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Abstract: In this paper, freight transportation is taken into account. One
of the models used for modelling “Origin-Destination” freight flows is log-
regression model obtained by applying a log-transformation to the tradi-
tional gravity model. Freight flows between ten provinces of Turkey is ana-
lyzed by using generalized maximum entropy estimator of the log-regression
model for freight flow. The data set is gathered together from the axle
load survey performed by Turkish Directorate of Highways and other so-
cioeconomic and demographic variables related with provinces of interest.
Relations between considered socioeconomic and demographic variables and
freight flows are figured out and results are discussed.
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1. Introduction

Freight transportation is one of the most important economic activities in a
country. Therefore, freight demand modelling takes an important place in the
transportation engineering and social sciences. Analysis of freight flows is also
important for policy making. Models used for freight demand analysis can be
categorized as: macro economic models, spatial interaction models, and micro
economic models.

Spatial interaction models are used in the literature for modelling of flows
between origins and destinations. An objective of this type of modelling is to
explain variation in the level of flows between origin-destination (OD) pairs. One
of the commonly used spatial interaction models in practice is the gravity model.
The gravity model is originally founded on Newton’s Law of Gravity, which states
that two bodies attract each other in proportion to their masses and inversely by
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the square of the distance between them. The simplest formulation of the gravity
model has the following functional form (Ortuzar and Willumsen, 2001):

Tij =
αPiPj
d2ij

, (1.1)

where Pi and Pj are the population of the region of origin and destination, respec-
tively, dij is the distance between these regions, and α is a proportionality factor.
The first rigorous use of the gravity model is shown by Casey (1955) for shopping
trips between towns in a region (Ortuzar and Willumsen, 2001). Later, various
forms of gravity model obtained by including different variables depending on
research topic.

In freight generation modelling, relations between socioeconomic characteris-
tics of regions, use of land, and freight generation amounts of regions are consid-
ered. Freight generation is an example for cross-sectional data since it depends
on gross domestic product, vehicle ownership, population and difference in ge-
ographic location. Regarding this idea, there are many studies about spatial
econometrics. Spatial econometrics is a subfield of econometrics that deals with
the treatment of spatial interaction (spatial autocorrelation) and spatial struc-
ture (spatial heterogeneity) in regression models for cross-sectional and panel
data (Anselin, 1988).

The estimation and testing of spatial econometric models are studied by Whit-
tle (1954). Anselin (1988) introduces the spatial econometric regression models
and specification testing methods. LeSage and Pace (2008) propose the family of
models that rely on a spatial auto-regression filtering for flows between regions
and introduce maximum likelihood estimation of this family of models. To use
this family of models when the sample size is small and parametric assumptions
are violated, LeSage and Pace (2008) propose the generalized maximum entropy
(GME) estimator of this family of models and illustrate this approach by using
commodity flows between Italy and European countries of the Balkanise area.

After the entropy concept is developed as a measure of uncertainty by Shan-
non in 1948, the maximum entropy principle is formulated by Jaynes (1957)
as a method for estimation and inference particularly for ill-posed and/or ill-
conditioned problems. More recently, Golan, Judge and Miller (1996) develop
the GME estimator in the context of non-normal disturbances. Eruygur (2005),
compares the GME estimator of unknown parameters of the general linear models
with the ordinary least squares (OLS) estimator by Monte Carlo simulations and
concludes that the performance of the GME estimator is remarkably good, espe-
cially for small sample sizes. Ciavolino and Al-Nasser (2009) compare the GME
estimator with the partial least squares estimator in the presence of outliers,
missing data and multicollinearity by Monte Carlo simulations and show that
the results of the GME outperform the partial least squares in terms of mean
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squared error. As seen from the literature, the GME estimation method has
several advantages over the conventional maximum likelihood and least squares
formulations. The main advantages are that it is more efficient, avoids strong
parametric assumptions, works well when the sample size is small, and uses prior
information.

In this study, we propose to use the GME estimation method for modelling
the freight flow data over log-regression models. It is difficult to fulfil strong
parametric assumptions required by conventional maximum likelihood and least
squares formulations for freight flow data, and sample size is small in general. It
is very probable that the problem of freight flow modelling will be ill-posed for
most of the cases. In fact, there are a small number of countries that have great
number of provinces. Thus, we need an approach such as the GME estimation
that is successful in freight flow modelling when the sample size is small. We
utilize from the advantages of the GME estimation method to model freight flow
data of Turkey. In addition, it is possible to use this modelling approach to make
predictions for OD pairs, for which we have not observed any data yet.

In the second section, a description of used data set is given. In the third
section, the GME estimation method is introduced and solutions for parameters
of a general linear model are given. In the fourth section, using the axle load
survey data performed by Turkish Directorate of Highways, GME estimators of
a log-regression model of freight flows between top ten provinces of Turkey from
the respect of the amount of generated and attracted freights are obtained, and
a discussion is given in the last section.

2. Data Description

The data set of interest is collected by the Republic of Turkey General Direc-
torate of Highways (GDH). Each year, the GDH applies axle weight inspections
on 45 points of highways of Turkey. In these inspections, heavy vehicles are
stopped at the roadside and weighed. Also, surveys including freight and travel
information are applied to drivers. Detailed statistics can be found in the web-
site of GDH1. Our data is collected during these inspections between 2007 and
2009. The data for these three years are aggregated by using growth coefficients
obtained over 2009 annual average daily traffic density (AADT). AADT is a mea-
sure used primarily in transportation planning and transportation engineering.
It is the total volume of vehicle traffic of a highway or road for a year divided by
365 days. Used growth coefficient is the ratio of 2009 AADT of the relevant road
segment to sample size. If an OD pair is seen in more than one inspection, the
maximum freight amount is taken for this OD pair. Included provinces are Adana,

1http://www.kgm.gov.tr/Sayfalar/KGM/SiteEng/Root/MainPageEnglish.aspx
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Ankara, Bursa, Hatay, İçel, İstanbul, İzmir, Kayseri, Kocaeli, and Konya. Our
data set includes, freight amount (tons/day), population, gross domestic product
(GDP), employment, registered number of trucks (RNT), and distance between
provinces in each OD pair. These socioeconomic variables are included because
they are found to be highly correlated with total amount of transported freight
(Ünal, 2009).

3. Generalized Maximum Entropy Estimation

Let Y be the N×1 dependent variable vector, X be the N×K known matrix
of explanatory variables. The linear regression model is defined as below:

Y = Xβ + ε, (3.1)

where β is the K × 1 vector of unknown parameters and ε is the N × 1 vector of
unknown errors. The standard least squares estimation of β vector of parameters
is the solution of the following optimization problem:

min
β

{
N∑
i=1

ε2i , εi = Yi −Xiβ, ∀i

}
.

The objective is to minimize the quadratic sum of squares function for β.
The maximum entropy approach is based on the entropy objective function H(p)
instead of the quadratic sum of squares objective function. In order to be able to
use entropy principle, the unknown parameter vector should be written in terms
of probabilities. Each unknown parameter βk is reparameterized for M ≥ 2 as
follows (Golan, Judge and Miller, 1996):

βk =
M∑
m=1

zkmpkm, k = 1, 2, · · · ,K, M ≥ 2. (3.2)

Define Z as a K × K · M diagonal matrix of support points. Then β is
rewritten as follows:

β = Zpβ =


z′1 0 0 · · · 0
0 z′2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · z′k



p1
p2
...
pk

 , (3.3)

where pβ is a KM × 1 vector of probabilities or weights on support points. As
can be seen, the implementation of the maximum entropy formalism allowing
for unconstrained parameters starts by choosing a set of discrete points by the
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researcher based on his a priori information about the value of parameters to be
estimated (Eruygur, 2005). If the researcher has no prior information about the
sign and magnitude of the unknown βk, support space should be defined uniformly
symmetric around zero with end points of large magnitude. For instance, for
M = 5 and for a scalar C, z′k = [−C,−C/2, 0, C/2, C].

Similarly, the unknown error vector ε is reparameterized as follows (Golan,
Judge and Miller, 1996):

εt =
J∑
j=1

vtjptj , t = 1, 2, · · · , T, (3.4)

where, v′t = [vt1, vt2, · · · , vtj ] is support space and p′t = [pt1, pt2, · · · , ptj ] is a
vector of unknown probabilities. V is defined as a T × T · J diagonal matrix of
support points vij . Then, the unknown error vector ε is rewritten as follows:

ε = V pε =


v′1 0 0 · · · 0
0 v′2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · v′j



p1
p2
...
pj

 . (3.5)

In practice, discrete support spaces for both parameters and errors, supplied
by the researcher, are based on economic or other prior information. The support
space of errors is defined according to the Chebyshev’s inequality (−vσ,+vσ).
Golan, Judge and Miller (1996) recommend using the “three-sigma rule” to es-
tablish bounds on the error components: the lower bound is taken as −3σy and
the upper bound is taken as 3σy, where σyis the standard deviation of the de-
pendent variable. For example, if J = 5, then v′t = [−3σy,−1.5σy, 0, 1.5σy, 3σy]
is used. With the assumption that unknown weights on the parameters and the
error support for the linear regression model are independent, the unknown pa-
rameters and errors are obtained by solving the constrained optimization problem
of maxH(pβ, pε) = −pβ′ ln pβ − pε′ ln pε.

The data constrained GME estimator of the linear regression model is de-
fined by the following constrained maximum entropy problem (Golan, Judge and
Miller, 1996):

max
pβ , pε

H(pβ, pε) = −
K∑
k=1

M∑
m=1

pβkm ln pβkm −
T∑
t=1

J∑
j=1

pεtj ln pεtj , (3.6)

subject to the constraints:

K∑
k=1

M∑
m=1

xtkzkmp
β
km +

J∑
j=1

vtjp
ε
tj = yt, t = 1, 2, · · · , T, (3.7)
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M∑
m=1

pβkm = 1, k = 1, 2, · · · ,K, (3.8)

J∑
j=1

pεtj = 1, t = 1, 2, · · · , T. (3.9)

The solutions for p̂βkm and p̂εij are obtained by the method of Lagrange mul-
tipliers as follows (Eruygur, 2005):

p̂
β(GME)
km =

e−
∑T
t=1 λ̂tzkmxtk∑M

m=1 e
−

∑T
t=1 λ̂tzkmxtk

, Ωpβ

k (λ̂t) =
M∑
m=1

e−
∑T
t=1 λ̂tzkmxtk , (3.10)

p̂
ε(GME)
tj =

e−λ̂tvtj∑J
j=1 e

−λ̂tvtj
, Ωpε

t (λ̂t) =

J∑
j=1

e−λ̂tvtj . (3.11)

Substituting (3.10) and (3.11) in (3.2) and (3.4), respectively, GME estimators
of βk and εt are found as:

β̂GME
k =

M∑
m=1

p̂
β(GME)
km zkm, k = 1, 2, · · · ,K, (3.12)

and

ε̂GME
t =

J∑
j=1

p̂
ε(GME)
tj vtj , t = 1, 2, · · · , T. (3.13)

Under the conditions that error support is symmetric around zero and the
errors are independent, the GME estimator is consistent and asymptotically nor-
mal (Joshi, Hanrahan, Murphy and Kelley, 2010). In order to obtain estimates
of βGME

k and εGME
t over the equations (3.12) and (3.13), numerical optimization

techniques should be employed to obtain a solution to the system defined by the
equations (3.10) and (3.11) considering the constraints given in (3.7)-(3.9).

4. Analysis of the Transportation Data

In this section, we focus on the application of the GME estimation to intercity
freight demand modelling of 10 provinces of Turkey. Explanatory variable (Y ) of
this data set contains the amount of freight transported from each of N origin
provinces to N destination provinces. Therefore, there is a strong dependence
structure within Y , it is unsuitable to analyze this data set with the approaches
based on MLE. We apply GME estimates of econometric model given by Anselin
(1988) to intercity freight movement of 10 provinces of Turkey. Contrary to the
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other econometric models, the model given by Anselin (1988) includes N2 origin
and destination pairs. The model is as formulated follows:

Y = βOXO + βDXD + γD + ε,

where Y is a 100 × 1 vector of the amount of freight transported from each of
N origin provinces to N destination provinces. Y can be generated as origin or
destination based (LeSage and Pace, 2008). We follow the origin based manner.
XO is the explanatory variable matrix and corresponding to origin provinces, XD

is the explanatory variable matrix corresponding to destination provinces, D is a
100× 1 explanatory variable vector including distances between OD pairs, and ε
includes error terms. βO, βD and γ include regression coefficients corresponding
to origin and destination provinces, and distances between OD pairs, respectively.

Elements of vector of distances are obtained by using gravity model. Dis-
tance is taken as zero for intra-provincial transportations and distances between
centres of origin and destination provinces are squared for inter-provincial trans-
portations. To get a better linear relationship, we apply the logarithmic trans-
formation to dependent and independent variables.

Values of M and J are taken as 5 following Golan, Judge, and Miller (1996),
who states that the largest progress is obtained for M = J = 5 in sensitivity of
estimates for limited data. Therefore, matrices Z and V are defined for M = J =
5. Elements of Z are determined by referring the multiple regression coefficients
for the amount of produced freight of provinces given by Ünal (2009). The
3 − σ rule is followed to determine elements of the matrix V . Thus, (3.1) is
reparameterized as follows:

Y = XZpβ + V pε.

(3.6) is maximized subject to the constraints given in (3.7)-(3.9) by using a com-
puter program prepared in Matlab 7.

In order to test the model and determine significant variables on the amount of
transported freight, we employ the bootstrap method (see, Efron and Tibshirani
(1993) for details of the bootstrap method). The bootstrap estimates obtained for
1000 and 1250 bootstrap samples are very close. Thus, the number of bootstrap
samples is taken as 1000. So as to test the overall model, achieved significance
level (ASL) is obtained. We conclude that our overall model is significant because
ASL for the overall model is less than 0.001. Bootstrap estimates of Akaike
information criterion (AIC) and Schwarz’s Bayes criterion (SBC) are obtained
as −349.48 and 134.49, respectively. Bootstrap estimates of model parameters,
corresponding standard errors (SE) and obtained ASL values for each parameter
are given in Table 1.
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Table 1: Bootstrap estimates of model parameters and corresponding achieved
significance levels

Variable βGME
k SE ASL

Log(PopulationO) 0.0546 0.0249 < 0.001

Log (GDPO) 0.0565 0.0263 < 0.001

Log (RNTO) 0.0378 0.0179 0.026

Log (EmploymentO) 0.0486 0.0224 < 0.001

Log (PopulationD) 0.0544 0.0248 < 0.001

Log(GDPD) 0.0563 0.0259 < 0.001

Log(RNTD) 0.0376 0.0179 < 0.001

Log(EmploymentD) 0.0484 0.0223 < 0.001

Log(Distance2) 0.0302 0.1279 0.999

According to ASL values presented in Table 1, effects of all explanatory vari-
ables are significant on the amount of transported freight but natural logarithm
of square of the distance. We study the prominent provinces with respect to
the generation and the attraction of freight, and as well these provinces are far
from each other within the economic distance context in a way of international
highway transportation. That is why; it is found that the contribution of the
distance is found insignificant. We drop the natural logarithm of square of the
distance from the model and obtain new bootstrap estimates.

The overall model without the effect of distance is significant according to
the obtained ASL value (< 0.001). Bootstrap estimates of model parameters,
corresponding standard errors and obtained ASL values for each parameter of
the second model are given in Table 2.

Table 2: Bootstrap estimates of parameters of the second model and corre-
sponding achieved significance levels

Variable βGME
k SE ASL

Log(PopulationO) 0.0610 0.0096 < 0.001

Log (GDPO) 0.0630 0.0104 < 0.001

Log (RNTO) 0.0421 0.0078 < 0.001

Log (EmploymentO) 0.0541 0.0089 < 0.001

Log (PopulationD) 0.0607 0.0101 < 0.001

Log(GDPD) 0.0628 0.0112 < 0.001

Log(RNTD) 0.0421 0.0080 < 0.001

Log(EmploymentD) 0.0540 0.0094 < 0.001
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According to ASL values presented in Table 2, effects of all explanatory vari-
ables are significant on the amount of transported freight. We obtain smaller SE
estimates than those obtained for the first model. The cause of this situation is
possibly that we have multicollinearity between some explanatory variables and
the distance. Exclusion of the effect of distance makes the results more precise.
Bootstrap estimates of the AIC and SBC are obtained as −423.69 and 57.67,
respectively. Thus, the model not including the effect of distance is better in the
estimation of the amount of transported freight than the first model.

Standardized estimates of regression coefficients for origin and destination
provinces are given in Table 3 to compare impacts of explanatory variable on the
amount of transported freight.

Table 3: Standardized estimates of regression coefficients

Variable Standardized βGME
k

Log(PopulationO) 6.363149

Log (GDPO) 6.048194

Log (RNTO) 5.368396

Log (EmploymentO) 6.106079

Log (PopulationD) 6.030926

Log(GDPD) 5.608030

Log(RNTD) 5.238004

Log(EmploymentD) 5.776144

It is seen from Table 3 that the effects of explanatory variables on amount of
freight are almost the same level. However, populationO, GDPO, employmentO
and populationD are seen to be come forward. When the amount of freight is
examined in terms of characteristics of the provinces, it is seen that the character-
istic features of the province, in which the freight is produced, are more effectual
than those of the destination province. The most effectual explanatory variable
is population of the origin province while the least effectual explanatory variable
is RNT of the destination province. According to this, populationO is 1.2 times
more effective than RNTD. Under the results of our analysis, GDP of the origin
province and population of the destination province are almost same effective on
the amount of freight.

Lastly, we obtain OLS estimates of the regression parameters to see what the
results are if we employ OLS method instead of GME estimation. OLS estimates
of model parameters, standard errors of parameters, p-values corresponding to
the t-statistics are given in Table 4.
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Table 4: OLS estimates standard errors of model parameters and corresponding
p-values

Variable βOLS
k SE p-value

Constant −15.888 3.857 < 0.001

Log(PopulationO) −1.042 1.085 0.339
Log (GDPO) 0.902 0.309 0.004
Log (RNTO) −0.038 0.556 0.946
Log (EmploymentO) 0.576 1.249 0.646

Log (PopulationD) 4.170 1.085 < 0.001
Log(GDPD) −0.441 0.309 0.158
Log(RNTD) −0.083 0.556 0.882
Log(EmploymentD) −2.792 1.249 0.028

Log(Distance2) −0.096 0.013 < 0.001

It draws attention in Table 4 that according to the p-values, effects of populati-
onD, GDPO, employmentD and distance are significant and those of the rest are
insignificant at the 5% significance level. We suspect from a multicollinearity and
obtain tolerance and variance inflation factors (VIF), and they are presented in
Table 5.

Table 5: Tolerance and VIF values fort he model parameters

Variable Tolerance VIF

Log(PopulationO) 0.015 68.11
Log (GDPO) 0.125 8.01
Log (RNTO) 0.059 16.90
Log (EmploymentO) 0.011 92.21

Log (PopulationD) 0.015 68.12
Log(GDPD) 0.125 8.01
Log(RNTD) 0.059 16.90
Log(EmploymentD) 0.011 92.21

Log(Distance2) 1 1

As expected, all the variables but GDPO, GDPD and distance are affected
by certain multicollinearity patterns. The results of hypothesis tests conducted
over OLS estimates are unreliable. Therefore, one should use another method for
estimation.

An alternative to OLS method would be the well-known ridge regression tech-
nique. We also apply the ridge regression. For the ridge regression model, values
of AIC and SBC are obtained as −209.3 and 274.7, respectively. These values
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are even greater than those obtained for the GME estimation of our first model.
Therefore, we do not present the parameter estimates obtained from the ridge
regression.

As seen here, the GME estimation with bootstrapping produces more reli-
able and precise results than those obtained by the OLS or the ridge regression
techniques.

5. Conclusion

In this study, we use the GME estimation to model and analyse the origin −
destination matrices of freight flow. Modelling origin − destination matrices has
an important role in transportation planning. Models constructed by the method
of GME are used effectively when the number unknown parameters of a model
is small or there are violations of assumptions.

We model the freight flow between top ten provinces of Turkey from the
respect of load production and capture, including various socioeconomic variables
by using the method of GME. Effects of included socioeconomic variables are
found as positive. In general, characteristic features of the origin province are
more effectual than those of the destination province.

In our later studies, we intend to widen our analyses by adding a spatial lag
term to the model and including new road inspection data.
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