
Journal of Data Science 10(2012), 61-73

Stability and Structure of CART and SPAN Search Generated
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Abstract: Searching for data structure and decision rules using classifica-
tion and regression tree (CART) methodology is now well established. An
alternative procedure, search partition analysis (SPAN), is less well known.
Both provide classifiers based on Boolean structures; in CART these are
generated by a hierarchical series of local sub-searches and in SPAN by a
global search. One issue with CART is its perceived instability, another the
awkward nature of the Boolean structures generated by a hierarchical tree.
Instability arises because the final tree structure is sensitive to early splits.
SPAN, as a global search, seems more likely to render stable partitions. To
examine these issues in the context of identifying mothers at risk of giving
birth to low birth weight babies, we have taken a very large sample, divided
it at random into ten non-overlapping sub-samples and performed SPAN and
CART analyses on each sub-sample. The stability of the SPAN and CART
models is described and, in addition, the structure of the Boolean represen-
tation of classifiers is examined. It is found that SPAN partitions have more
intrinsic stability and less prone to Boolean structural irregularities.
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1. Introduction

Classification and regression tree (CART) analysis is increasingly popular,
especially in public health and clinical medicine, to determine levels of risk among
population sub-groups (Zhang et al., 1996; Zhang and Singer, 1999). Specific
examples include studies conducted to predict adherence to treatment for drug
use (Dean et al., 2009), growth in adolescents (Pawloski and Kitsantas, 2008),
smoking among youth (Kitsantas et al., 2007) and pre-term delivery (Zhang and
Bracken, 1995). Also for identifying risk factors for low birth weight babies
Kitsantas et al., 2006), which is the impetus for the present study.

∗Corresponding author.



62 Roger J. Marshall and Panagiota Kitsantas

Although CART is useful to uncover complex relationships among a large
set of variables analysis, we consider two criticisms of trees. First, that tree
classifiers can be unstable because of their hierarchical nature; all splits depend
on previous splits, so that the tree obtained from one realisation a data set may
differ markedly from that of another realisation. Tree instability here is thought
of as a measure of sampling variability of tree structures. A second criticism
is that Boolean structures generated by CART can also be hard to interpret
because successively splitting on variables necessarily induces mutually exclusive
sub-groups that are defined by awkward Boolean conjunctions of positive and
negative attributes, that is, when a feature that is considered positively associated
is combined with one that is negatively associated.

Several studies have proposed methods to alleviate the instability issue in
classification trees (Breiman, 1996; Breiman, 1998; Dannegger, 2000). To our
knowledge, however, there is little about how the stability of CART compares
to other, non-hierarchical, classification techniques. One such method is search
partition analysis (SPAN) (Marshall, 2006). In SPAN, a search is made for a
partition that is in some sense optimal from class of Boolean partitions. The
search is not done as in CART, by successive local searches at each level of
hierarchical subdivision, but by applying partitions to the whole data set, and
implementing a global search. Therefore SPAN seems less likely to be affected by
the instability problem of tree growing. However, this remains speculative and
in this study we offer an empirical investigation to examine it. A further feature
of SPAN is that the class of Boolean combinations that is searched precludes the
possibility of conjunctions of positive and negative attributes, so avoiding the
second criticism of trees.

Although the instability problem of trees is well known (Dannegger, 2000),
the degree of instability, in terms of the extent to which Boolean structures differ,
seems not to have been explicitly addressed. Further, when nodes of trees are
joined to form a classifier the Boolean structure often simplifies, possibly with
some redundant terms (Marshall, 2001). This aspect of tree based partitions
is also not often considered; trees are usually reported as trees rather than by
simplified Boolean expressions derived from them. The purpose of this paper is
to examine how Boolean structures of trees grown on data subsets differ, after
simplification, and to compare them with corresponding partitions from a SPAN
analysis.

To achieve this we focus on comparison of SPAN and CART analyses to
identify mothers at high risk for having a low birth weight infant, using data from
Florida (Kitsantas et al., 2006). The data set is large, about 180,000 mothers.
We randomly divide it into ten sub-samples, each of about 18,000 mothers, and
perform ten separate SPAN and CART analyses. Since the sample and sub-
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sample sizes are large, some degree of stability might be expected, in the sense
that identical or somewhat similar partitions would be generated on each of the
ten sub-samples. The results of the partitions generated by SPAN and by CART
are presented.

2. Methods

2.1 Florida Birth Weight Data

Data comprised about 180,000 routine births in 1998 from the State of Florida
with a binary outcome variable indicating low birth weight (≤ 2500 grammes).
The following variables were considered as predictors in these analyses: mother’s
age, ethnicity, smoking, marital and educational status, parity, weight gain during
pregnancy, and adequacy of prenatal care. Table 1 gives the codings and cate-
gorisations of these variables. More details of the data can be found elsewhere
(Kitsantas et al., 2006). We randomly divided the data into ten non-overlapping
samples of equal sizes, about 18,000 complete observations in each, and sepa-
rately analysed each sub-sample by both CART and SPAN, applying precisely
the same criteria (as described below) to each sub-sample.

Table 1: Coding in the data set and the codes and combinations used to define
positive attributes, that is, attributes associated with low birth weight, with
symbols used for their representation (in Tables 2 and 3)

Variable Coding
Positive attributes

code combinations

race 0 = black, 1 = Hispanic, 2 = Other B = 0, H = 1, O = 2,

3 = White Bh = 01∗, Bo = 02, Bho = 012

married 0 = no 1 = yes U = 0

level of education 0 = elementary, 1 = some high school, E = 0, E2 = 01,

2 = high school, 4=college, 3=higher E3 = 012, E4 = 0124

age 0 < 18, 2 = 18-34, 1 > 34 A = 0, A2 = 02

smoking tobacco 0 = yes, 1 = no S=0

weight gain 0 < 20 lbs, 2 = 20-40lbs, 1 > 40lbs W = 0, W2 = 02

medical problem 0 = yes, 1 = no M = 0

parity 0 = no previous babies, 2 = one previous, 1 => 1 P = 0, H = 1 PH = 01

prenatal care 0 = inadequate, 1 = adequate I=0
∗ e.g. Bh = 01 means either black or Hispanic

2.2 CART

Classification tree construction using the procedures proposed by Breiman
has been summarily described in many sources (Carmelli et al., 1997; Zhang et
al., 1996; Zhang and Bracken, 1995; Nelson et al., 1998; Kitsantas et al., 2006;
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Zhang and Singer, 1999). The analyses reported here were done with the com-
mercial CART software package (CART, 2000) that is based on the Breiman et
al. (Breiman et al., 1984) methodology. Here we used the Gini diversity splitting
criterion, with assumed equal priors and equal misclassification costs. Typically
the optimal trees, as determined by cross-validated minimum misclassification,
had between 4 and 15 nodes. Our analyses were based on the marginally sub-
optimal trees with at most 6 terminal nodes. Each split was based on a binary
attribute, say Xi, “going to the right” and its complement Xi “going to the left”.

In CART, each terminal node is assigned to a prediction class and for a
binary outcome combining the “class 1” nodes defines a binary partition of the
sample space {A,A}. The terminal node j represents a Boolean conjunction of
attributes, Cj . For example, a terminal node after three splits of the hierarchy
might be represented by the conjunction of attributes Cj = X2∩X4∩X3. This is
the pathway tracing branches from an initial split on X2 going right, next split on
X4 also going right, and finally split on X3 going left. The A-side of the binary
partition is the union of all the “class 1” terminal nodes. Formally, if T1 is the
set of class 1 and T0 the set of class 0 terminal nodes

A =
⋃
j∈T1

Cj and A =
⋃
j∈T0

Cj ,

each of A and A defining a “disjunctive normal form (dnf)”. The elements,
or clauses, Cj induce mutually exclusive subgroups of the data, since each is a
terminal node of the tree.

The Boolean expressions for A and A are typically not in their simplest form.
For the purpose of comparing the trees expressions with the SPAN partitions,
which are generated as dnfs in their simplest form, the CART expressions were
also reduced to their simplest dnf by the rules of Boolean algebra.

2.3 SPAN

SPAN (Marshall, 2006) is also a search methodology for an optimal binary
partition of the sample space into {A,A}. As for CART, the two “sides” of a
partition, are represented by Boolean expressions. An essential feature of a SPAN
partition, however, is that X1, X2, · · · are defined a priori to be “positive” with
respect to the outcome variable and mixtures of positive and negative attributes
on the A or A sides of the partition are precluded, enabling a search strategy to
be feasible. Partitions of this nature have been called “regular” (Marshall, 1986).
Usually, there is a known direction of an association, so that labelling attributes
positive is not restrictive and imposes a natural structure. Formally a SPAN
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partition is of the form

A =

q⋃
j=1

Sj , (2.1)

where the Sj are q conjunctive clauses of positive attributes. The complement,
expressed in dnf, is of the form

A =

r⋃
j=1

S′j , (2.2)

where the S′j are r conjunctions of negative attributes X1, X2, · · · . A set of m
positive attributes, Tm = {X1, X2, · · · , Xm}, is used as a pool of attributes for
the search, which is done by initially generating all possible partitions of the form
of (2.1) and (2.2) with restrictions on q and r and maximum length of Sj and
S′j (default ≤ 2) to make a search feasible. The most effective partition is then
added into Tm, which becomes size m + 1, and the search begins anew in an
iterative procedure.

Formally the algorithm is:

Step 1. Specify m (usually ≤ 12) and establish a set Tm, usually by ranking a
larger set of attributes according to some measure of discrimination, say G
(here Gini index of diversity).

Step 2. Exhaustively generate all possible partitions of the form (2.1) and (2.2)
subject to q ≤ Q and card(Sj) ≤ Q (default Q = 2) from Tm. This
exhaustive search is done using a “lock and key” algorithm (Marshall, 2000).
Select the partition with largest G from this search, say {a1, a1}.

Step 3. Augment Tm with a1 to become Tm+1 = {Tm, a1}.

Step 4. Exhaustively generate all possible partitions of the form (2.1) and (2.2)
subject to q ≤ Q and card(Sj) <= Q from Tm+1. This exhaustive search is
done adapting the “lock and key” algorithm to exclude possibilities already
done in Step 2. Select the partition with largest G from this search, say
{a, a}.

Step 5. If a = a1 terminate the search with {a, a} the optimal partition. Oth-
erwise set a1 = a and return to Step 3.

Note that Step 1 requires specifying the direction of the relationship and
labelling an attribute as positive. This may be a user-specified judgement or



66 Roger J. Marshall and Panagiota Kitsantas

determined from the data. Also Step 1 may include, where a predictor is non-
binary, determining optimal combinations to define Xi. For example, the best
cut-off for continuous predictors, or combinations of categorical states.

Boolean algebraic simplifications of generated partitions are continually done
so that at each step a is expressed in terms of the primary elements of Tm. For
example, suppose, at Step 4 of the cycle a1 = (X1X3)(X1X4) and (a1X5)(X3)
is a generated partition. Substituting for a1 gives (X1X3X5)(X1X4X5)(X3) =
(X1X4X5)(X3).

Also the criterion to assess a partition’s effectiveness, G, is complexity pe-
nalised (Marshall, 1995) to ensure partitions remain parsimonious. Iterations
usually converge in two to four cycles. Here complexity is defined as c = q+r−1
when A and A are expressed in their simplest disjunctive normal forms as in
equations (2.1) and (2.2).

We used, as for the CART splitting criterion, the Gini diversity index, with
equal priors, and equal misclassification costs to assess partition effectiveness.
Initially the “cutoff” or combination of positive classes for each variable was es-
tablished (Step 1 of the algorithm) and an attribute set of m = 9 was established,
one for each of the 9 variables. These are shown in Table 1. For underlying in-
terval measures (age, weight gain, education years) “positive” was categorised as
below a given cut off since low values are known to be associated with low birth
weight. For the race variable, we combined categories of the ethnic minorities.
For parity, mothers having a first child are at a higher risk for LBW compared
to those who have had more than one.

2.4 Instability Measures

Two partitions A1 and A2 are identical if A1∩A2 = A1∪A2 so that a measure
of the difference between A1∪A2 and A1∩A2, provides a measure of dissimilarity.
Extending this idea to the ten partitions Ai, i = 1, · · · , 10 generated for each sub-
sample, we consider the extent to which U = ∪iAi and I = ∩iAi differ. They
may differ in two respects: in terms of how they partition the data and in terms
of the structure of the Boolean expressions they represent. In terms of partitions
of the data space, a stability index, Q can be constructed:

Q =
#(I)

#(U)
,

where here # denotes the number of objects (mothers) in the set. Q, expressed
as a percentage, is 100% when all data partitions precisely coincide, and there is
full stability, and 0% when there is no mother who appears in all ten Ai, that is,
I is empty.
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Assessing whether the Boolean expressions for the partitions are similar in
structure, in terms of their Boolean arrangement, is done by simply noting the
commonalities of the conjunctive clauses of the dnf representation of the parti-
tions.

3. Results

Table 2 shows the representation of the CART trees generated on each for
the ten sub-samples. We give the representation of the “A-side”, that is, low
birth weight class. The partition of each tree in its full form is given and its
representation after Boolean simplification. From the full form, it is clear that
in most cases the initial split is on either M or W , in both cases resulting in
an immediate terminal node. However, of the ten generated trees, none are
the same. Seven are, after simplification, regular, but three are not (samples
6, 7 and 9) and possess combinations of positive and negative attributes. For
example, the combination MBo for sub-sample 6, not having a medical condition
in conjunction with being “Black or other” constitutes one of them.

Table 2: CART representation of partitions for high of low birth weight built
on each sub-sample. Showing full form by tracing tree branches and simplified
forms. For brevity the ∪ and ∩ operators are omitted, that is, (X ∩Y )∪ (Z) =
(XY )(Z). |T | is number of terminal nodes. * indicates that a partition is
irregular

Sub-Sample Full form: terminal nodes |T | Simplified form

1 (W )( WM)( W MBoE4) 5 (W )(M)(BoE4)

2 (M)( MB)( M BS)( M B SWP ) 6 (M)(B)(S)(WP )

3 (M)( MW )( M WPH) 5 (M)(W )(PH)

4 (W )( WM)( W MB) 4 (W )(M)(B)

5 (M)( MBo)( M BoS)( M Bo SWE2) 6 (M)(Bo)(S)(WE2)

6 (W )( WMBh)( W MBo)( WM BhPH) 6 (W )(MBh)( MBo)(MPH)∗

7 (M)( MW )( M WBoE3) 5 (M)(W )(BoE3)

8 (M)( MWU)( MW UP )( M WB) 6 (M)(WU)(WP )( WB)∗

9 (M)( MW )( M WUB)( M WU B A2) 6 (M)(W )(UB)(U A2)∗

10 (W )( WMU)( WM UW2) 5 (W )(MU)(MW2)

Whole sample (M)( MW )( M WBoPH) 5 (M)(W )(BoPH)

Table 3 shows the SPAN partitions for each sub-sample and puts them against
the simplified tree CART generated partitions. For the CART partitions, as
already noted, no two trees generated the same partition; all the partitions are
unique. However, for SPAN, there are two partitions that appear twice (for
sub-samples 8 and 10, and samples 2 and 6).
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Table 3: SPAN and CART representation of partitions for high risk of low birth
weight built on each sub-sample and the whole sample

Sub-Sample SPAN Simplified CART form (from Table 2)

1 (W )(M)(Bo) (W )(M)(BoE4)
2 (M)(B)(W )(E3S) (M)(B)(S)(WP )
3 (M)(W )(B)(S) (M)(W )(PH)
4 (W )(M)(B)(E3A)(E3S) (W )(M)(B)
5 (M)(B)(S)(WP ) (M)(Bo)(BoS)(WE2)
6 (M)(B)(W )(E3S) (W )(MBh)( MBo)(MPH)
7 (W )(B)(S)(MP ) (M)(W )(BoE3)
8 (M)(W )(B) (M)(WU)(WP )( WB)
9 (M)(W )(S)(BP )(BU) (M)(W )(UB)(U A2)
10 (M)(W )(B) (W )(MU)(MW2)

Whole sample (M)(W )(B)(S) (M)(W )(BoPH)

Table 4 shows the occurrences of common clauses of the partitions. For SPAN
there were 11 unique conjunctive clauses in the dnf representations; for CART
there were 20. The data stability index of the SPAN partitions is Q = 57.6%
and for those by CART it is Q = 38.8%, indicating greater stability for SPAN in
terms of data partitions.

Table 4: SPAN and CART occurrences of the conjunctive clauses in dnf repre-
sentation of the partitions

Common clauses
# partitions with clause

SPAN CART

(M) 9/10 8/10
(W ) 9/10 6/10
(B) 8/10 2/10
(S) 4/10 1/10
(E3S) 3/10 -
(WP ) 1/10 1/10
(Bo) 1/10 1/10
Other unique clauses 4 14

Total unique clauses 11 20

Table 5 gives the estimates of misclassification of the partitions and reduction
in diversity when the partitions are applied to the entire data sample of 180,000
mothers. Clearly, in terms of these indices, there is little to choose between any of
the SPAN and CART partitions. Finally, we note that there are no cases where
the SPAN and CART partitions are the same.
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Table 5: Complexity of SPAN and CART partitions. Also misclassification and
reduction in Gini diversity, when applied to entire sample

Sample
Complexity Misclassified % Gini diversity reduction

SPAN CART SPAN CART SPAN CART

1 3 4 36.62 36.52 .0370 .0374
2 5 5 36.27 36.15 .0401 .0398
3 4 4 36.54 36.89 .0398 .0344
4 6 3 36.27 36.41 .0401 .0378
5 5 5 36.15 36.92 .0398 .0357
6 5 5 35.96 36.49 .0404 .0368
7 5 4 35.80 36.40 .0411 .0373
8 3 5 36.41 36.47 .0377 .0368
9 6 5 36.16 36.30 .0404 .0379
10 3 4 36.25 37.31 .0381 .0331

4. Conclusions

Considering the large size of the sub-samples, about n = 18, 000 in each and
generated by random division of the pool of 180,000, it is perhaps surprising
the extent to which partitions generated by both SPAN and CART on each sub-
sample differ. None of the ten CART partitions are the same, and for SPAN there
are eight different partitions. Despite the apparent instability, the prediction error
and partition diversity is more or less the same for all partitions, and for both
SPAN and CART, which probably indicates that the precise arrangement of key
predictors does not, anyway, matter too much; there is no optimal partition, but
a relatively flat response surface in the predictor space for this example. This
seems likely to be the case in most real situations characterised by substantial
diversity and by predictors that are generally weakly associated with outcomes,
as is often the case in medicine, and low birth weight in particular.

As anticipated (see Introduction), SPAN partitions are rather more stable
than CART. To explain this, in SPAN a “model” is fitted by applying it to the
data as a whole, and although it is an iterative process in which the partition
generated on the first cycle may alter the course of those subsequent, it is not
applied piecemeal to the data. A tree, however, is fitted by a sequence of searches
among ever smaller data subgroups, each is fixed by the previous split. The
structure of a tree is fixed to a great extent by the initial split and although trees
based on our data subsets often started out in the same way, with a split on
medical problems, they quickly tended to diversify as the tree grows.

There are some limitations of the study. First, that it is a limited compari-
son, between just two methods. One is a method (SPAN) developed by one of us
(RJM, e.g. Marshall, 2006), the other a commonly used tree growing algorithm.
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Future work might include other commonly used tree growing softwares and rou-
tines (e.g rpart in R) or other classification approaches. However, the comparison
is of two conceptually different ideas and seems a reasonable starting point.

Another criticism is that it is the analysis of just one data set on low birth
weight. This data set was in fact stimulus for the work and, in terms of having
relatively weak predictors, it is probably a fairly typical medical study. Other
data sets where the ability to classify is greater could be studied, since it seems
likely that sampling variability of partitions, and associated instability, may not
be severe where there are combinations of predictors that clearly stand out.

Another criticism is whether any comparison of stability of methods that are
intrinsically different is sensible, since each use different tuning parameters, which
control to some extent the complexity of the partitions. For SPAN we have used
default tuning settings and for CART our analyses were based on the marginally
sub-optimal trees with at most 6 terminal nodes, the larger optimal trees being
intrinsically more unstable.

One remedy for tree instability is to bootstrap re-sample at each node split
and choose the split which is determined most often among the samples (Danneg-
ger, 2000). This seems preferable to tree “bagging” (Breiman, 1996; Bauer and
Kohavi, 1999) which is also suggested, but for which there is no single predictor
tree. However, if logical Boolean structured classifiers are to be considered, using
non-hierarchical alternatives to tree structured classification that are intrinsically
more stable offers some promise. SPAN is considered in this paper, but there are
others, for example, logic regression (Ruczinski et al., 2003), rough sets (Deogun
et al., 1994) and hierarchical classes analysis (Leenen et al., 2001).

Further, as we have also shown, after joining terminal nodes, tree classifiers
often simplify and it can be argued, from principles of parsimony, that beginning
with a class of simple irreducible partitions, is preferable to searching a class that
is potentially reducible, as is the class of binary trees. Besides, even the simplest
of partitions are likely to be overlooked by tree generation. For example, the
simple overall best partition by SPAN for the low birth weight analysis (Table 3)
is (M)(W )(B)(S) which could only arise from a tree with a pathway to a single
terminal M W B S to represent A, all other nodes combining to represent A.
This structure was not generated by any of the trees.

When reported in the literature, tree partitions are not usually simplified,
perhaps because the visual simplicity of a tree is more compelling than a Boolean
expression, or because the Boolean reduction is tedious to achieve manually. In
general, however, it would be helpful if simplification was a standard feature of
tree analysis, since it would indicate redundant combinations and irregularities
of the partition. In SPAN software there is a simple CART algorithm and the
partitions of the trees that are grown are automatically simplified. That only
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three of the 10 generated tree partitions in the Florida birth weight data turn
out to be irregular may be a reflection of the relatively small size of the trees,
since larger trees are invariably irregular. But it may also indicate that optimal
partitions often are regular, and if this is so, a direct search of the space of regular
partitions seems a preferable strategy.
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