed. In addi-
tion, the change of measure process derived by the Esscher transform describes
the data better than that derived by the extended Girsanov principle. More-
over, the implied method under the GARCH framework with normal innovations
might not be suitable for assessing complicated financial derivatives because sig-
nificant model risk arises when using an implied GARCH model with non-proper
innovations in exotic option pricing.
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Appendix

Proof of Proposition 2.1

We first derive the change of measure process Λesst defined in (2.2) of the
Esscher transform. Since the conditional distribution of Rt given Ft−1 is N(r +
λσt − σ2t /2, σ2t ), the corresponding conditional mgf is

MRt|Ft−1
(z) = ez(r+λσt−σ

2
t /2)+z

2σ2
t /2.

Define a new conditional pdf ft(xt; δt) by (2.1) and choose the extra parameter
δt = δ∗t to ensure EQ

ess

t−1 (e−rSt) = St−1 under ft(xt; δ
∗
t ), where δ∗t = −λ/σt.

Therefore, by (2.2) we have

Λesst =
t∏

k=1

exp{− 1

2σ2k
[λ2σ2k + 2λσk(Rk − r − λσk +

1

2
σ2k)]}.

Next, we derive the change of measure process of the extended Girsanov principle
Λegpt defined in (2.3). Since

Mt

Mt−1
=

exp(Rt)

Et−1[exp(Rt)]
= exp{σtεt −

σ2t
2
},

thus the pdf of Y = Mt/Mt−1 is

φ(y) =
1

y
√

2πσt
exp{− 1

2σ2t
(log y +

σ2t
2

)2}.

By (2.3), we have

Λegpt =

t∏
k=1

exp{− 1

2σ2k
[λ2σ2k + 2λσk(Rk − r − λσk +

1

2
σ2k)]}.

2

Proof of Proposition 2.2

We first derive the change of measure process Λesst defined in (2.2) of the
Esscher transform. Since the conditional distribution of εt given Ft−1 is double-
exponentially distributed with conditional mgf Et−1(e

sεt) = (1 − s2/2)−1 for
|s| < 2, thus the corresponding conditional mgf of Rt given Ft−1 is

MRt|Ft−1
(z) =

ezµt

(1− z2σ2t /2)
.
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Define a new conditional pdf ft(xt; δt) by (2.1) and choose the extra parameter
δt = δ∗t to ensure EQ

ess

t−1 (e−rSt) = St−1 under ft(xt; δ
∗
t ) where

δ∗t =
−σt +

√
atσ2t + 2(at − 1)2

σt(1− at)

with at = exp(λσt − σ2t /2). Therefore, by (2.2) we have

Λesst =
t∏

k=1

(1−
(δ∗kσk)

2

2
) exp{δ∗k(Rk − r − λσk +

σ2k
2

)}.

Next, we derive the change of measure process of the extended Girsanov principle
Λegpt . Since

Mt

Mt−1
=

exp(Rt)

Et−1[exp(Rt)]
= exp(Rt − µt − γt),

where γt = − log(1− σ2t /2) with σ2t < 2, thus the pdf of Y = Mt/Mt−1 is

φ(y) =
exp{−

√
2| log y + γt|/σt}
(yσt
√

2)
for y > 0.

By (2.3), we have

Λegpt =
t∏

k=1

exp{−
√

2(|Rk + γk − r| − |Rk − µk|)/σk}.

2
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